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We give a generalization of the Sturm – Liouville spectral method for solving the biharmonic equation. The
characteristic equation for finding eigen values was studied and eigen functions were obtained. We find the
strain-stress state (SSS) for a rectangular plate loaded on the sides with arbitrary strains. A representation
of the SSS for an arbitrary external load as a series with respect to the eigen functions was obtained. A
method of integral moments for finding the series coefficients is proposed. The Saint-Venan method was
verified.

Узагальнено спектральний метод Штурма – Лiувiлля для розв’язування бiгармонiчного рiвнян-
ня. Дослiджено характеристичне рiвняння для визначення власних значень i побудовано власнi
функцiї. Знайдено напружено-деформований стан (НДС) прямокутної пластини, навантаже-
ної на сторонах довiльними зусиллями. Отримано подання НДС при довiльному зовнiшньому
навантаженнi у виглядi ряду за власними функцiями. Запропоновано метод iнтегральних мо-
ментiв для знаходження коефiцiєнтiв ряду. Пiдтверджено принцип Сен-Венана.

Вступ. Значнi результати математичної фiзики, отриманi при розв’язуваннi рiвнянь з
частинними похiдними другого порядку, пов’язанi iз застосуванням спектрального методу
Штурма – Лiувiлля [1, 2]. При безпосередньому використаннi цього методу для розв’язу-
вання бiгармонiчного рiвняння виникають значнi проблеми математичного та обчислю-
вального характеру [3 – 5]. А саме, не вдається побудувати ортонормовану систему фун-
кцiй, пов’язану iз крайовою задачею для бiгармонiчного рiвняння, не розроблено ефек-
тивнi методи одночасного задоволення двох граничних умов однiєю системою часткових
розв’язкiв та iн.

Запропонований пiдхiд застосуємо до розв’язування крайової задачi для бiгармонiчно-
го рiвняння у прямокутнiй областi [3 – 5]. Така проблема зустрiчається в багатьох роздiлах
математичної фiзики. При певних граничних умовах така задача фiзично буде вiдповiда-
ти плоскiй задачi теорiї пружностi. Тому граничнi умови i термiнологiю будемо викори-
стовувати з теорiї пружностi [3, 4]. Розглянемо плоску задачу теорiї пружностi у прямо-
кутнiй областi S = {(x, y) ∈ [0, a] × [−b, b]} за вiдсутностi масових сил, яка полягає у
розв’язуваннi бiгармонiчного рiвняння

∇2∇2Φ (x, y) = 0, ∇2 =
∂2

∂x2
+

∂2

∂y2
, (1)

на введену функцiю напружень Φ (x, y) [3 – 5]. Такi задачi розглядалися, зокрема, в [3 –
6]. В [5] наведено огляд лiтератури, присвяченої методам розв’язування бiгармонiчного
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рiвняння у прямокутнiй областi. Проте проблема побудови наближеного iз заданою точ-
нiстю аналiтичного розв’язку для довiльного навантаження на сторонах прямоку-ної пла-
стини залишилася невирiшеною. Вирiшенню цiєї важливої проблеми, а також розвитку
iдей методу Штурма – Лiувiлля, якi вперше було висунуто в роботi [7], присвячується дана
стаття.

1. Знаходження розв’язку методом розвинення в ряд за власними функцiями. Для то-
го щоб знайти напружено-деформований стан (НДС) прямокутної пластини, потрiбно
розв’язати бiгармонiчне рiвняння (1) при заданих граничних умовах в напруженнях [3,
4]. Через введену функцiю напружень Φ (x, y) нормальнi та дотичнi напруження виража-
ються у виглядi

σx (x, y) =
∂2

∂y2
Φ (x, y) , σy (x, y) =

∂2

∂x2
Φ (x, y) , τxy = τ (x, y) = − ∂2

∂x∂y
Φ (x, y) . (2)

Нехай на контурi прямокутника L задано довiльнi нормальнi i дотичнi напруження σg, τg:

σn (x, y) |L = σg|L, τn (x, y) |L = τg|L, (3)

де функцiї σg, τg ∈ L2[L]. Внаслiдок громiздкостi алгоритм пошуку бiгармонiчної функцiї
напружень Φ (x, y), яка задовольняє граничнi умови (3), зведемо до послiдовностi таких
крокiв.

I крок. Розiб’ємо загальнi граничнi умови (3) на двi частини: А) на горизонтальних
сторонах прямокутної пластини немає зовнiшнiх навантажень

σy (x,±b) = 0, τ (x,±b) = 0, x ∈ [0, a], (4)

на вертикальних сторонах задано граничнi умови (3); Б) навпаки, на вертикальних сто-
ронах прямокутника немає зовнiшнiх навантажень, на горизонтальних сторонах задано
граничнi умови (3). Враховуючи iдентичнiсть задач А i Б, в подальшому будемо розгля-
дати задачу А. Умови (4) задають крайову задачу для методу Штурма – Лiувiлля. Якщо
функцiя напружень задовольняє граничнi умови (4), то будемо називати її власною фун-
кцiєю.

II крок. Знаходження власних значень i власних функцiй. Згiдно з вiдомим принципом
Сен-Венана [3] розв’язок задачi А також розiб’ємо на двi частини:

1) однорiдний НДС, який вiдповiдає прикладеним до пластини рiвномiрно розподiле-
ним зовнiшнiй нормальнiй Tx i зсувнiй Qx силам, а також згинному моменту Mx [3]:

σx (xj , y) =
Tx
S

+ 6χy (Mx + xjQx) , τ (xj , y) = −3χQx
(
y2 − b2

)
, j = 1, 2,

де S = 2bh, h — товщина пластини, χ =
1

4b3h
, x1 = 0, x2 = a, значення iндексу j = 1

вiдповiдає лiвiй, а j = 2 — правiй вертикальнiй сторонi пластини;
2) НДС вiд самозрiвноважених зовнiшнiх напружень, який ще називається „збуреним”

НДС; його також розiб’ємо на двi частини:
а) НДС вiд самозрiвноважених зусиль, прикладених на лiвiй сторонi:

σx (0, y) = σ1 (y) , τ (0, y) = τ1 (y) , σx (a, y) = 0, τ (a, y) = 0; (5 а)
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б) НДС вiд самозрiвноважених зусиль, прикладених на правiй сторонi пластини:

σx (a, y) = σ2 (y) , τ (a, y) = τ2 (y) , σx (0, y) = 0, τ (0, y) = 0, (5 б)

де σ1 (y) , τ1 (y) (вiдповiдно σ2 (y) , τ2 (y)) — вiдомi зовнiшнi напруження, на якi наклада-
ють умови самозрiвноваженостi i коректнi фiзичнi умови

τj (±b) = 0, |σj (y) |< ∞ , |τj (y) |< ∞ . (6)

Розв’язок задачi 1 є вiдомим, його визначає функцiя напружень

Φ0 (x, y) =
Tx
2S
y2 + χMxy

3 + 3χQxxy
(

1
3
y2 − b2

)
. (7)

Функцiя Φ0 (x, y) є власною i вiдповiдає нульовому значенню спектрального параметра
β. Розв’язок задачi 2 подамо методом вiдокремлення змiнних у виглядi ряду

Φ (x, y) =
∞∑
k=1

Re{[b1k cos (βky) + a1
k sin (βky) + y

(
g1
k cos (βky) + c1

k sin (βky)
)
] exp (−βkx) +

+ [b2k cos (βky) + a2
k sin (βky) + y

(
g2
k cos (βky) + c2

k sin (βky)
)
] exp (βkx)}, (8)

де βk ∈ C — власнi значення, для яких окремi розв’язки (8) задовольняють граничнi
умови (4), ajk, b

j
k, g

j
k, c

j
k — невiдомi комплекснi коефiцiєнти.

Розглянемо задачу 2а. Спочатку припустимо, що пластина за змiнною x є достатньо
„довгою”, тобто такою, що зовнiшнi „збуренi” зусилля, прикладенi до однiєї сторони
пластини (x = 0), практично не викликають появи „збуреного” НДС на протилежнiй
сторонi. У цьому випадку a >> b, i таку пластину будемо називати „довгою”. З фiзичних
мiркувань випливає, що окремий частковий розв’язок у поданнi (8) буде мати вигляд

Φ (x, βy) = Re{[b cos (βy) + a sin (βy) + y (g cos (βy) + c sin (βy))] exp (−βx)}, (9)

де Re (β) > 0, a, g, c, b — невiдомi комплекснi коефiцiєнти.
Виражаючи напруження (2) через функцiю (9) i пiдставляючи в граничнi умови (4),

одержуємо систему чотирьох лiнiйних рiвнянь вiдносно невiдомих комплексних коефiцi-
єнтiв a, g, c, b з нульовими правими частинами. Як вiдомо, вiдмiнний вiд нуля розв’язок
такої системи можливий тiльки за умови рiвностi нулю визначника цiєї системи. Якщо
розкрити цей визначник, то отримаємо характеристичне рiвняння для визначення влас-
них спектральних значень β у виглядi [5]

F± (z) = sin (2z)± 2z = 0, (10)

де z = bβ. Характеристичне рiвняння (10) визначає власнi значення при знаходженнi
НДС прямокутної пластини.

Теорема 1. Функцiя F+ (z) має злiченну кiлькiсть нулiв zk = Rβk.
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Доведення. Iз означення порядку функцiї [8] випливає, що функцiя F+ (z) є цiлою
функцiєю порядку 1. Покладемо z =

√
ζ. Функцiя F+

(√
ζ
)
/
√
ζ стосовно комплексної

змiнної ζ є функцiєю порядку
1
2
. З теореми 5 [8, c. 268] випливає твердження теореми 1.

Аналогiчно доводиться теорема для F− (z) .
Всi коренi рiвнянь (10) (крiм β0 = 0) є комплексно-спряженими i розташованi дис-

кретно на чотирьох гiлках, що прямують у нескiнченнiсть в своїх квадрантах. Наведемо
асимптотичнi значення знайдених коренiв:

Re zk ≈
Ak
4
− lnAk

Ak
+O

(
lnAk
Ak

)2

, Im zk ≈
lnAk

2
+

ln2Ak
A2
k

− 2
lnAk
A2
k

, (11)

де Ak = π (4k ∓ 1) .
Розмiстимо коренi zk, а отже, i βk в порядку зростання їхнiх дiйсних частин. Введемо

безрозмiрну змiнну γ, y = bγ. Пiсля пiдстановки функцiї напружень (9) у граничнi умови
(4) i використання залежностi (10) знайдемо явний вигляд власних функцiй: для знаку „+”

Φk (x, zkγ) = bRe{gkϕk (γ) exp (−βkx)}, k = 1, 2, 3, . . . , (12)

де ϕk (γ) = γ sin (zkγ)− tg(zk) cos (zkγ) , gk — довiльний комплексний коефiцiєнт; для зна-
ку „−”

Ψk (x, zkγ) = bRe{akψk (γ) exp (−βkx)}, k = 1, 2, 3, . . . , (13)

де ψk (γ) = −ctg (zk) sin (zkγ)+γ cos (zkγ) , ak — довiльний комплексний коефiцiєнт. Легко
перевiрити, що власнi функцiї (12) визначають вiдносно змiнної y парнi напруження σx,
непарнi дотичнi напруження τ (задача „розтягу-стиску”), а власнi функцiї (13) — непарнi
напруження σx, парнi дотичнi напруження τ (задача „згину”). Як бачимо, задачi 2а, 2б
також розпадаються на двi частини.

III крок. У подальшому будемо розглядати задачу „розтягу-стиску”. Пiдставивши
власнi функцiї (12) у спiввiдношення (2), одержимо напруження у виглядi

σy (x, γ) = Re{bgkβ2
kϕk (γ) exp (−βkx)}, σx (x, γ) = Re{bgkβ2

kχk (γ) exp (−βkx)},
(14)

τ (x, γ) = Re{bgkβ2
kψk (γ) exp (−βkx)},

де χk (γ) =
[ 1
zk
−ctg (zk)

]
cos (zkγ)−γ sin (zkγ). Легко перевiрити такi залежностi: ψ

′
k (γ) =

= zkχk (γ) , ψk (1) = ψk (−1) = 0.

Означення. Будемо називати функцiю напружень сен-венанiвською, якщо вираженi
через неї нормальнi i дотичнi напруження мають на кожнiй сторонi прямокутника ну-
льовi iнтегральнi нормальну Tn i зсувну Qt сили, а також нульовий згинний мо-
мент Mn.

При розв’язуваннi задачi 2 потрiбно будувати функцiї напружень (9) таким чином,
щоб вони були сен-венанiвськими. Легко показати, що власна функцiя напружень Φ0 (x, y),
яка описує самозрiвноважений НДС, не є сен-венанiвською.
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Теорема 2. Кожна власна функцiя напружень (12) є сен-венанiвською.

Доведення. Теорему доведемо безпосереднiм обчисленням нормальної Tx i зсувної Qx
сил та згинного моменту Mx. Врахувавши значення σx (x, γ) (14), знайдемо iнтегральне
зусилля Tx, яке дiє в будь-якому перерiзi, паралельному боковiй сторонi пластини:

Tx = hb

1∫
−1

σx (x, γ) dγ = hbRe{gkβk[ψk (1)− ψk (−1)] exp (−βkx)} = 0.

Внаслiдок парностi напружень σx (x, γ) за змiнною γ одержимо Mx = 0, а внаслiдок не-
парностi дотичних напружень τ (x, γ) — Qx = 0. Отже, на вертикальних сторонах прямо-
кутника умови виконуються. На горизонтальних сторонах сен-венанiвська умова викону-
ється на пiдставi залежностей (2). Теорему доведено.

Iз теореми випливає, що кожна власна функцiя напружень вигляду (9), (12) (крiм
Φ0 (x, y)) вiдповiдає самозрiвноваженому зовнiшньому навантаженню. Виконане нами
розбиття на двi задачi є коректним i розбиває множину розв’язкiв на два вiдокремле-
них класи. Для набору розв’язкiв (9), (12) виконується принцип Сен-Венана, оскiльки в цi
розв’язки входить експоненцiально згасаюча функцiя вiд x.

2. Розрахунок НДС „довгої” пластини (задача „розтягу-стиску”). Наведемо першi 6
комплексних коренiв рiвняння (10) для знаку „+” [6]:

z1 = 2, 106196 + 1, 125364i, z2 = 5, 356268 + 1, 551574i, z3 = 8, 536668 + 1, 775543i,

z4 = 11, 69918 + 1, 929404i, z5 = 14, 85406 + 2, 046851i, z6 = 18, 00493 + 2, 141890i,

де i — уявна одиниця. Для знаходження коренiв k > 6 можна використати асимптотичну
формулу (11). Загальна функцiя напружень для задач 1, 2 має вигляд

Φ (x, γ) =
Tx
2S

(bγ)2 +
∞∑
k=1

Φk (x, zkγ). (15)

Враховуючи числовi значення коренiв zk = bβk, бачимо, що кожна функцiя напружень
Φk (x, zkγ) (12) швидко спадає за змiнною x, вiдповiдно спадає i НДС, який описується
нею. Причому, чим бiльший номер власної функцiї, тим швидше вона спадає при вiдда-
леннi вiд лiвої вертикальної сторони. Наприклад, функцiя Φ1 зменшується в 100 разiв
на вiдстанi x > 2, 2b, а Φ2 — на вiдстанi x > 0, 85 b. Отже, вже при a > 2, 2b пластину
можна розраховувати як „довгу”. Таке швидке спадання НДС повнiстю вiдповiдає прин-
ципу Сен-Венана.

Припустимо, що на лiвiй боковiй сторонi пластини (x = 0) прикладено вiдомi нор-
мальнi та дотичнi напруження (5а). Граничнi умови σx (a, y) = 0, τ (a, y) = 0 задоволь-
няються тотожно, оскiльки пластина вважається „довгою”. Використавши спiввiдношен-
ня (14), подамо граничнi умови (5а) у виглядi

σ1 (bγ) =
∞∑
k=1

Re{(xk + iyk)χk (γ)}, τ1 (bγ) =
∞∑
k=1

Re{(xk + iyk)ψk (γ)}, (16)
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де xk + iyk = ck =
z2
kgk
b

, xk, yk — дiйсна та уявна частини комплексного коефiцiєнта

ck. Видiлимо у функцiй χk (γ), ψk (γ) дiйсну та уявну частини: χk (γ) = χrk (γ) + iχyk (γ),
ψk (γ) = ψrk (γ) + iψyk (γ). Для знаходження невiдомих коефiцiєнтiв xk, yk, а отже, i ком-
плексних коефiцiєнтiв gk модифiкуємо метод iнтегральних моментiв [1]. Обмежимось у
спiввiдношеннях (15), (16) скiнченною кiлькiстю N членiв ряду. Оскiльки окремi члени
ряду (15) є розв’язками бiгармонiчного рiвняння, то достатньо знайти невiдомi коефiцi-
єнти з умови мiнiмуму граничного вiдхилення знайденого розв’язку вiд зовнiшнiх наван-
тажень (5). Вiдмiтимо, що граничнi умови на горизонтальних сторонах пластини задо-
вольняються тотожно. Мiрою наближення обрiзаного розв’язку до точного є iнтеграл
квадратичного вiдхилення обрiзаних напружень (16) вiд заданих зовнiшнiх зусиль на бо-
кових сторонах (5):

Ψ {x1, . . . , xN , y1, . . . , yN} =

1∫
0

{{
N∑
k=1

[xkχrk (γ)− ykχyk (γ)]− σ1 (bγ)

}2

+

+

{
N∑
k=1

[xkψrk (γ)− ykψyk (γ)]− τ1 (bγ)

}2}
dγ. (17)

Невiдомi коефiцiєнти xk, yk, k = 1, N , визначимо iз умови мiнiмуму функцiонала (17).
Для цього знайдемо частиннi похiднi

∂Ψ {x1, . . . , xN , y1, . . . , yN}
∂xj

,
∂Ψ {x1, . . . , xN , y1, . . . , yN}

∂yj
, j = 1, N,

i прирiвняємо їх до нуля. Пiсля громiздких обчислень iнтегралiв одержимо систему 2N
лiнiйних рiвнянь для визначення 2N невiдомих

N∑
k=1

{
xkB

1
k,j − ykB2

k,j

}
=

1∫
0

[σ1 (γ)χrj (γ) + τ1 (γ)ψrj (γ)]dγ,

(18)
N∑
k=1

{
xkB

3
k,j − ykB4

k,j

}
=

1∫
0

[σ1 (γ)χyj (γ) + τ1 (γ)ψyj (γ)]dγ, j = 1, N,

де

B1
k,j = Re (Nk,j) , B2

k,j = Im (Nk,j) , Nk,j = P1 (k, j) +Q1 (k, j) , B3
k,j = B2

j,k,

B4
k,j = Re (Ak,j) , Ak,j = P2 (k, j) +Q2 (k, j) , 2Pm (k, j) = D (zk, zj)− (−1)mD (zk, zj) ,

2Qm (k, j) = M (zk, zj)− (−1)mM (zk, zj) , m = 1, 2.
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Функцiї M (z, w) , D (z, w) для значень аргументiв z 6= w знаходяться за формулами

M (z, w) = m(z)m(w)F1,1 (z, w)−m(z)G (w, z)−m(w)G (z, w) + F0,3 (z, w) ,

D (z, w) = n(z)n(w)F0,1 (z, w)− n(z)G (z, w)− n(w)G (w, z) + F1,3 (z, w) ,

F0,1 (z, w) = W (z, w) [z sin (z) cos (w)− w sin (w) cos (z)] ,

m(z) = ctg (z) , n(z) =
1
z
− ctg (z) ,

G (z, w) = W (z, w) [z sin (z) sin (w) + w cos (w) cos (z)] +

+ W 2 (z, w)
[
(z2 + w2) cos (z) sin (w)− 2zw cos (w) sin (z)

]
, W (z, w) =

1
z2 − w2

,

F0,3 (z, w) = F0,1 (z, w) +
cos(z + w)
(z + w)2

+
cos(z − w)
(z − w)2

− sin(z + w)
(z + w)3

− sin(z − w)
(z − w)3

,

F1,3 (z, w) = F1,1 (z, w)− cos(z + w)
(z + w)2

+
cos(z − w)
(z − w)2

+
sin(z + w)
(z + w)3

− sin(z − w)
(z − w)3

,

F1,1 (z, w) = W (z, w) [w sin (z) cos (w)− z sin (w) cos (z)] .

Коефiцiєнти D (zk, zk) , M (zk, zk) знаходяться за формулами

D (zk, zk) =
3
2

ctg2 (zk) +
7
6
, M (zk, zk) = −1

3
− ctg (zk)

2zk
.

Розв’яжемо систему лiнiйних рiвнянь (18) чисельно i визначимо коефiцiєнти xk, yk,
а отже, i комплекснi коефiцiєнти gk, k = 1, N . Знайдемо iнтеграл квадратичного вiдхи-
лення Ψ {x1, . . . , xN , y1, . . . , yN} (17) i порiвняємо його з iнтенсивнiстю дiї зовнiшнього
навантаження

Ψ0 =

1∫
0

[σ1 (bγ)2 + τ1 (bγ)2]dγ.

Якщо вiдносне значення буде меншим, нiж 0, 001, то розв’язок знайдено; якщо вiдносне
значення за модулем бiльше, нiж 0, 001, то збiльшуємо кiлькiсть членiв рядуN i повторно
проводимо обчислення. Далi за формулами (2), (15) знаходимо НДС пластини.

3. Розрахунок НДС „короткої” (a 6 2, 2b) пластини (задача „розтягу-стиску”). В
цьому випадку зовнiшнi „збуренi” зусилля, прикладенi до однiєї сторони пластини (x =
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= 0), викликають появу „збуреного” НДС на протилежнiй сторонi. Загальну функцiю
напружень зручно подати у виглядi

Φ (x, γ) =
Tx
2S

(bγ)2 + b2
∞∑
k=1

Re{[gk exp (−βkx) + qk exp (βk(x− a))]ϕk (γ)}, (19)

де gk, qk — невiдомi комплекснi коефiцiєнти. Граничнi умови (5а), (5б) пiсля об’єднання i
використання функцiї напружень (19) набирають вигляду

σm (bγ) =
∞∑
k=1

Re{z2
k[gk exp (−βk(m− 1)) + qk exp (βk(m− 2)a)]χk (γ)},

(20)

τm (bγ) =
∞∑
k=1

Re{z2
k[gk exp (−βk(m− 1))− qk exp (βk(m− 2)a)]ψk (γ)}, m = 1, 2.

Обмежимося у спiввiдношеннях (19), (20) скiнченною кiлькiстю N членiв ряду. Введемо
новi позначення невiдомих xk + iyk = z2

kgk, xk+N + iyk+N = z2
kqk, k = 1, N . Для знаход-

ження невiдомих коєфiцiєнтiв xk, yk, k = 1, 2N , використаємо метод iнтегральних
моментiв. Запишемо iнтеграл квадратичного вiдхилення знайдених напружень (20) вiд
заданих зовнiшнiх зусиль на бокових (вертикальних) сторонах

Ψ {x1, . . . , x2N , y1, . . . , y2N} =

1∫
0

{
2∑

m=1

{{
N∑
k=1

[
xkχ

m
rk (γ)− ykχmyk (γ)

]
− σm (bγ)

}2

+

+

{
N∑
k=1

[
xkψ

m
rk (γ)− ykψmyk (γ)

]
− τm (bγ)

}2}}
dγ, (21)

де

χmk (γ) = χk (γ) exp (βk(1−m)a) , χmk+N (γ) = χk (γ) exp (βk(m− 2)a) ,

ψmk (γ) = ψk (γ) exp (βk(1−m)a) , ψmk+N (γ) = −ψk (γ) exp (βk(m− 2)a) , k = 1, N,

χmk (γ) = χmrk (γ) + iχmyk (γ) , ψmk (γ) = ψmrk (γ) + iψmyk (γ) , m = 1, 2,

χmrk (γ), ψmrk (γ) — дiйснi, χmyk (γ), ψmyk (γ) — вiдповiдно уявнi частини. Дiючи, як у п. 2, пiсля
громiздких обчислень iнтегралiв одержимо систему 4N лiнiйних рiвнянь для визначення
4N невiдомих xk, yk, k = 1, 2N :

2N∑
k=1

{
xkV

1
k,j − ykV 2

k,j

}
=

2∑
m=1

1∫
0

[
σm (γ)χmrj (γ) + τm (γ)ψmrj (γ)

]
dγ,

(22)
2N∑
k=1

{
xkV

2
j,k − ykV 4

k,j

}
=

2∑
m=1

1∫
0

[
σm (γ)χmyj (γ) + τm (γ)ψmyj (γ)

]
dγ, j = 1, 2N,
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де коефiцiєнти V m
k,j для значень iндексiв k, j 6 N, або k, j > N , знаходяться за форму-

лами

V 1
k,j = (1 + VkVj)B1

k,j − VkWjB
2
j,k −WkVjB

2
k,j +WkWjB

4
k,j ,

V 2
k,j = (1 + VkVj)B2

k,j −WkWjB
2
j,k −WjVkB

4
k,j +WkVjB

1
k,j ,

V 4
k,j = (1 + VkVj)B4

k,j + VjWkB
2
j,k +WjVkB

2
k,j +WkWjB

1
k,j ,

а для значень iндексiв k > N, j < N, або j > N, k < N , маємо

V 1
k,j = (Vk + Vj)E1

k,j −WjE
2
j,k −WkE

2
k,j , V 2

k,j = (Vk + Vj)E2
k,j −WjE

4
k,j +WkE

1
k,j ,

V 4
k,j = (Vk + Vj)E4

k,j +WkE
2
j,k +WjE

2
k,j .

Коефiцiєнти Bm
n,l, Emn,l, Vl, Wl для значень iндексiв n > N, l > N обчислюються за

формулами

Bm
k+N,j+N = Bm

k,j , Emk,j+N = Emk+N,j = Emk,j , Vk+N = Vk, Wk+N = Wk, m = 1, 4,

де

Vk = Re (exp(−βka)) , Wk = Im (exp(−βka)) , E1
k,j = Re (P1(k, j)−Q1(k, j)) ,

E2
k,j = Im (P1(k, j)−Q1(k, j)) , E4

k,j = Im (P2(k, j)−Q2(k, j)) .

Розв’яжемо систему лiнiйних рiвнянь (22) чисельно i визначимо дiйснi коефiцiєнти xk, yk,
k = 1, 2N , а отже, i комплекснi коефiцiєнти gk, qk, k = 1, N . Знайдемо iнтеграл квадра-
тичного вiдхилення Ψ {x1, . . . , x2N , y1, . . . , y2N} (21) i порiвняємо його з iнтенсивнiстю дiї
зовнiшнього навантаження

Ψ0 =

1∫
0

2∑
m=1

[σm (bγ)2 + τm (bγ)2]dγ.

Якщо вiдносне значення буде меншим, нiж 0, 001, то розв’язок знайдено; якщо вiдносне
значення бiльше, нiж 0, 001, то збiльшуємо кiлькiсть членiв ряду N i повторно проводимо
обчислення. Далi за формулами (2), (19) знаходимо НДС пластини.

Основнi результати, висновки i перспективи подальших дослiджень.
1. Узагальнено спектральний метод Штурма – Лiувiлля iнтегрування рiвнянь другого

порядку до розв’язування крайової задачi для бiгармонiчного рiвняння. Запропонований
метод можна розвинути i використати при iнтегруваннi рiвнянь з частинними похiдними
четвертого i вищих порядкiв.
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2. Як приклад застосування цього методу розроблено алгоритм розрахунку НДС пря-
мокутної iзотропної пластини для довiльного силового навантаження (задача „розтягу-
стиску”). Запропоновано регуляризацiю розв’язку цiєї задачi шляхом видiлення однорi-
дних несамозрiвноважених зусиль i самозрiвноваженої частини, яка має локальний ха-
рактер. Знайдено подання функцiї напруження самозрiвноваженого напруженого стану
у виглядi ряду. Показано, що компоненти цього ряду є сен-венанiвськими, тобто ство-
рюють на кожнiй сторонi прямокутної пластини нульовi iнтегральнi нормальну i зсувну
сили та згинний момент. Цей алгоритм можна розвинути i використати для розв’язування
задачi „згину” прямокутної пластини.

3. Побудовано функцiю напруження самозрiвноваженої частини розв’язку у виглядi
ряду за власними (сен-венанiвськими) комплексними функцiями, якi задовольняють ну-
льовi граничнi умови на бокових сторонах прямокутника. Знайдено явнi вирази функцiй,
а також iнтегралiв вiд добутку цих функцiй.

4. Розроблено iнтегральний метод визначення комплексних коефiцiєнтiв ряду, який
базується на методi моментiв i принципi найменших квадратiв. Знайдено в явному виг-
лядi коефiцiєнти матрицi лiнiйної системи рiвнянь для визначення шуканих коефiцiєнтiв
ряду. Запропонований метод для розв’язування бiгармонiчного рiвняння є узагальненням
схеми Штурма – Лiувiлля iнтегрування рiвнянь з частинними похiдними другого поряд-
ку, оскiльки при його застосуваннi до рiвняння другого порядку вiн збiгається з методом
Штурма – Лiувiлля [1]. Цей метод можна розвинути i використати при розв’язуваннi мi-
шаних крайових задач.

5. Запропоновано методи розрахунку „довгої” (a > 2, 2b) i „короткої” (a ≤ 2, 2b) плас-
тин. Виражено компоненти НДС прямокутної пластини довiльних розмiрiв через введенi
власнi функцiї. Пiдтверджено принцип Сен-Венана. Показано, що коли до короткої сто-
рони пластини, рiвної 2b (b < 0, 45a), прикласти самозрiвноваженi зусилля, то збуреними
напруженнями на протилежнiй сторонi практично можна знехтувати.
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