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By using the method of classic integral and hybrid integral transforms in combination with the method of
main solutions (influence matrices and Green’s matrices), for the first time, we have constructed unique
exact analytical solutions of parabolic boundary-value problems of mathematical physics in a semibounded
piecewise homogeneous wedge-shaped solid cylinder.

За допомогою методу класичних iнтегральних i гiбридних iнтегральних перетворень у поєднаннi
з методом головних розв’язкiв (матриць впливу та матриць Грiна) вперше побудовано єдинi точ-
нi аналiтичнi розв’язки параболiчних крайових задач математичної фiзики в напiвобмеженому
кусково-однорiдному клиновидному суцiльному цилiндрi.

1. Вступ. Теорiя крайових i мiшаних (початково-крайових) задач для диференцiальних рiв-
нянь iз частинними похiдними, зокрема рiвнянь математичної фiзики, — важливий роздiл
сучасної теорiї диференцiальних рiвнянь, який iнтенсивно розвивається. Актуальнiсть тео-
рiї обумовлено як значущiстю її результатiв для розвитку багатьох роздiлiв математики, так
i численними застосуваннями її досягнень при дослiдженнi рiзноманiтних математичних
моделей рiзних процесiв i явищ фiзики, механiки, хiмiї, бiологiї, медицини, економiки,
екологiї, технiки, новiтнiх технологiй тощо.

Вагомi результати з теорiї задачi Кошi та початково-крайових задач для параболiчних
рiвнянь i їхнiх систем одержано в [1 – 6] i працях iнших вiдомих вiтчизняних i зарубiжних
математикiв.
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Вiдомо, що складнiсть дослiджуваних крайових задач суттєво залежить як вiд власти-
востей коефiцiєнтiв рiвнянь (рiзнi види виродженостей i особливостей коефiцiєнтiв), так i
вiд геометричної структури областi (гладкiсть межi, наявнiсть кутових точок, обмеженiсть,
необмеженiсть тощо), в якiй розглядається задача. На сьогоднi досить детально вивчено
властивостi розв’язкiв i розвинуто рiзноманiтнi методи побудови розв’язкiв (точнi та набли-
женi) крайових задач для лiнiйних, квазiлiнiйних i деяких нелiнiйних рiвнянь рiзних типiв
(елiптичних, параболiчних, гiперболiчних) в однозв’язних областях (однорiдних середо-
вищах), якi обумовленi згаданими вище властивостями коефiцiєнтiв рiвнянь i геометрiї
областi, та побудовано функцiональнi простори коректностi задач у розумiннi Адамара.

Водночас багато важливих прикладних задач термомеханiки, теплофiзики, дифузiї,
теорiї пружностi, теорiї електричних кiл, теорiї коливань, механiки деформiвного твердого
тiла приводять до крайових i мiшаних задач для диференцiальних рiвнянь iз частинними
похiдними рiзних типiв не тiльки в однорiдних середовищах, коли коефiцiєнти рiвнянь
є неперервними функцiями, але й у неоднорiдних i кусково-однорiдних середовищах,
коли коефiцiєнти рiвнянь є кусково-неперервними функцiями чи, зокрема, кусково-ста-
лими [7 – 9].

Вiдомо, що крiм методу вiдокремлення змiнних (методу Фур’є) та його узагальнень,
одним iз важливих i ефективних методiв вивчення лiнiйних крайових i мiшаних задач для
диференцiальних рiвнянь iз частинними похiдними в однорiдних середовищах є метод iн-
тегральних перетворень, який дає змогу побудувати в аналiтичному виглядi точнi розв’язки
розглянутих крайових задач за допомогою їхнiх iнтегральних зображень.

При цьому для досить широкого класу лiнiйних крайових задач у кусково-однорiдних
середовищах ефективним методом побудови їхнiх розв’язкiв виявився метод гiбридних iн-
тегральних перетворень, породжених вiдповiдними гiбридними диференцiальними опера-
торами, коли на кожнiй компонентi зв’язностi кусково-однорiдного середовища розглядати
або рiзнi диференцiальнi оператори, або диференцiальнi оператори того ж самого вигляду,
але з рiзними наборами коефiцiєнтiв [10 – 15].

У цiй статтi, яка є логiчним продовженням [16], за допомогою методу класичних iнте-
гральних i гiбридних iнтегральних перетворень у поєднаннi з методом головних розв’язкiв
(матриць впливу i матриць Грiна) вперше побудовано єдинi точнi аналiтичнi розв’язки па-
раболiчних початково-крайових задач математичної фiзики в напiвобмеженому кусково-
однорiдному клиновидному суцiльному цилiндрi.

2. Постановка задачi. Розглянемо задачу побудови обмеженого на множинi

D =

\Biggl\{ 
(t, r, \varphi , z)

\bigm| \bigm| \bigm| \bigm| t > 0; r \in I+n =
n+1\bigcup 
j=1

Ij \equiv 
n+1\bigcup 
j=1

(Rj - 1;Rj);

R0 = 0; Rn+1 \equiv R < +\infty ; \varphi \in (0;\varphi 0); 0 < \varphi 0 < 2\pi ; z \in (0;+\infty )

\Biggr\} 

класичного розв’язку лiнiйних диференцiальних рiвнянь iз частинними похiдними пара-
болiчного типу 2-го порядку [17]

\partial uj
\partial t

 - 

\Biggl[ 
a2rj

\biggl( 
\partial 2

\partial r2
+

1

r

\partial 

\partial r

\biggr) 
+

a2\varphi j
r2

\partial 2

\partial \varphi 2
+ a2zj

\partial 2

\partial z2

\Biggr] 
uj + \chi 2

juj = fj(t, r, \varphi , z), (1)
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r \in Ij , j = 1, n+ 1,

з початковими умовами

uj(t, r, \varphi , z)| t=0 = gj(r, \varphi , z), r \in Ij , j = 1, n+ 1, (2)

межовими умовами\biggl( 
 - \partial 

\partial z
+ h

\biggr) 
uj

\bigm| \bigm| \bigm| \bigm| 
z=0

= wj(t, r, \varphi ),
\partial suj
\partial zs

\bigm| \bigm| \bigm| \bigm| 
z=+\infty 

= 0, s = 0, 1, j = 1, n+ 1, (3)

\partial su1
\partial rs

\bigm| \bigm| \bigm| \bigm| 
r=0

= 0,

\biggl( 
\alpha n+1
22

\partial 

\partial r
+ \beta n+1

22

\biggr) 
un+1

\bigm| \bigm| \bigm| \bigm| 
r=R

= g(t, \varphi , z), s = 0, 1, (4)

одними з межових умов на гранях клина [15]

uj | \varphi =0 = g1j(t, r, z), uj | \varphi =\varphi 0
= w1j(t, r, z), j = 1, n+ 1, (5)

uj | \varphi =0 = g2j(t, r, z),
\partial uj
\partial \varphi 

\bigm| \bigm| \bigm| \bigm| 
\varphi =\varphi 0

=  - w2j(t, r, z), j = 1, n+ 1, (6)

\partial uj
\partial \varphi 

\bigm| \bigm| \bigm| \bigm| 
\varphi =0

= g3j(t, r, z), uj | \varphi =\varphi 0
= w3j(t, r, z), j = 1, n+ 1, (7)

\partial uj
\partial \varphi 

\bigm| \bigm| \bigm| \bigm| 
\varphi =0

= g4j(t, r, z),
\partial uj
\partial \varphi 

\bigm| \bigm| \bigm| \bigm| 
\varphi =\varphi 0

=  - w4j(t, r, z), j = 1, n+ 1, (8)

та умовами спряження [12]\biggl[ \biggl( 
\alpha k
j1

\partial 

\partial r
+ \beta k

j1

\biggr) 
uk  - 

\biggl( 
\alpha k
j2

\partial 

\partial r
+ \beta k

j2

\biggr) 
uk+1

\biggr] \bigm| \bigm| \bigm| \bigm| 
r=Rk

= 0, j = 1, 2, k = 1, n, (9)

де arj , a\varphi j , azj , \chi j , h, \alpha 
s
jk, \beta 

s
jk — деякi сталi;

\alpha n+1
22 \geq 0, \beta n+1

22 \geq 0, \alpha n+1
22 + \beta n+1

22 \not = 0, cjk = \alpha k
2j\beta 

k
1j  - \alpha k

1j\beta 
k
2j \not = 0, c1k \cdot c2k > 0,

f(t, r, \varphi , z) =
\bigl( 
f1(t, r, \varphi , z), f2(t, r, \varphi , z), . . . , fn+1(t, r, \varphi , z)

\bigr) 
,

g(r, \varphi , z) =
\bigl( 
g1(r, \varphi , z), g2(r, \varphi , z), . . . , gn+1(r, \varphi , z)

\bigr) 
,

w(t, r, \varphi ) =
\bigl( 
w1(t, r, \varphi ), w2(t, r, \varphi ), . . . , wn+1(t, r, \varphi )

\bigr) 
,

g(t, \varphi , z), gpj(t, r, z), wpj(t, r, z), p = 1, 4, j = 1, n+ 1,

— заданi дiйснi обмеженi неперервнi функцiї;

u(t, r, \varphi , z) = (u1(t, r, \varphi , z), u2(t, r, \varphi , z), . . . , un+1(t, r, \varphi , z))

—шукана дiйсна неперервно диференцiйовна за змiнною t i двiчi неперервно диференцi-
йовна за геометричними змiнними (r, \varphi , z) функцiя.

Зауважимо, що:
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1) у випадку \chi j \equiv 0, j = 1, n+ 1, рiвняння (1) є класичним тривимiрним неоднорiд-
ним рiвнянням теплопровiдностi (дифузiї) для ортотропного середовища у цилiндричнiй
системi координат;

2) якщо \alpha k
11 = 0, \beta k

11 = 1, \alpha k
12 = 0, \beta k

12 = 1, \alpha k
21 = \lambda k

1, \beta k
21 = 0, \alpha k

22 = \lambda k
2, \beta k

22 = 0,
де \lambda k

1, \lambda 
k
2 — коефiцiєнти теплопровiдностi, то умови спряження (9) збiгаються з умовами

iдеального теплового (термiчного) контакту;
3) якщо \alpha k

11 = bk, \beta k
11 = 1, \alpha k

12 = 0, \beta k
12 = 1, \alpha k

21 = \lambda k
1, \beta k

21 = 0; \alpha k
22 = \lambda k

2, \beta k
22 = 0, де

bk — коефiцiєнти термоопору, то умови спряження (9) збiгаються з умовами неiдеального
теплового контакту.

Отже, у зазначених випадках 1), 2) (або 1), 3)) розглянутi параболiчнi крайовi задачi
математичної фiзики моделюють процеси теплопровiдностi в напiвобмеженому кусково-
однорiдному клиновидному суцiльному цилiндрi [13].

3. Основна частина. Припустимо, що розв’язки параболiчних початково-крайових за-
дач (1) – (4), (5), (9); (1) – (4), (6), (9); (1) – (4), (7), (9); (1) – (4), (8), (9) iснують, заданi й
шуканi функцiї задовольняють умови застосовностi залучених далi прямих i обернених
iнтегральних i гiбридних iнтегральних перетворень [12, 14, 15].

Згiдно з [15] визначимо скiнченнi пряме Fm,ik та обернене F - 1
m,ik iнтегральнi перетво-

рення Фур’є щодо кутової змiнної \varphi за формулами

Fm,ik[f(\varphi )] =

\varphi 0\int 
0

f(\varphi )Um,ik(\varphi ) d\varphi \equiv fm,ik, (10)

F - 1
m,ik[fm,ik] =

2

\varphi 0

\infty \sum 
m=0

\varepsilon ikmfm,ikUm,ik(\varphi ) \equiv f(\varphi ), (11)

де

Um,11(\varphi ) = sin(\beta m,11\varphi ), \beta m,11 =
\pi m

\varphi 0
,

Um,12(\varphi ) = sin(\beta m,12\varphi ), \beta m,12 =
\pi (2m+ 1)

2\varphi 0
,

Um,21(\varphi ) = cos(\beta m,21\varphi ), \beta m,21 = \beta m,12,

Um,22(\varphi ) = cos(\beta m,22\varphi ), \beta m,22 = \beta m,11,

\varepsilon ik0 = 0, \varepsilon ikm = 1 при ik = 11, 12, 21, m = 1, 2, 3, . . . , \varepsilon 220 =
1

2
, \varepsilon 22m = 1 при m = 1, 2, 3, . . . .

Безпосередньо перевiряємо, що для iнтегрального оператора Fm,ik виконується тотож-
нiсть

Fm,ik

\biggl[ 
d2f

d\varphi 2

\biggr] 
=  - \beta 2

m,ikfm,ik +\Phi m,ik(f), i, k = 1, 2, (12)

де

\Phi m,11 =
\pi m

\varphi 0

\bigl[ 
f(0) + ( - 1)m+1f(\varphi 0)

\bigr] 
, \Phi m,12 =

\pi (2m+ 1)

2\varphi 0
f(0) + ( - 1)m

df

d\varphi 

\bigm| \bigm| \bigm| \bigm| 
\varphi =\varphi 0

,
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\Phi m,21 =  - df

d\varphi 

\bigm| \bigm| \bigm| \bigm| 
\varphi =0

+ ( - 1)m
\pi (2m+ 1)

2\varphi 0
f(\varphi 0), \Phi m,22 =  - df

d\varphi 

\bigm| \bigm| \bigm| \bigm| 
\varphi =0

+ ( - 1)m
df

d\varphi 

\bigm| \bigm| \bigm| \bigm| 
\varphi =\varphi 0

.

Iнтегральний оператор Fm,ik, який дiє за формулою (10), внаслiдок тотожностi (12)
ставить у вiдповiднiсть тривимiрним крайовим задачам (1) – (4), (5), (9); (1) – (4), (6),
(9); (1) – (4), (7), (9); (1) – (4), (8), (9) задачу побудови обмеженого на множинi D\prime =
\{ (t, r, z) | t > 0; r \in I+n ; z \in (0;+\infty )\} класичного розв’язку двовимiрних диференцiальних
рiвнянь параболiчного типу 2-го порядку

\partial ujm,ik

\partial t
 - 

\Biggl[ 
a2rj

\Biggl( 
\partial 2

\partial r2
+

1

r

\partial 

\partial r
 - 

\nu 2jm,ik

r2

\Biggr) 
+ a2zj

\partial 2

\partial z2

\Biggr] 
ujm,ik + \chi 2

jujm,ik = Gjm,ik(t, r, z), (13)

r \in Ij , j = 1, n+ 1,

з початковими умовами

ujm,ik(t, r, z)| t=0 = gjm,ik(r, z), r \in Ij , j = 1, n+ 1, (14)

межовими умовами\biggl( 
 - \partial 

\partial z
+ h

\biggr) 
ujm,ik

\bigm| \bigm| \bigm| \bigm| 
z=0

= wjm,ik(t, r),
\partial sujm,ik

\partial zs

\bigm| \bigm| \bigm| \bigm| 
z=+\infty 

= 0, s = 0, 1, j = 1, n+ 1,

(15)

\partial su1m,ik

\partial rs

\bigm| \bigm| \bigm| \bigm| 
r=0

= 0,

\biggl( 
\alpha n+1
22

\partial 

\partial r
+ \beta n+1

22

\biggr) 
un+1

\bigm| \bigm| \bigm| \bigm| 
r=R

= gm,ik(t, z) (16)

i умовами спряження\biggl[ \biggl( 
\alpha p
j1

\partial 

\partial r
+ \beta p

j1

\biggr) 
upm,ik  - 

\biggl( 
\alpha p
j2

\partial 

\partial r
+ \beta p

j2

\biggr) 
up+1,m,ik

\biggr] \bigm| \bigm| \bigm| \bigm| 
r=Rp

= 0, j = 1, 2, p = 1, n, (17)

де Gjm,ik(t, r, z) = fjm,ik(t, r, z) + a2\varphi jr
 - 2\Phi m,ik(t, r, z), \nu jm,ik = a - 1

rj a\varphi j\beta m,ik.
До двовимiрної початково-крайової задачi (13) – (17) застосуємо iнтегральне перетво-

рення Фур’є на декартовiй пiвосi (0;+\infty ) щодо змiнної z [14]:

F+[g(z)] =

+\infty \int 
0

g(z)K(z, \sigma ) dz \equiv \~g(\sigma ), (18)

F - 1
+ [\~g(\sigma )] =

+\infty \int 
0

\~g(\sigma )K(z, \sigma )d\sigma \equiv g(z), (19)

F+

\biggl[ 
d2g

dz2

\biggr] 
=  - \sigma 2\~g(\sigma ) +K(0, \sigma )

\biggl( 
 - dg

dz
+ hg

\biggr) \bigm| \bigm| \bigm| \bigm| 
z=0

, (20)

де ядро перетворення має вигляд

K(z, \sigma ) =

\sqrt{} 
2

\pi 

\sigma cos(\sigma z) + h sin(\sigma z)\surd 
\sigma 2 + h2

.
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Iнтегральний оператор F+, який дiє за формулою (18), внаслiдок тотожностi (20) ста-
вить у вiдповiднiсть початково-крайовiй задачi (13) – (17) задачу побудови обмеженого на
множинi D\prime \prime = \{ (t, r) | t > 0; r \in I+n \} класичного розв’язку одновимiрних диференцiаль-
них рiвнянь B -параболiчного типу 2-го порядку

\partial \~ujm,ik

\partial t
 - a2rjB\nu jm,ik

[\~ujm,ik]

+
\bigl( 
a2zj\sigma 

2 + \chi 2
j

\bigr) 
\~ujm,ik = \~Pjm,ik(t, r, \sigma ), r \in Ij , j = 1, n+ 1, (21)

з початковими умовами

\~ujm,ik(t, r, \sigma )| t=0 = \~gjm,ik(r, \sigma ), r \in Ij , j = 1, n+ 1, (22)

крайовими умовами
\partial s\~u1m,ik

\partial rs

\bigm| \bigm| \bigm| \bigm| 
r=0

= 0,

\biggl( 
\alpha n+1
22

\partial 

\partial r
+ \beta n+1

22

\biggr) 
\~un+1,m,ik

\bigm| \bigm| \bigm| \bigm| 
r=R

= \~gm,ik(t, z), (23)

та умовами спряження\biggl[ \biggl( 
\alpha p
j1

\partial 

\partial r
+ \beta p

j1

\biggr) 
\~upm,ik  - 

\biggl( 
\alpha p
j2

\partial 

\partial r
+ \beta p

j2

\biggr) 
\~up+1,m,ik

\biggr] \bigm| \bigm| \bigm| \bigm| 
r=Rp

= 0, j = 1, 2, p = 1, n, (24)

де B\nu jm,ik
=

\partial 2

\partial r2
+

1

r

\partial 

\partial r
 - 

\nu 2jm,ik

r2
— класичний диференцiальний оператор Бесселя [5],

\~Pjm,ik(t, r, \sigma ) = \~Gjm,ik(t, r, \sigma ) + a2zjK(0, \sigma )wjm,ik(t, r).

До одновимiрної початково-крайової задачi спряження (21) – (24) застосуємо скiнчен-
не гiбридне iнтегральне перетворення типу Ганкеля 1-го роду на кусково-однорiдному
сегментi I+n з n точками спряження щодо радiальної змiнної r [12]:

Hsn[f(r)] =

R\int 
0

f(r)V (r, \lambda s)\sigma (r)r dr \equiv \~f(\lambda s), (25)

H - 1
sn

\Bigl[ 
\~f(\lambda s)

\Bigr] 
=

\infty \sum 
s=1

\~f(\lambda s)
V (r, \lambda s)

\| V (r, \lambda s)\| 2
\equiv f(r), (26)

Hsn

\bigl[ 
B(m,ik)[f(r)]

\bigr] 
=  - \lambda 2

s
\~f(\lambda s) - 

n+1\sum 
k=1

\gamma 2k

Rk\int 
Rk - 1

f(r)Vk(r, \lambda s)\sigma kr dr

+a2n+1R\sigma n+1

\bigl( 
\alpha n+1
22

\bigr)  - 1
Vn+1(R, \lambda s)

\biggl( 
\alpha n+1
22

df

dr
+ \beta n+1

22 f

\biggr) \bigm| \bigm| \bigm| \bigm| 
r=R

. (27)

Уформулах (25) – (27) використано спектральну функцiю V (r, \lambda s), вагову функцiю \sigma (r)
i гiбридний диференцiальний оператор Бесселя, одержанi в [12]:

B(m,ik) =
n+1\sum 
j=1

a2j\Theta (r  - Rj - 1)\Theta (Rj  - r)B\nu jm,ik
,

де \Theta (x) — одинична функцiя Гевiсайда, a2k \equiv a2rk, \gamma 
2
k — деякi сталi.

ISSN 1562-3076. Нелiнiйнi коливання, 2025, т. 28, № 1



ПАРАБОЛIЧНI КРАЙОВI ЗАДАЧI МАТЕМАТИЧНОЇ ФIЗИКИ В НАПIВОБМЕЖЕНОМУ . . . 37

Запишемо диференцiальнi рiвняння (21) i початковi умови (22) у матричнiй формi:\left[            

\biggl( 
\partial 

\partial t
 - a21B\nu 1m,ik

+ q21(\sigma )

\biggr) 
\~u1m,ik(t, r, \sigma )\biggl( 

\partial 

\partial t
 - a22B\nu 2m,ik

+ q22(\sigma )

\biggr) 
\~u2m,ik(t, r, \sigma )

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .\biggl( 
\partial 

\partial t
 - a2n+1B\nu n+1,m,ik

+ q2n+1(\sigma )

\biggr) 
\~un+1,m,ik(t, r, \sigma )

\right]            
=

\left[      
\~P1m,ik(t, r, \sigma )

\~P2m,ik(t, r, \sigma )

. . . . . . . . . . . . . . .

\~Pn+1,m,ik(t, r, \sigma )

\right]      , (28)

\left[      
\~u1m,ik(t, r, \sigma )

\~u2m,ik(t, r, \sigma )

. . . . . . . . . . . . . . .

\~un+1,m,ik(t, r, \sigma )

\right]      
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

=

\left[      
\~g1m,ik(r, \sigma )

\~g2m,ik(r, \sigma )

. . . . . . . . . . . . . . .

\~gn+1,m,ik(r, \sigma )

\right]      , (29)

де q2j = a2zj\sigma 
2 + \chi 2

j , j = 1, n+ 1.
Iнтегральний оператор Hsn, який дiє заформулою (25), зобразимо у виглядi операторної

матрицi-рядка

Hsn[. . .] =

\left[  R1\int 
0

. . . V1(r, \lambda s)\sigma 1r dr

R2\int 
R1

. . . V2(r, \lambda s)\sigma 2r dr

Rn\int 
Rn - 1

. . . Vn(r, \lambda s)\sigma nr dr

R\int 
Rn

. . . Vn+1(r, \lambda s)\sigma n+1r dr

\right]   (30)

i застосуємо за правилом множення матриць до задачi (28), (29). Внаслiдок тотожностi (27)
одержуємо задачу Кошi для звичайного неоднорiдного диференцiального рiвняння 1-го
порядку

n+1\sum 
j=1

\biggl( 
d

dt
+ \lambda 2

s + \gamma 2j + q2j (\sigma )

\biggr) 
\~\~ujm,ik(t, \lambda s, \sigma )

=
n+1\sum 
j=1

\~\~Pjm,ik(t, \lambda s, \sigma ) + a2n+1R\sigma 2
n+1

\bigl( 
\alpha n+1
22

\bigr)  - 1
Vn+1(R, \lambda s)\~gm,ik(t, \sigma ), (31)

n+1\sum 
j=1

\~\~ujm,ik(t, \lambda s, \sigma )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t=0

=

n+1\sum 
j=1

\~\~gjm,ik(\lambda s, \sigma ), (32)

де

\~\~ujm,ik(t, \lambda s, \sigma ) =

Rj\int 
Rj - 1

\~ujm,ik(t, r, \sigma )Vj(r, \lambda s)\sigma jr dr, j = 1, n+ 1,
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\~\~Pjm,ik(t, \lambda s, \sigma ) =

Rj\int 
Rj - 1

\~Pjm,ik(t, r, \sigma )Vj(r, \lambda s)\sigma jr dr, j = 1, n+ 1,

\~\~gjm,ik(\lambda s, \sigma ) =

Rj\int 
Rj - 1

\~gjm,ik(r, \sigma )Vj(r, \lambda s)\sigma jr dr, j = 1, n+ 1.

Припустимо, не зменшуючи загальностi розв’язку задачi, що

max
\bigl\{ 
q21(\sigma ), q

2
2(\sigma ), . . . , q

2
n+1(\sigma )

\bigr\} 
= q21(\sigma )

i покладемо всюди \gamma 2j = q21(\sigma ) - q2j (\sigma ), j = 1, n+ 1. Задача Кошi (31), (32) набирає вигляду

d\~\~um,ik

dt
+\Delta (\lambda s, \sigma )\~\~um,ik = \~\~Pm,ik(t, \lambda s, \sigma ) + a2n+1R\sigma 2

n+1

\bigl( 
\alpha n+1
22

\bigr)  - 1
Vn+1(R, \lambda s)\~gm,ik(t, \sigma ), (33)

\~\~um,ik(t, \lambda s, \sigma )
\bigm| \bigm| 
t=0

= \~\~gm,ik(\lambda s, \sigma ), (34)

де

\~\~um,ik(t, \lambda s, \sigma ) =
n+1\sum 
j=1

\~\~ujm,ik(t, \lambda s, \sigma ),
\~\~Pm,ik(t, \lambda s, \sigma ) =

n+1\sum 
j=1

\~\~Pjm,ik(t, \lambda s, \sigma ),

\~\~gm,ik(\lambda s, \sigma ) =
n+1\sum 
j=1

\~\~gjm,ik(\lambda s, \sigma ), \Delta (\lambda s, \sigma ) = \lambda 2
s + a2z1\sigma 

2 + \chi 2
1.

Безпосередньо перевiряємо, що єдиним розв’язком задачi Кошi (33), (34) є функцiя

\~\~um,ik(t, \lambda s, \sigma ) = N(t, \lambda s, \sigma )\~\~gm,ik(\lambda s, \sigma ) +

t\int 
0

N(t - \tau , \lambda s, \sigma )
\~\~Tm,ik(\tau , \lambda s, \sigma ) d\tau , (35)

де розв’язуюча функцiя (функцiя Кошi) має вигляд

N(t, \lambda s, \sigma ) = exp( - \Delta (\lambda s, \sigma )t),

\~\~Tm,ik(\tau , \lambda s, \sigma ) =
\~\~Pm,ik(\tau , \lambda s, \sigma ) + a2n+1R\sigma 2

n+1

\bigl( 
\alpha n+1
22

\bigr)  - 1
Vn+1(R, \lambda s)\~gm,ik(t, \sigma ).

Оскiльки суперпозицiя операторiв Hsn i H - 1
sn є одиничним оператором (Hsn \circ H - 1

sn =
H - 1

sn \circ Hsn = I), то оператор H - 1
sn як обернений до оператора (30) зобразимо у виглядi

операторної матрицi-стовпця

H - 1
sn [. . .] =

\left[           

\sum \infty 

s=1
. . .

V1(r, \lambda s)

\| V (r, \lambda s)\| 2\sum \infty 

s=1
. . .

V2(r, \lambda s)

\| V (r, \lambda s)\| 2
. . . . . . . . . . . . . . . . . . . . .\sum \infty 

s=1
. . .

Vn+1(r, \lambda s)

\| V (r, \lambda s)\| 2

\right]           
(36)
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i застосуємо за правилом множення матриць до матрицi-елемента
\bigl[ 
\~\~um,ik(t, \lambda s, \sigma )

\bigr] 
, де функ-

цiю \~\~um,ik(t, \lambda s, \sigma ) визначено за формулою (35). Одержимо єдиний розв’язок одновимiрної
параболiчної початково-крайової задачi (21) – (24):

\~ujm,ik(t, r, \sigma ) =
\infty \sum 
s=1

\~\~um,ik(t, \lambda s, \sigma )
Vj(r, \lambda s)

\| V (r, \lambda s)\| 2
, j = 1, n+ 1. (37)

Застосовуючи послiдовно до функцiй \~ujm,ik(t, r, \sigma ), визначених формулами (37), обер-
ненi оператори F - 1

+ i F - 1
m,ik, i виконуючи нескладнi перетворення, одержуємо функцiї

uj,ik(t, r, \varphi , z) =
n+1\sum 
p=1

t\int 
0

Rp\int 
Rp - 1

\varphi 0\int 
0

+\infty \int 
0

Eik
jp(t - \tau , r, \rho , \varphi , \alpha , z, \xi )fp(\tau , \rho , \alpha , \xi )\sigma p\rho d\xi d\alpha d\rho d\tau 

+
n+1\sum 
p=1

Rp\int 
Rp - 1

\varphi 0\int 
0

+\infty \int 
0

Eik
jp(t, r, \rho , \varphi , \alpha , z, \xi )gp(\rho , \alpha , \xi )\sigma p\rho d\xi d\alpha d\rho 

+
n+1\sum 
p=1

a2\varphi p

t\int 
0

Rp\int 
Rp - 1

+\infty \int 
0

Qik
jp(t, \tau , r, \rho , \varphi , z, \xi )\sigma p\rho 

 - 1 d\xi d\rho d\tau 

+

n+1\sum 
p=1

a2zp

t\int 
0

Rp\int 
Rp - 1

\varphi 0\int 
0

W ik
jp (t - \tau , r, \rho , \varphi , \alpha , z)wp(\tau , \rho , \alpha )\sigma p\rho d\alpha d\rho d\tau 

+

t\int 
0

\varphi 0\int 
0

+\infty \int 
0

W ik
jr (t - \tau , r, \varphi , \alpha , z, \xi )g(\tau , \alpha , \xi ) d\xi d\alpha d\tau , j = 1, n+ 1, (38)

якi визначають єдинi розв’язки параболiчних початково-крайових задач (1) – (4), (5), (9);
(1) – (4), (6), (9); (1) – (4), (7), (9); (1) – (4), (8), (9) при вiдповiдних значеннях ik (11), (12),
(21), (22).

У формулах (38) застосовано компоненти

Eik
jp(t, r, \rho , \varphi , \alpha , z, \xi ) =

2

\varphi 0

\infty \sum 
m=0

\varepsilon ikmKm,ik
jp (t, r, \rho , z, \xi )Um,ik(\varphi )Um,ik(\alpha )

матрицi впливу (функцiї впливу), функцiї Грiна

Qik
jp(t, \tau , r, \rho , \varphi , z, \xi ) =

2

\varphi 0

\infty \sum 
m=0

\varepsilon ikmKm,ik
jp (t - \tau , r, \rho , z, \xi )\Phi m,ik(\tau , \rho , \xi )Um,ik(\varphi )

компоненти
W ik

jp (t, r, \rho , \varphi , \alpha , z) = Eik
jp(t, r, \rho , \varphi , \alpha , z, 0)

аплiкатної матрицi Грiна (аплiкатнi функцiї Грiна) та компоненти

W ik
jr (t, r, \varphi , \alpha , z, \xi ) = a2n+1R\sigma 2

n+1

\bigl( 
\alpha n+1
22

\bigr)  - 1
Eik

jp(t, r, R, \varphi , \alpha , z, \xi )
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радiальної матрицi Грiна (радiальнi функцiї Грiна) вiдповiдних початково-крайових задач,
де

Km,ik
jp (t, r, \rho , z, \xi ) =

\infty \sum 
s=1

+\infty \int 
0

N(t, \lambda s, \sigma )K(z, \sigma )K(\xi , \sigma )
Vj(r, \lambda s)Vp(r, \lambda s)

\| V (r, \lambda s)\| 2
d\sigma .

Проаналiзуємо формули (38) залежно вiд типу межових умов на гранях напiвобме-
женого кусково-однорiдного клиновидного суцiльного цилiндра. Розглянемо, наприклад,
випадок межових умов (5) (умови Дiрiхле). У цьому випадку функцiї Грiна мають вигляд

Q11
jp(t, \tau , r, \rho , \varphi , z, \xi ) =

2\pi 

\varphi 2
0

\infty \sum 
m=1

mKm,11
jp (t - \tau , r, \rho , z, \xi )

\times 
\bigl[ 
g1p(\tau , \rho , \xi ) + ( - 1)m+1wjp(\tau , \rho , \xi )

\bigr] 
sin

\pi m\varphi 

\varphi 0
.

Якщо визначити тангенцiальнi функцiї Грiна

W 11
jp,1(t, \tau , r, \rho , \varphi , z, \xi ) =

2\pi 

\varphi 2
0

\infty \sum 
m=1

mKm,11
jp (t - \tau , r, \rho , z, \xi ) sin

\pi m\varphi 

\varphi 0
,

W 11
jp,2(t, \tau , r, \rho , \varphi , z, \xi ) =

2\pi 

\varphi 2
0

\infty \sum 
m=1

( - 1)m+1mKm,11
jp (t - \tau , r, \rho , z, \xi ) sin

\pi m\varphi 

\varphi 0
,

то розв’язок задачi (1) – (4), (5), (9) можемо записати у виглядi

uj,11(t, r, \varphi , z) =

n+1\sum 
p=1

t\int 
0

Rp\int 
Rp - 1

\varphi 0\int 
0

+\infty \int 
0

E11
jp (t - \tau , r, \rho , \varphi , \alpha , z, \xi )fp(\tau , \rho , \alpha , \xi )\sigma p\rho d\xi d\alpha d\rho d\tau 

+
n+1\sum 
p=1

Rp\int 
Rp - 1

\varphi 0\int 
0

+\infty \int 
0

E11
jp (t, r, \rho , \varphi , \alpha , z, \xi )gp(\rho , \alpha , \xi )\sigma p\rho d\xi d\alpha d\rho 

+
n+1\sum 
p=1

a2\varphi p

t\int 
0

Rp\int 
Rp - 1

+\infty \int 
0

\bigl[ 
W 11

jp,1(t, \tau , r, \rho , \varphi , z, \xi )g1p(\tau , \rho , \xi )

+W 11
jp,2(t, \tau , r, \rho , \varphi , z, \xi )w

2
1p(\tau , \rho , \xi )

\bigr] 
\sigma p\rho 

 - 1 d\xi d\rho d\tau 

+

n+1\sum 
p=1

a2zp

t\int 
0

Rp\int 
Rp - 1

\varphi 0\int 
0

W 11
jp (t - \tau , r, \rho , \varphi , \alpha , z)wp(\tau , \rho , \alpha )\sigma p\rho d\alpha d\rho d\tau 

+

t\int 
0

\varphi 0\int 
0

+\infty \int 
0

W 11
jr (t - \tau , r, \varphi , \alpha , z, \xi )g(\tau , \alpha , \xi ) d\xi d\alpha d\tau , j = 1, n+ 1. (39)
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З використанням властивостей функцiй впливу E11
jp (t, r, \rho , \varphi , \alpha , z, \xi ) i функцiй Грiна

W 11
jp,s(t, \tau , r, \rho , \varphi , z, \xi ), s = 1, 2, W 11

jp (t, r, \rho , \varphi , \alpha , z), W
11
jr (t, r, \varphi , \alpha , z, \xi ) безпосередньо перевi-

ряємо, що функцiї uj,11(t, r, \varphi , z), визначенi формулами (39), задовольняють рiвняння (1),
початковi умови (2), межовi умови (3) – (5) та умови спряження (9) у сенсi теорiї узагаль-
нених функцiй.

Єдинiсть розв’язку (39) випливає iз його структури (iнтегрального зображення) та
єдиностi головних розв’язкiв (функцiй впливу i функцiй Грiна) параболiчної початково-
крайової задачi спряження (1) – (4), (5), (9).

Можна довести, що при вiдповiдних умовах на вихiднi данi формули (39) визначають
обмежений класичний розв’язок розглянутої задачi.

Пiдсумком викладеного вище є така теорема.
Теорема. Якщо функцiї fj(t, r, \varphi , z), gj(r, \varphi , z), wj(t, r, \varphi ), g1j(t, r, z), w1j(t, r, z), j =

1, n+ 1, задовольняють умови:

1) неперервно диференцiйовнi за змiнною t i двiчi неперервно диференцiйовнi за геометри-
чними змiнними;

2) мають обмежену варiацiю за геометричними змiнними;
3) абсолютно сумовнi за змiнною z на пiвосi (0;+\infty );
4) задовольняють умови спряження; а функцiя g(t, \varphi , z) також задовольняє умови 1) – 3),

то параболiчна початково-крайова задача (1) – (4), (5), (9) має єдиний обмежений класичний
розв’язок, який визначається за формулами (39).

Випадки межових умов (6) – (8) на гранях клина можна проаналiзувати аналогiчно.
Зауваження. 1. У випадку arj = a\varphi j = azj \equiv aj > 0 формули (38) визначають струк-

тури розв’язкiв розглянутих задач в iзотропному напiвобмеженому кусково-однорiдному
клиновидному суцiльному цилiндрi.

2. Випадок змiни \varphi в межах \varphi 1 < \varphi < \varphi 2 можна звести до розглянутого замiною
\varphi \prime = \varphi  - \varphi 1, \varphi 0 \equiv \varphi 2  - \varphi 1).

3. Параметр h дозволяє видiляти з формул (38) розв’язки крайових задач у випадках
задання на площинi z = 0 межових умов 1-го роду (h \rightarrow +\infty ) та 2-го роду (h \rightarrow 0).

4. Параметри \alpha n+1
22 , \beta n+1

22 дозволяють видiляти з формул (38) розв’язки початково-
крайових задач спряження у випадку задання на радiальнiй поверхнi r = R межових умов
1-го роду

\bigl( 
\alpha n+1
22 = 0, \beta n+1

22 = 1
\bigr) 
, 2-го роду

\bigl( 
\alpha n+1
22 = 1, \beta n+1

22 = 0
\bigr) 
та 3-го роду

\bigl( 
\alpha n+1
22 =

1, \beta n+1
22 = \beta > 0

\bigr) 
.

5. Аналiз розв’язкiв (38) залежно вiд аналiтичного виразу функцiй fj(t, r, \varphi , z),
gj(r, \varphi , z), wj(t, r, \varphi ), gpj(t, r, z), wpj(t, r, z), p = 1, 4, j = 1, n+ 1, g(t, \varphi , z) проводиться
безпосередньо iз загальних структур.

4. Висновки. Методом класичних iнтегральних i гiбридних iнтегральних перетворень у
поєднаннi з методом головних розв’язкiв (функцiй впливу та функцiй Грiна) вперше побу-
довано єдинi точнi аналiтичнi розв’язки параболiчних крайових задач у напiвобмеженому
кусково-однорiдному клиновидному суцiльному цилiндрi. Одержанi iнтегральнi зображен-
ня розв’язкiв мають алгоритмiчний характер, неперервно залежать вiд параметрiв i даних
задачi та можуть бути використанi як у теоретичних дослiдженнях, так i в практицi iнже-
нерних розрахункiв математичних моделей еволюцiйних процесiв у кусково-однорiдних
середовищах, описаних цилiндричною системою координат.
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Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв. Усi необхiднi данi мiстяться в статтi. Всi автори зробили рiвномiрний внесок у
цю роботу, а також заявляють про вiдсутнiсть спецiального фiнансування для її виконання.
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