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Passing to the corresponding difference equation, we obtain a criterion for the existence of a unique
solution bounded on the entire real axis of a linear differential equation with piecewise constant operator
coefficients.

За допомогою переходу до вiдповiдного рiзницевого рiвняння отримано критерiй iснування єдиного
обмеженого на всiй числовiй осi розв’язку лiнiйного диференцiального рiвняння з кусково-сталими
операторними коефiцiєнтами.

1. Постановка задачi. Нехай (X, \| \cdot \| ) — комплексний банахiв простiр, L(X) — банахiв
простiр лiнiйних обмежених операторiв, що дiють iз X у X, I — одиничний оператор у
X, Cb(\BbbR , X) — банахiв простiр усiх неперервних i обмежених на \BbbR функцiй x : \BbbR \rightarrow X iз
нормою \| x\| \infty = supt\in \BbbR \| x(t)\| .

Зафiксуємо натуральне число p, оператори A, B; An, 1 \leq n \leq p, iз L(X), дiйснi числа
t0 < t1 < . . . < tp, покладемо \widehat \BbbR = \BbbR \setminus \{ t0, t1, . . . , tp\} i розглянемо диференцiальне рiвняння\left\{         

x\prime (t) = Ax(t) + y(t), t \geq tp,

x\prime (t) = Anx(t) + y(t), tn - 1 \leq t < tn, 1 \leq n \leq p,

x\prime (t) = Bx(t) + y(t), t < t0,

(1)

у якому y — фiксована функцiя з Cb(\BbbR , X). Обмеженим розв’язком рiвняння (1) будемо
називати таку функцiю x \in Cb(\BbbR , X), що для кожного t \in \widehat \BbbR iснує x\prime (t) i виконується
рiвнiсть (1).

Мета цiєї статтi — отримати необхiднi й достатнi умови для операторних коефiцiєнтiв
A, B; An, 1 \leq n \leq p, якi забезпечують виконання такої умови.

Умова обмеженостi. Для довiльної функцiї y \in Cb(\BbbR , X) диференцiальне рiвняння (1)
має єдиний обмежений розв’язок.

Для диференцiального рiвняння зi змiнним операторним коефiцiєнтом умову обмеже-
ностi дослiджували, зокрема, в [1 – 3] у скiнченновимiрному просторi, в [4, 5] у довiльно-
му банаховому просторi для випадку обмежених i в [6, 7] — необмежених операторних
коефiцiєнтiв iз використанням умови експоненцiальної дихотомiї на \BbbR для вiдповiдного
однорiдного диференцiального рiвняння.Про використання бiльшслабкої умови експонен-
цiальної дихотомiї на пiвосях i фредгольмовостi вiдповiдного оператора для розв’язування
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задач про обмеженi на \BbbR розв’язки див. [7, 8] та наведенi там посилання. Для диференцi-
ального рiвняння з одним стрибком операторного коефiцiєнта\left\{   x

\prime (t) = Ax(t) + y(t), t \geq 0,

x\prime (t) = Bx(t) + y(t), t < 0,

критерiй виконання умови обмеженостi отримано в [9].
2. Перехiд до рiзницевого рiвняння. Розглянемо вiдповiдне до (1) рiзницеве рiвняння\left\{         

un+1 = eAun + vn, n \geq p,

un+1 = eAn+1(tn+1 - tn)un + vn, 0 \leq n \leq p - 1,

un+1 = eBun + vn, n \leq  - 1,

(2)

у якому \{ vn, n \in \BbbZ \} — задана, а \{ un, n \in \BbbZ \} — шукана послiдовнiсть елементiв простору
X. Зазначимо, що рiзницеве рiвняння (2) задовольняє умову обмеженостi, якщо воно має
єдиний обмежений розв’язок \{ un, n \in \BbbZ \} для кожної обмеженої послiдовностi \{ vn, n \in \BbbZ \} .

Далi використовуємо таку теорему.
Теорема 1. Для того щоб диференцiальне рiвняння (1) задовольняло умову обмеженостi,

необхiдно й достатньо, щоб рiзницеве рiвняння (2) теж задовольняло умову обмеженостi.
Доведення. Достатнiсть. Нехай рiвняння (2) задовольняє умову обмеженостi. Зафiк-

суємо функцiю y \in Cb(\BbbR , X). Покладемо

vn =

\left\{                   

\int 1

0
eA(1 - \tau )y(tp + n - p+ \tau ) d\tau , n \geq p,\int tn+1

tn

eAn+1(tn+1 - \tau )y(\tau )d\tau , 0 \leq n \leq p - 1,\int 1

0
eB(1 - \tau )y(t0 + n+ \tau ) d\tau , n \leq  - 1.

(3)

Зауважимо, що послiдовнiсть \{ vn, n \in \BbbZ \} обмежена в X. Нехай \{ un, n \in \BbbZ \} —вiдповiдний
до неї обмежений розв’язок рiзницевого рiвняння (2). Покладемо

x(t) =

\left\{                   

eA(t - tp)up +

\int t

tp

eA(t - \tau )y(\tau )d\tau , t \geq tp,

eAk(t - tk)uk +

\int t

tk

eAk(t - \tau )y(\tau )d\tau , t \in [tk - 1; tk), 1 \leq k \leq p,

eB(t - t0)u0 +

\int t

t0

eB(t - \tau )y(\tau )d\tau , t < t0.

(4)

Безпосередньо перевiряємо, що для кожного t \in \widehat \BbbR iснує x\prime (t) i виконується рiвнiсть (1), а
також внаслiдок (2) – (4) x(tk) = uk = limt\rightarrow tk x(t), 0 \leq k \leq p; x(tp + n) = un, n \geq p + 1;
x(t0 + n) = un, n \leq  - 1. Тому послiдовнiсть\biggl\{ 

. . . , x(t0  - 2), x(t0  - 1), x(t0)\underbrace{}  \underbrace{}  
0

, x(t1), . . . , x(tp), x(tp + 1), x(tp + 2), . . .

\biggr\} 
(5)

обмежена. Звiдси випливає, що функцiя x обмежена на \BbbR .
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Таким чином, диференцiальне рiвняння (1) має обмежений розв’язок x, вiдповiдний до
функцiї y.

Припустимо вiд супротивного, що цей розв’язок не єдиний. Тодi вiдповiдне до (1)
однорiдне диференцiальне рiвняння має деякий ненульовий обмежений розв’язок u, який
можна записати у виглядi

u(t) =

\left\{         
eA(t - tp)u(tp), t \geq tp,

eAk+1(t - tk)u(tk), t \in [tk; tk+1), 0 \leq k \leq p - 1,

eB(t - t0)u(t0), t < t0.

Звiдси випливає, що хоча б один iз елементiв u(tk), 0 \leq k \leq p, ненульовий, а також
послiдовнiсть\biggl\{ 

. . . , u(t0  - 2), u(t0  - 1), u(t0)\underbrace{}  \underbrace{}  
0

, u(t1), . . . , u(tp), u(tp + 1), u(tp + 2), . . .

\biggr\} 

є ненульовим обмеженим розв’язком вiдповiдного до (2) однорiдного рiзницевого рiвняння.
Суперечнiсть.

Необхiднiсть. Нехай диференцiальне рiвняння (1) задовольняє умову обмеженостi. За-
фiксуємо обмежену в X послiдовнiсть \{ vn, n \in \BbbZ \} . Покладемо

y(tp + n+ \tau ) = eA(\tau  - 1)vp+n\psi (\tau ), \tau \in [0; 1), n \geq 0,

y(\tau ) = eAk+1(\tau  - tk)vk\psi k+1(\tau ), \tau \in [tk; tk+1), 0 \leq k \leq p - 1,

y(t0 + n+ \tau ) = eB(\tau  - 1)vn\psi (\tau ), \tau \in [0; 1), n \leq  - 1,

де \psi : [0; 1] \rightarrow \BbbR , \psi k+1 : [tk; tk+1] \rightarrow \BbbR , 0 \leq k \leq p  - 1, — деякi фiксованi неперервнi на
вiдповiдних вiдрiзках функцiї такi, що

\psi (0) = \psi (1) = \psi 1(t0) = \psi 1(t1) = . . . = \psi p(tp - 1) = \psi p(tp) = 0,

1\int 
0

\psi (t) dt =

t1\int 
t0

\psi 1(t) dt = . . . =

tp\int 
tp - 1

\psi p(t) dt = 1.

Тодi y \in Cb(\BbbR , X), а також виконуються рiвностi (3). Тому для вiдповiдного до y єдиного
обмеженого розв’язку x рiвняння (1) справджуються рiвностi (4). Отже, визначена за допо-
могою цiєї функцiї послiдовнiсть (5) є вiдповiдним до \{ vn, n \in \BbbZ \} обмеженим розв’язком
рiзницевого рiвняння (2).

Якщо, вiд супротивного, цей обмежений розв’язок не єдиний, то вiдповiдне до (2)
однорiдне рiвняння має деякий ненульовий обмежений розв’язок \{ wn, n \in \BbbZ \} . Тодi функцiя
w : \BbbR \rightarrow X, визначена за правилом

w(t) =

\left\{         
eA(t - tp)wp, t \geq tp,

eAk+1(t - tk)wk, t \in [tk; tk+1), 0 \leq k \leq p - 1,

eB(t - t0)w0, t < t0,
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є ненульовим обмеженим розв’язком вiдповiдного до (1) однорiдного диференцiального
рiвняння. Це суперечить умовi обмеженостi.

Теорему 1 доведено.
3. Допомiжнi твердження. У подальшому використовуються такi леми.
Лема 1. Нехай T \in L(X); X1, X2 — такi пiдпростори в X, що T (X2) — пiдпростiр,

простiр X зображується у виглядi прямої суми X = X1 \dotplus T (X2) своїх пiдпросторiв X1 i
T (X2), а також оператор T бiєктивно вiдображає X2 на T (X2). Тодi:

a1) X = T - 1(X1)\dotplus X2;

a2) якщо P1, P2 — проєктори, що вiдповiдають зображенню X = X1 \dotplus T (X2), а \widetilde P1,\widetilde P2 — проєктори, що вiдповiдають зображенню X = T - 1(X1) \dotplus X2, то \widetilde P2 = \widetilde T - 1P2T, де\widetilde T - 1 — неперервний обернений оператор до звуження \widetilde T : X2 \rightarrow T (X2) оператора T.
Доведення. Твердження a1) спiвпадає з твердженням леми 4 з [10].
Зафiксуємо x \in X. Оскiльки X = X1 \dotplus T (X2), то iснують єдинi елементи u \in X1 i

v \in X2 такi, що Tx = u+Tv. Тодi Tv = P2Tx, тобто v = \widetilde T - 1P2Tx, а також x = (x - v)+v,
(x - v) \in T - 1(X1), а тому v = \widetilde P2x. Звiдси випливає, що \widetilde P2 = \widetilde T - 1P2T.

Лему 1 доведено.
Нехай S = \{ z \in \BbbC | | z| = 1\} , i\BbbR = \{ it | t \in \BbbR \} . Позначимо через \sigma (A) спектр опе-

ратора A. Внаслiдок теореми Данфорда про вiдображення спектра справджується таке
твердження.

Лема 2. \sigma 
\bigl( 
eA

\bigr) 
\cap S = \varnothing тодi й лише тодi, коли \sigma (A) \cap i\BbbR = \varnothing .

Нехай T — такий неперервно оборотний оператор iз L(X), що \sigma (T ) \cap S = \varnothing ; \sigma  - (T ),
\sigma +(T ) —частини спектра оператора T, якi лежать вiдповiдно всерединi i зовнi кола S (одна
з них може бути порожньою); P - (T ) i P+(T ) —проєктори Рiсса, що вiдповiдають \sigma  - (T ) i
\sigma +(T ). Тодi простiр X розкладається в пряму суму X = X - (T )\dotplus X+(T ) iнварiантних щодо
T пiдпросторiв X\pm (T ) = P\pm (T )(X), причому звуження T - , T+ оператора T на X - (T ),
X+(T ) мають вiдповiдно спектри \sigma  - (T ), \sigma +(T ) (див., наприклад, [4, c. 32 – 34]).

Покладемо

Q - (T ) =

\biggl\{ 
u \in X

\bigm| \bigm| \bigm| \bigm| sup
n\geq 1

\| Tnu\| < +\infty 
\biggr\} 
,

Q+(T ) =

\biggl\{ 
u \in X

\bigm| \bigm| \bigm| \bigm| sup
n\geq 1

\bigm\| \bigm\| T - nu
\bigm\| \bigm\| < +\infty 

\biggr\} 
.

Лема 3 ([9], лема 4). Якщо T — такий неперервно оборотний оператор з L(X), що
\sigma (T ) \cap S = \varnothing , то X - (T ) = Q - (T ), X+(T ) = Q+(T ).

Нехай тепер V \in L(X), \sigma (V ) \cap i\BbbR = \varnothing , \widetilde \sigma  - (V ), \widetilde \sigma +(V ) — частини спектра оператора
V, що лежать вiдповiдно у лiвiй i правiй пiвплощинах \BbbC . Тодi простiр X розкладається
в пряму суму X = \widetilde X - (V ) \dotplus \widetilde X+(V ) iнварiантних щодо V пiдпросторiв таким чином, що
як i для оператора T звуження \widetilde V - , \widetilde V+ оператора V на \widetilde X - (V ), \widetilde X+(V ) мають вiдповiдно
спектри \widetilde \sigma  - (V ), \widetilde \sigma +(V ).

Покладемо

\widetilde Q - (V ) =

\biggl\{ 
u \in X

\bigm| \bigm| \bigm| \bigm| sup
t\in [0;+\infty )

\bigm\| \bigm\| eV tu
\bigm\| \bigm\| < +\infty 

\biggr\} 
,

\widetilde Q+(V ) =

\biggl\{ 
u \in X

\bigm| \bigm| \bigm| \bigm| sup
t\in [0;+\infty )

\bigm\| \bigm\| e - V tu
\bigm\| \bigm\| < +\infty 

\biggr\} 
.
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Лема 4 ([9], лема 5). Якщо V \in L(X), \sigma (V ) \cap i\BbbR = \varnothing , то \widetilde X - (V ) = \widetilde Q - (V ), \widetilde X+(V ) =\widetilde Q+(V ).

Позначимо для скорочення запису Ek = eAk(tk - tk - 1), Ejk = EkEk - 1 . . . Ej , 1 \leq j \leq k \leq 
p. Оскiльки оператор Ejk неперервно оборотний, то з теореми 2.11.7 iз [11] випливає, що
образ Ejk(G) довiльного пiдпростору G банахового простору X теж є пiдпростором. Тому
внаслiдок теореми 3 з [10] справджується така теорема.

Теорема 2. Рiзницеве рiвняння (2) задовольняє умову обмеженостi тодi й лише тодi, коли
виконуються такi умови:

i1) \sigma 
\bigl( 
eA

\bigr) 
\cap S = \varnothing , \sigma 

\bigl( 
eB

\bigr) 
\cap S = \varnothing ;

i2) X = X - 
\bigl( 
eA

\bigr) 
\dotplus E1p

\bigl( 
X+

\bigl( 
eB

\bigr) \bigr) 
.

4. Основнi результати. Наведенi вище твердження дають змогу довести такi теореми.
Теорема 3. Для того щоб диференцiальне рiвняння (1) задовольняло умову обмеженостi,

необхiдно i достатньо, щоб виконувалися такi умови:
j1) \sigma (A) \cap i\BbbR = \varnothing , \sigma (B) \cap i\BbbR = \varnothing ;

j2) X = \widetilde X - (A)\dotplus E1p( \widetilde X+(B)).

Доведення. Внаслiдок теорем 1, 2 достатньо довести, що ik) \leftrightarrow jk), k = 1, 2.

З леми 3 випливає, що i1) \leftrightarrow j1).

Оскiльки eB(n+\tau ) = eBneB\tau для довiльних n \in \BbbZ , \tau \in [0; 1], то з урахуванням лем 3, 4

\widetilde X+(B) =

\biggl\{ 
u \in X

\bigm| \bigm| \bigm| \bigm| sup
t\in [0;+\infty )

\bigm\| \bigm\| e - Btu
\bigm\| \bigm\| < +\infty 

\biggr\} 
=

\biggl\{ 
u \in X

\bigm| \bigm| \bigm| \bigm| sup
n\geq 1

\bigm\| \bigm\| e - Bnu
\bigm\| \bigm\| < +\infty 

\biggr\} 
= X+

\bigl( 
eB

\bigr) 
.

Аналогiчно перевiряємо, що \widetilde X - (A) = X - 
\bigl( 
eA

\bigr) 
. Тому i2) \leftrightarrow j2).

Теорему 3 доведено.
Теорема 4. Припустимо, що виконуються умови j1), j2) теореми 3. Тодi справедливi

такi твердження:
b1) для кожного 0 \leq k \leq p

X = E - 1
(k+1)p(

\widetilde X - (A))\dotplus E1k( \widetilde X+(B)), (6)

де E(p+1)p = E10 = I;

b2) вiдповiдний до функцiї y \in Cb(\BbbR , X) єдиний обмежений розв’язок x диференцiального
рiвняння (1) визначається таким чином:

якщо t \geq tp, то

x(t) =

t\int 
tp

eA(t - s)P - (A)y(s) ds - 
+\infty \int 
t

eA(t - s)P+(A)y(s)ds

+ eA(t - tp)P - 
p

\left(   +\infty \int 
tp

eA(tp - s)P+(A)y(s) ds+

p\sum 
k=1

Ekp

tk\int 
tk - 1

eAk(tk - 1 - s)y(s) ds

+E1pP
 - 
0

t0\int 
 - \infty 

eB(t0 - s)P - (B)y(s)ds

\right)  ; (7)
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якщо 1 \leq k \leq p, то (послiдовно вiд k = p до k = 1)

x(t) =  - 
tk\int 
t

eAk(t - s)y(s) ds+ eAk(t - tk)x(tk), t \in [tk - 1; tk); (8)

якщо t < t0, то

x(t) =

t\int 
 - \infty 

eB(t - s)P - (B)y(s) ds - 
t0\int 
t

eB(t - s)P+(B)y(s) ds

 - eB(t - t0)

\left(   E - 1
1p P

+
p

+\infty \int 
tp

eA(tp - s)P+(A)y(s) ds

+

p\sum 
k=1

E - 1
1(k - 1)P

+
k - 1

tk\int 
tk - 1

eAk(tk - 1 - s)y(s) ds

+ P+
0

t0\int 
 - \infty 

eB(t0 - s)P - (B)y(s) ds

\right)  . (9)

Тут для кожного 0 \leq k \leq p P - 
k , P

+
k — проєктори, що вiдповiдають зображенню (6).

Доведення. Твердження b1) є безпосереднiм наслiдком умови j2) теореми 3 i твер-
дження a1) леми 1.

Доведемо твердження b2). Збiжнiсть вiдповiдних iнтегралiв i обмеженiсть на \BbbR ви-
значеної формулами (7) – (9) функцiї x випливає з того, що внаслiдок нерiвностi (4.5) iз
[4, c. 119] iснують такi додатнi сталi M, \gamma , що для кожного t \geq 0

max
\Bigl\{ \bigm\| \bigm\| e - AtP+(A)

\bigm\| \bigm\| , \bigm\| \bigm\| eAtP - (A)
\bigm\| \bigm\| , \bigm\| \bigm\| e - BtP+(B)

\bigm\| \bigm\| , \bigm\| \bigm\| eBtP - (B)
\bigm\| \bigm\| \Bigr\} \leq Me - \gamma t,

а також оператори P+
0 , E

 - 1
1j P

+
j , 1 \leq j \leq p, дiють iз X в \widetilde X+(B).

З урахуванням рiвностей P - (A) + P+(A) = P - (B) + P+(B) = I безпосередньо перевi-
ряємо, що для кожного t \in \widehat \BbbR iснує x\prime (t) i виконується рiвнiсть (1). Також зазначимо, що
внаслiдок (8) функцiя x неперервна в точках t1, t2, . . . , tp. Для перевiрки її неперервностi
в точцi t0 знайдемо явний вираз для x(t0). Оскiльки

x(tp - 1) =  - 
tp\int 

tp - 1

eAp(tp - 1 - s)y(s) ds+ E - 1
p x(tp),

а також з умови j2) теореми 3 i леми 1 випливає E - 1
p P - 

p Ep = P - 
p - 1, то, скориставшись

формулою (7), отримаємо

x(tp - 1) =  - E - 1
p P+

p

+\infty \int 
tp

eA(tp - s)P+(A)y(s) ds - P+
p - 1

tp\int 
tp - 1

eAp(tp - 1 - s)y(s) ds
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+ E - 1
p P - 

p

\left(   p - 1\sum 
k=1

Ekp

tk\int 
tk - 1

eAk(tk - 1 - s)y(s) ds+ E1pP
 - 
0

t0\int 
 - \infty 

eB(t0 - s)P - (B)y(s) ds

\right)   .
(10)

Тепер зауважимо, що E - 1
(p - 1)pP

 - 
p E(p - 1)p = P - 

p - 2, а отже, внаслiдок (8), (10)

x(tp - 2) =  - E - 1
(p - 1)pP

+
p

+\infty \int 
tp

eA(tp - s)P+(A)y(s) ds

 - E - 1
p - 1P

+
p - 1

tp\int 
tp - 1

eAp(tp - 1 - s)y(s) ds - P+
p - 2

tp - 1\int 
tp - 2

eAp - 1(tp - 2 - s)y(s) ds

+ E - 1
(p - 1)pP

 - 
p

\left(   p - 2\sum 
k=1

Ekp

tk\int 
tk - 1

eAk(tk - 1 - s)y(s) ds+ E1pP
 - 
0

t0\int 
 - \infty 

eB(t0 - s)P - (B)y(s) ds

\right)   .
(11)

Аналогiчно до (10), (11) можна послiдовно знайти x(tp - 3), x(tp - 4), . . . , x(t1), а по-
тiм x(t0). В результатi одержуємо

x(t0) =  - E - 1
1p P

+
p

+\infty \int 
tp

eA(tp - s)P+(A)y(s) ds

 - 
p\sum 

k=1

E - 1
1(k - 1)P

+
k - 1

tk\int 
tk - 1

eAk(tk - 1 - s)y(s) ds

+ P - 
0

t0\int 
 - \infty 

eB(t0 - s)P - (B)y(s) ds.

Тому, використовуючи також формулу (9), робимо висновок, що функцiя x неперервна в
точцi t0.

Теорему 4 доведено.

Автор заявляє про вiдсутнiсть конфлiкту iнтересiв i спецiального фiнансування цiєї
роботи. Усi необхiднi данi мiстяться в статтi.
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