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We analyze the relationship between boundary-value problems with impulsive action at fixed points of
time and boundary-value problems with switchings at fixed and nonfixed points of time. We find the
constructive conditions of solvability and a scheme for construction of solutions of a nonlinear periodic
boundary-value problem with switchings at nonfixed points of time. By using the Adomian decomposition
method, we obtain the solvability conditions and construct a new iterative technique for finding solutions
of a weakly nonlinear periodic boundary-value problem with switchings at nonfixed points of time. In
addition, we obtain constructive conditions for convergence of the iterative scheme to the solution of the
weakly nonlinear boundary-value problem as well as the switchings points. The obtained iterative scheme
is applied to find approximations to the periodic solution of the equation with switchings at nonfixed points
of time, which models a nonisothermal chemical reaction.

IIpoanHanizoBaHO 3B’SI30K KpaloOBHMX 3amay i3 iMIyJbCHMM 30ypeHHSIM y (hiKcoBaHI MOMEHTH dYacy Ta
KpalioBMX 3amad i3 MepeMUKaHHIMHU y (GiKcoBaHI i1 HedikcoBaHi MOMeHTH dacy. Omep:KaHO KOHCTPYK-
THBHI YMOBHU DPO3B’SI3HOCTI Ta cXeMy ITOOYIOBHM pO3B’SI3KiB HEJIHINHOI mepiogmyHoi KpaifoBoi 3amadi 3
repeMUKAHHSIMHK Y He(bIKCOBaHI MOMEHTH Yacy. 3 BUKOPUCTAHHSIM METOLY IeKOMIIO3UIIi ATOMSIHA OTpH-
MaHO YMOBH PO3B’SI3HOCTI Ta ITOOYIOBaHO HOBY ITe€palLiiiHy TeXHIKY IUISl 3HaXOIKE€HHST pO3B’I3KiB cj1ab-
KOHEJIIHIMHOI MepioguyHOl KpaiioBoi 3a1adi 3 TepeMUKaHHSIMU Y HedikcoBaHi MOMeHTH Yacy. OTpuMaHO
KOHCTPYKTHBHI YMOBH 3013KHOCTI IOOYIOBAHOI iTepaIliifiHOI CXeMM IO pO3B’sI3Ky CIIaOKOHEIHIITHOI Kpaiio-
BOI 3a[aui, a TAKOXX MOMEHTIB MepeMHUKaHHs. 3000yTy iTepaliiiHy CXeMY 3aCTOCOBAHO IS 3HAXOMKEHHS
HabJIMKeHb 10 MePIOIMYHOrO PO3B’ 13Ky PIBHIHHS 3 MepeMHUKaHHIMU Y HeiKCOBaHI MOMEHTH Yacy, sIKe
MOIETIOE HEI30TEPMIUHY XIMIUHY peaKIlito.
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1. Preliminaries. The study of impulsively perturbed systems of ordinary differential equations
is traditional for the Kyiv school of nonlinear oscillations, in particular, for research at the Institute
of Mathematics of the National Academy of Sciences of Ukraine. It was initiated in 1937 by
M. M. Krylov and M. M. Bogolubov with the study of a clock mechanism in which the damping
of oscillations caused by friction was compensated by periodic jolts of the anchor [1]. In addition,
in 1937, the impulsively perturbed mechanical and electrical vibrations were discussed in the
monograph [2].

Before 1967, the studies of the theory of impulsive boundary-value problems was characteri-
zed by a descriptive character, limited to the discussion of examples of impulsive processes in
mechanics, electronics, physiology; in addition, the study of the theory of impulsive boundary-
value problems was focused on linear systems [3 —5].

The study of the theory of impulsive boundary-value problems was initiated in Kharkiv by
A. D. Myshkis in connection with the question of engineer B. V. Abramov about the influence of
periodic shocks on the stability of the engine. A. D. Myshkis suggested it as a topic for a thesis
by V. D. Milman [6 —8]. It is worth mentioning the research of A. D. Myshkis on systems with
jolts [6, 9, 10] and equations with switching [11, 12], which were generalizations of T. Vogel’s
perturbation systems [13]. The research of M. M. Krylov and M. M. Bogolyubov was continued
in the work of A. D. Mishkis and A. M. Samoilenko [14]. The constructive theory of systems of
ordinary differential equations with impulsive action is gaining intensive development after the
publication of monographs by A. M. Samoilenko and M. O. Perestyuk [15, 16], as well as its
English translation [17].

In the works [15-30] were found necessary and sufficient conditions for the existence of
solutions of impulsively perturbed boundary-value problems for systems of ordinary differential
equations in various critical and noncritical cases, as well as the construction of the Green’s
operator of the Cauchy problem and the Green’s operator of a periodic and almost periodic
[30—32] boundary-value problem with impulsive action [22, 28, 33]. A characteristic feature of
all these publications is the use of either a nondegenerate or a two-point impulsive action with
rectangular matrices; the latter problems were studied by R. Conti [34 —36]. They also generalized
the two-point problems with square matrices studied in [4, 5], and in the case of nondegeneracy
of these matrices considered in [37].

In the works of A. M. Samoilenko, M. O. Perestyuk and O. A. Boichuk, the necessary
and sufficient conditions for the existence of solutions of Noether boundary-value problems for
systems of ordinary differential equations with nondegenerate impulsive action at fixed points in
time [20, 21, 26, 38 —41]. In the monographs by A. M. Samoilenko and M. O. Perestiuk [15, 16]
systems of ordinary differential equations with impulse action at nonfixed points in time, namely,
with impulsive action on the hyperplane, are also investigated.

The relevance of the study of impulsively perturbed ordinary differential equations is due
to their numerous applications, in particular in the theory of nonlinear oscillations [2], control
theory [42—47], in mechanics, biology [3, 48] and radio engineering [49, 50], the theory of
motion stability [6, 16, 51], nuclear physics, financial mathematics, logistics, where the time of
rapid changes can be neglected in comparison with the time of slow changes, which are also

ISSN 1562-3076. Heniniiini koausanus, 2024, m. 27, Ne 4



AUTONOMOUS PERIODIC BOUNDARY-VALUE PROBLEMS WITH SWITCHINGS AT NONFIXED POINTS IN TIME 471

determined by a system of ordinary differential equations. An example of such changes is the
phenomenon of a spherical membrane, the oscillations of which outside the moments of flapping
are modeled by a system of ordinary differential equations, and the shocks themselves at the
moments of the overfloating depend on the state of the membrane and are determined separately.
On the other hand, the questions of existence and construction of solutions to boundary-value
problems with impulsive action occupy an honorable place in the qualitative theory of functional-
differential equations [20, 52], ordinary differential equations [18, 40, 49, 53], in particular in
the problems of optimal control [16], the theory of stochastic differential equations [54 — 58],
the theory of differential equations with multivalued and discontinuous right-hand side, and
differential equations with inclusions [59].
Development of the theory of linear systems with nondegenerate

det(I,, +S;) #0
impulsive action at fixed points in time
2(t) € CH{[a, 0]\ {r:}1}, a=To<m<m<..<Tp<Db
is significantly related to the studies of A. M. Samoilenko and M. O. Perestyuk of linear systems
[15, 16, 28, 29, 40]
L AD ), 1A Axn)=Sian-0)ba, o R (1)

where A(t) is a continuous (n x n)-dimensional matrix, f(¢) is a continuous vector function, S;
is an (n x n)-dimensional matrix. Furthermore, the development of the theory of linear Noether
(m # n) boundary-value problems with nondegenerate impulsive action at fixed points in time

% AWM+ ), tEm Ax(n) =Siz(m—0)+an L() =0 @)

was initiated by A. M. Samoilenko and O. A. Boichuk [20, 33, 40, 41, 60, 61]. Here,
2(-): CH{[a, b \ {mi}s} — R™

is a linear bounded vector functional.
If for some ¢ matrices

In+Sh t=1,2,...,p,

are degenerate, there is a degenerate impulsive action [62, 63]. In comparison with the problems
with nondegenerate impulsive action, the rank of the normal fundamental matrix X (¢) of
the Cauchy problem with degenerate impulsive action becomes less than n in the intervals
[Tqs Tq+1[, - - -+ [Tps ] C [a, b], after the point 7, of the first degenerate impulsive action. After the
point 7, of the first degenerate impulsive action

det(I,, +54) =0

the rank of the normal fundamental matrix X (¢) of the Cauchy problem with degenerate impulsive
action does not increase [62, 64 — 68].
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In the case of degenerate impulsive action, the solution of the homogeneous part of the
system (1) is represented by a normal fundamental matrix. In turn, the scheme [20, 33, 40, 41,
60, 61] can not be used to construct the solution of the inhomogeneous system (1). To construct
solutions of linear Noether (m # n) boundary-value problems with degenerate impulse action
at fixed points in time for a inhomogeneous system (1) the necessary and sufficient conditions
for existence and the construction of the Green’s operator of the Cauchy problems as well as
the Green’s operator of a Noether boundary-value problem with impulsive action in critical and
noncritical cases are obtained [62, 63, 66 —69].

The boundary-value problems with switching at fixed points in time are a special case of
boundary-value problems with impulsive action [70, 71].

The continuity of the sought solution of a nonlinear boundary-value problem with switches
at nonfixed points in time in the modelling of nonisothermal chemical reactions [72, 73] follows
from the chemical meaning of continuous changes in the unknowns.

A generalization of boundary-value problems, both with degenerate and nondegenerate
impulsive action, is the problem of finding the conditions of existence and constructing solutions

2(t) € CHY{[a,b) \ {m};}, ji=1,2,...,n,

of the system of ordinary differential equations

d
o =AW+, T, (3)
that satisfy the boundary condition [74 —81]
Lz2()=a, a€R™ i=12,...,p, @

where Lz(-) is a linear bounded vector functional of the form
P
EZ() = ZE’L Z(')u
i=0
and
Ciz(:): CHry, miga] X o x Cmyy 1] = R™, i=0,1,2,...,p—1, 7 =a,

0p2(-): CHrp b] X ... x Crp, ] — R™

are linear bounded functionals. Here, A(t) is a continuous (n x n)-dimensional matrix, f(t) is
a continuous vector function.

The problem (3), (4) is a generalization of boundary-value problems with both degenerate
[62, 66— 68] and nondegenerate impulsive action [15, 16, 28, 29, 40]. If the impulsive action (4)
is determined by the functional

[N1z(11 — 0)] [ M 2(11 +0)]
Onx1 Noz(mo —0)
tx() =1 ... ()=
Onx1 Onx1
| Onxa | | Onx1
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which act respectively from the spaces
Clla,m] x ... x Cla,m], Clr,m]x...xCHr,m),...

to the space RP* as well as to the functionals

[ Onx1 | [ Onx1 ]
Onx1 Onx1
bprz()=| ... , lpz(-) =] ...... ,
My—12(1p—1 + 0) Onx1
Npz(1p = 0) | | Mpz (1, +0)

that act respectively from the spaces
(Cl[Tp_l,Tp] X oo x CHrpo1, 1), Clrp,b] X ... % (Cl[Tp,b]

to the space RP*, we get the problem which considered in [34]. Here, M;, N; are (k xn) matrices.
In particular, for

R(N;) =R(M;), N(N;) =2,

this problem studied in [22], in the the case k& = n it studied in [4, 5] and provided that the matrices
are nondegenerate M;, N; it studied in the [37]. Here, R(XV;), N(XV;) are respectively the images
and null spaces of matrices N;. Further, provided that matrices are nondegenerate N; = —(I,,+5;)
and equalities M; = I,, is fulfilled we obtain the problem studied in [16, 20, 33, 82]. In particular,
for S; = 0 we have the problem [83]. If for some i the matrices I, + S; are degenerate, there is
a degenerate impulse action [62].

Thus, for the problems studied by S. Shvabik, A. M. Samoilenko, M. O. Perestyuk, and
0. A. Boichuk, as well as for the problems with degenerate impulsive action, the functionals that
determine the discontinuity of the integral curve at the points 71, 7o, ... use information about
this curve only at these points. The functionals ¢pz(-) and ¢;z(-) determine the first (i = 1)
discontinuity of the integral curve at the point 71, the functionals ¢;z(-) and ¢2z(-) define the
second (i = 2) discontinuity of the integral curve at the point 72, then the functionals £,_;z(-)
and /,,z(-) define the last (i = p) discontinuity of the integral curve at point 7,. If the impulsive
action (4) is determined by the functional

029 V()] [ O ]
% () @2 (@)
boz(-) = ; bz(r) = : loz(-) = ,
() &9 2() 02 2()
=) | )20 472

that act respectively from spaces

Clla, 1] x ... x Cla, 7], Clm,m] x...xClr,ml,...,
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CI[TQ,Tg] X ... X CI[TQ,Tg],...

to the space R?+1¥ and the functionals

[ Onx1 ]| [ Opx1 ]
Onx1 Onx1

bp—12() = R bpz() = | - |,
(2 Onx1

V2] 472 ()]

that act respectively from spaces
CHrpe1, 7] X oo X CHrpo1, 1), CHrp, 0] X ... x Clrp, B]

to the space R®*+D* we obtain a problem with boundary conditions of the “interface conditions”
type studied in [34, 67, 68, 75, 76, 84], where

(92(): Cla,m] = RY, . 692(): Clrymip] = RY, i=1,...,p—1,...,

(0 2(): Cla,m1] — RF,... (P 2(-): Clry, b] — R”

are linear bounded functionals. Thus, for problems with boundary conditions of the “interface
conditions” type, the discontinuity of the integral curve which extended from the interval [a, 7] to
the interval [r1, 73] is determined using the functionals E(lo)z(-) and Egl) (+). This functionals are
defined in contrast to the problems studied by A. M. Samoilenko, M. O. Perestiuk, and S. Shvabik,
and to the problems with degenerate impulsive action, on the whole length of these intervals, not
only on their intersection. The discontinuity of the integral curve at extension from the interval
[a, 1] U |71, 2] to the interval |72, 73] is determined by using the functionals £§°) (), éél) (-) and
Egz)z(-), defined on the interval [a, 73] except the points 71 and 7». Further, the discontinuity of
the integral curve which extended from the interval

[a, 7] U [T, 2] U...U[mp-1, )

to the interval [7,,b] is determined by the functional 61(90) (+), 6,()1)2(-), . ,@(Jp )z(~). This functi-
onals are defined on the interval [a, b] except the points 71,7, ..., 7,. A special case of problems

of the form (3), (4) is a series of p unrelated boundary-value problems

d
£ =Ai()z, Lliz(") =
defined on the segments

ter,miv1], i=12,...,p,

where

a; € R™ col(ou, ag, ..., ap) € R, mi+mo+...+m, =m.

ISSN 1562-3076. Heninuiiini koausanus, 2024, m. 27, Ne 4



AUTONOMOUS PERIODIC BOUNDARY-VALUE PROBLEMS WITH SWITCHINGS AT NONFIXED POINTS IN TIME 475

Finally, the boundary-value problem (3), (4) is a generalization of the traditional problem of
finding smooth solutions of the system (3) that satisfying the linear boundary condition [60]. On
the other hand, the boundary condition (4) is equivalent to the condition [85], and the boundary-
value problem (3), (4) is a special case of boundary-value problems for functional differential
equations [85]. In difference from the problems with nondegenerate impulsive action, as well as
from the problems with boundary conditions of the “interface conditions” type [34, 67, 68, 75,
76, 84], the rank of any of the fundamental matrix X (¢) of the problem (3), (4) can be less than
n on any interval [a, [, [T1, 2], ..., [7p, b] C [a,b], in particular, on the half-interval [a,;[. An
example of the latter case is any fundamental matrix X (¢) of the traditional problem [60] of
finding smooth periodic solutions of the system (3) provided that the system (3) contains both
periodic and nonperiodic solutions. Since the rank of any of the fundamental matrices X (¢) of
the problem (3), (4) can be less than n on the half-interval [a, [, then the definition of the
normal fundamental matrix X (¢) of the problem (3), (4).

A special case of boundary-value problems with impulsive action are boundary-value problems
with switches at nonfixed points in time [86], which, in particular, arise in the modelling of noni-
sothermal chemical reactions [71 —73]. In comparison with the classical results of A. M. Samoi-
lenko and M. O. Perestyuk [15, 16, 28, 29, 40], and the results of A. M. Samoilenko and
0. A. Boichuk [20, 33, 40, 41, 60, 61, 87] we will construct solutions of linear systems (1) in the
class of continuous functions

2(-) € CH{[0, 7]\ {7(e)}r} N C[0, T
with one unknown continuous switching 7(¢):
0<7(e) <T,

while the results of A. M. Samoilenko, M. O. Perestyuk and O. A. Boichuk were obtained in the
class of, generally speaking, discontinuous functions

2(t) € CH{[a, D)\ {ri}1}, a=To<m<Tm<..<T,<b,

with an impulsive action at fixed points in time.
2. Conditions of solvability of a quasilinear periodic boundary-value problem with
switchings at nonfixed points in time. We study the problem of constructing solutions [17, 20]

2(-,e) € CH[O, T\ {r()}1} N C[0,T],  =2(t,-) € C[0, 0]
of the autonomous boundary-value problem for the equation
2 (t,e) = Az(t,e) +eZ(2(t,e),e), (Lz(-,e) =0, (5)
which continuous at ¢ = 7(g). At the point ¢ = 7(¢) :
0<7(e)<T, 7(0):=19

the solution of the boundary-value problem (5) might have a limited discontinuity of first derivative
[17, 20]. The solution of the boundary-value problem (5) is found in a small neighbourhood of
the solution

z0(t) € C{[0, TT\ {mo}r} N C[0, T
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of the generating boundary-value problem
20(t) = Az(t), Lzo(-) = 0. (6)

At the point ¢ = 79 the solution of the boundary-value problem (6) might have a limited
discontinuity of the derivative. Here, A € R"*" is a constant matrix, Z(z, ) is a nonlinear vector
function piecewise analytic in the unknown z in a small neighbourhood of the solution of the
generating problem (6) and piecewise analytic in a small parameter € on the interval [0, &p]. In

addition,
(o) im < 2(0,¢) — 2(T,¢) ) 0
2(7(e) + 0,e) — 2(7(e) — 0,¢)
and

ol 20(0) — z0(T) ) 0
0() <Zo(7'()+0)—2'0(7'0—0)

are linear bounded vector functionals.

The autonomous boundary-value problem (5) with switchings continues the study of Noether
boundary-value problems, including boundary-value problems with switchings at fixed points in
time [72], as well as with an impulsive action at fixed points in time [17, 20, 22, 75-77, 81],
and also the study of nonlinear autonomous boundary-value problems [20, 88, 89]. As is well
known [88, 89], the autonomous boundary-value problem (5) differs significantly from similar
nonautonomous boundary-value problems. Unlike the latter, the right end 7'(¢) of the interval
[0,T'(¢)], where the required solution of the nonlinear boundary-value problem for the system (5)
without switchings is defined, is unknown and subject to determination in the process of solution
construction. In the article [72] we studied the autonomous nonlinear boundary-value problem
with switchings at fixed points in time, which is solvable on a fixed length interval. Thus, the
purpose of this article is to study the autonomous nonlinear boundary-value problem (5) with
switchings at nonfixed points in time on a fixed length interval. An example of the relevance of
studying such a problem will be given below.

In the article [72] was formulated the autonomous nonlinear boundary-value problem with
switchings at fixed points in time defined on a fixed length interval and was obtained conditions
when this problem has no solutions except for the equilibrium positions. At the same time, the
involvement of switchings at fixed points in time allows us to obtain solutions different from the
equilibrium positions [72]. On the other hand, the involvement of switchings at fixed points in
time, in general, deprives the autonomous nonlinear boundary-value problem with switchings at
fixed points in time, defined on a fixed length interval, of continuous solutions.

Example 1. Letusdemonstrate the fact that, in general, the inclusion of switchings at the fixed
points in time ¢, deprives the autonomous nonlinear boundary-value problem with switchings at
fixed points in time of

2 (t,e) =w(e) Az(t,e) +eZ(z(t,e),e), Lz(-,e) =0, (7)
defined on a fixed length interval [0, 7] of continuous solutions
Z('v 5) € C{[O) T] \ {9}1} N (C[O’ T]a Z(tu ) € C[Oa 50]'
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0 1 c 1
A= ( ), Z(z(t,e),e) = (1 + x(t,e)) eTHuEe) < >

Here,

1

and

z(t,e), te]o0,0], 1+e, te]0,6],
z(t,e) == w(e) =
y(t,e), telo,T1], 1—e, te[0,T],

t(e) = 2(0,e) — 2(T,¢) S
0+ 0,e)—2(0-0,0)) T T

The boundary-value problem (7) has an equilibrium position of the form

z(t,e) = (—E +3e? - 21263 +.. > <_11>, tel0,0].

A(t,e) = (6_52+5253+_..) (;1> telo,T),

are defined on a fixed length interval [0, 7] which devoid of continuity for any 0 < 0 < T = 27.

Denote the matrix
X(O) X(T)> c R2n><2n
X(m0) —X(70)

In addition,

Q:=1X("):= (
where
Xt : X't)=AX(@t), X(0)=1I,

is the normal fundamental matrix of the generating boundary-value problem (6). Let us assume
that, for the generating boundary-value problem (6), there is a critical case [17, 20, 75, 76]:

Pg: #0.
The matrix Py is formed from r linearly independent rows of the orthoprojector matrix
Pg-: R*™ — N(Q¥).
The generating problem (6) has a r parametric family of solutions
20(t,co) = Xr(t)co, c¢o €R".

Here, X,(t) := X(t)Pg, is a matrix formed from r linearly independent solutions of the
generating problem (6). The matrix Fg, is formed from r linearly independent columns of the
orthoprojector matrix

Pg: R — N(Q).

Denote by f(t¢) a linear continuous vector function on the interval [0, 7']. The solution
t
wlt) = KI7(s):6)) = [ XOX1(6) f(s)ds, € [0,6),
0
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of Cauchy problem for the system

w'(t) = Aw(t) + f(t) )

satisfies the boundary condition
w(0) —w(T
oy PO -E@ Y
w(@+0) —w(@—0)

Po; K[f(s);0](-) =0, 0 €0,T],

in the case of

for an arbitrary fixed point 6 € [0, 7] of switching.

The autonomous boundary-value problem for a system (5) with switchings at nonfixed points
in time on a fixed length interval is significantly different from similar boundary-value problems
with switchings at fixed points in time [72]. To illustrate this, consider the following example.

Example 2. Let us consider the problem of finding the solution

w(-,e) € CH[0,T]\ {6()}1} NC[0,T], w(t,-) € C[0,e)
of the boundary-value problem
w'(t,e) = w?(e) Aw(t,e) + f(t), £z(-,e) =0, 9)

which is continuous at ¢ = 6(¢). The solution of the boundary-value problem (9) is found in the
small neighbourhood of the solution

wo(t) € C{[0,T]\ {bo}:} NC[0,T], 6p:=06(0), wo:=w(0)
of the generating boundary-value problem
wh(t) = wd Awo(t) + f(t), AcR™™  fz(-)=0. (10)

Denote by U(t): U'(t) = AU(t); U(0) = I, is the normal fundamental matrix of the
generating boundary-value problem (10), and the matrix

— D) — U(O) 7U(T) 2nx2n
Q:=(X(-):= <U(90) —U(00)> € R?X2n,

For the generating boundary-value problem (10) there is a critical case [17, 20, 75, 76]:
Pg: # 0.
The matrix Pg: is formed from r linearly independent rows of the orthoprojector matrix
Pg: R*™ — N(Q¥).
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The generating problem (10) has r parametric family of solutions
wolt, co) = Up(t) co + KLf(s); 60)(t), ¢y € R”.

Under the condition .
[ 6 s s =0
0

the generating problem (10) has r parametric family of continuous 7" periodic solutions
wo(t, co) = Ur(t) co + G[f(s); 60](t), co € R,

where
G[f(5);00)(t) = K[f(s); 60](t) — X (t) QTLK[f(s); 60](-)

is the Green’s operator of the generating 7' periodic problem (10) and H,(t) is an (n X r)-
dimensional matrix formed from r linearly independent 7" periodic solutions of the system that
conjugates [88, 90, 91] to the generating 7" periodic problem (10);

Up(t) :=U(t) Py,
The matrix Pg, is formed from r linearly independent columns of the orthoprojector matrix
Py: R*™ — N(Q).
The solution of the boundary-value problem (9) with switchings is given in the form
w(t,e) == wo(t,cg) +ui(t,e) + ... +up(t,e) + ...,
O(e) =00+ &(e)+ &)+ ...+ &) +....

The first approximation to the solution of the nonlinear periodic boundary-value problem (9)
with switchings in the critical case

wl(ta 8) = wO(tu CO) + vl(tv E)v 91(8) = 0o+ 51(5)7
wi(t,e) =U(t) e1(e) + G[(wQ(e) — w%)wg(s, c0)] (t)

determines the solution of the nonlinear periodic boundary-value problem of the first approxi-
mation
/ _ 2 2 _
wi(t,e) = (w?(e) —wg)wo(t, o), Llwi(-,e) =0.

The condition of solvability of the periodic boundary-value problem of the first approximation
Py UK [(w2() — wi)wols, €0); ()] () = 0
leads to the equation
Fo(co, 00) := Py EK[wg wo(s, co); 0o (+) = 0. (11)

The equation (11) will be called the equation for the generating constants of the nonlinear
periodic boundary-value problem (9) with switchings in the critical case. The solvability of the
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equation (11) is a necessary condition for the existence of a solution to the periodic boundary-
value problem (9) with switchings. The function 6(¢) plays the role of an eigenfunction [92, 93]
of the nonlinear periodic boundary-value problem (9) with switchings in the critical case, which
ensures the solvability of this problem. The equation (11) is, in general, nonlinear, despite the
fact that the periodic boundary-value problem (9) with switchings at nonfixed points in time on
a fixed length interval is linear.

Let us assume that the equation for the generating constants (11) of the periodic boundary-
value problem (9) with switchings has real roots. Fixing one of the real solutions

cpeR”, 65 eR

of equation (11), we get the problem of constructing a solution to the periodic boundary-value
problem (9) with switchings in a small neighbourhood of the solution

wo(t; ¢p) = Ur(t) ¢ + Gf(s); 05](1)

of the generating boundary-value problem (10). A traditional condition for the solvability of the
boundary-value problem (9) with switchings in a small neighbourhood of the solution of the
generating problem is the requirement [20, 90]

PBSPQﬁ = 07 BO = FeIO(CE;,%) € RTX(T_H)a 60 = (CO 90)*7

where
PBS ‘R" — N(Bg)

is an orthoprojector matrix [20, 90]. Indeed, generally speaking, the nonlinear equation (11) for
a linear periodic boundary-value problem (9) with switchings is equivalent to

By éo = Poy LK {wiGf(s); 0](t) } (),

solvable under the condition Pg; Po: = 0.
Let us put for definiteness

0 1 0 L+e te[0,6()];
A::< ) f(t):=< ) w<a>:{
-1 0 cos 3t 1—e, telbe),T).

The generating problem (10) has a family of solutions

w()(t, C()) = UT(t) co + K[f(s), 90](t), Cco € Rr,

where
cost sint
U.(t)y=U(t) = , telo0,2n],
—sint cost
and
1 cost—cos3t
K[f(s)i0o](t) = 5| . . telo, 2.
8\ —sint + 3sin 3t
Let us put

98 = g, Co ‘= (Coa COb)*-
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The equation for the generating constants (11) of the periodic boundary-value problem (9) with
switchings
1[(8coam+T
Fy(co, 00) = ( > =0

4\ 8copm — 4

has a real solution

where
1 (47> 0 37
By=
2r\ 0 472 —4
is the full rank matrix. To construct solutions of the autonomous periodic boundary-value

problem (9) with switchings the method of simple iteration [20] can be used. Applying the
method of simple iterations. In the first step we obtain

wi(t,e) == wo(t,cy) +ui(t,e), 01(c) =65+ &i(e), &i(e) =e65,

where
¢ [Omcost+ 16tcost — dmcosIt + 16sint
ui(t,e) = — , t€0,0:(g)],
167 \ 16 cost — brsint — 16tsint + 3w sin 3t
¢ [27mcost —16tcost + dHmcos3t + 16sint
ui(t,e) = — ,  te[bi(e),2n].
167 \ 16 cost — 27msint + 16 ¢sint — 37 sin 3¢

In the second step we get
wa(t,€) == wo(t,cf) +ui(t,e) +ua(t,e), Oa(e) =05 +&(e) + &), Eale) =265,

where

ua(t, €)

g2 (45 mcost + 240t cost — 36 7 cos 3t + 336 sint + 2972 sin t)
T 967

336 cost + 2972 cost — 607t cost — 96t2 cost — 45w sint

96 7

2 [—607tsint —96¢2sint
—240tsint + 367 sin 3t

)7 te [0702(5)]’

&2 ( 33mcost — 144t cost — 36 wcos 3t + 336sint >
96

u2(t75) = an _
336 cost — 235 w2 cost + 324wt cost — 962 cost

+967T

c2 [—23572sint + 324tsint — 962 sint
—333wsint + 144 ¢sint + 36 7 sin 3t

), te [92(8),27‘(].
In the third step we have
ws(t,e) == wo(t, cy) + ui(t,e) + ua(t, ) + us(t, e),
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Os(c) = 0f + €1() + &a(e) + &3(e),  &(e) =265,

where
(t.o) &3 [93mcost + 1536t cost + 116 w2t cost — 120 t? cos t
ug(t,e) =
1927\ —240 7 cost — 576 t2 cost — 93 wsint — 1536t sint
&3 —128#3 cost — 93 cos 3t — 240 it sint — 5762 sin ¢t
+ ,  tel0,0s(e)],
1927 \ —116 72t sint + 120 w2 sint + 12843 sint + 99 7 sin 3t
. &3 2211 7cost — 31273 cost — 1152t cost + 940 w2t cos t
us(t,e) =
1927 \ —1248 72 cost + 1008 7t cost — 1922 cost — 2211 wsint

3 [—648 t? cost + 12813 cos 3t — 1248 w2 sint + 1008 7t sin t
_|_
1927 \ 31273 sint + 1152¢sint — 940 w2t sint + 648 7t? sin ¢

3 —192t?sint
_l’_
1927 \ —128#3sint — 99 7 sin 3t

>, t € [05(e),2m].
For the obtained approximations there are constants
0<y:=0997<1, 0<§:=0.997 <1,
for which the inequalities
Jur(t, &) || < Allwo(t, o)l [uw1(E,€)l < vlluw(t, e)ll;
[§1(e)l < 61651, |&rs1(e)] < 0&k(e)l, Kk =0,1,2,

is hold. This fact indicates the practical convergence of the obtained approximations to the
solution of the autonomous periodic boundary-value problem (9) with switchings in the interval

e€[0,20], 0<epr 0.292580.

The accuracy of the found approximations to the solution of the autonomous periodic boundary-
value problem (9) with switchings is determined by the inequalities

Ag(e) == Hw%(t,s) —w?(e) Awg(t,e) — f(t)

, k=1,23.
In addition,
A1(0.1) = 0.022727, A3(0.1) = 0.00609356, As3(0.1) ~ 0.00258018,
A1(0.01) = 0.000236948, A(0.01) ~ 6.75706 x 107%,  A3(0.01) ~ 2.75350 x 10~".

Note that the approximations to the solution of the periodic boundary-value problem (9) with
switchings satisfy the boundary condition.
The condition for the solvability of the autonomous nonlinear boundary-value problem (5)
with switchings
Po: (K[Z(2(5,2),€); T(e)](-) = 0
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leads to the equation
Fo(co, 1) := Po: LK[Z(20(s,c0),0);70](-) = 0. (12)

The necessary conditions for the existence of a solution to the autonomous nonlinear boundary-
value problem (5) with switchings in the critical case are defined by the following lemma.

Lemma. Suppose thatthere is the critical case for the generating boundary-value problem (6).
In this case, the generating problem (6) has an one-parameter family of solutions

20(t, co) = Xy (t) co, co € R

Suppose that an autonomous nonlinear boundary-value problem (5) with switchings at nonfixed
points in time in the neighbourhood of the generating solution zy(t, cy) has the solution

2(-e) € C{[0, T\ {(e)}1} N C[0,T], =(t,-) € C[0, ).

Under these conditions the equality (12) holds.

The equation (11) will be further called the equation for the generating constants of the
boundary-value problem (5) with switchings in the critical case. Let us assume that the equation
for the generating constants (11) of the boundary-value problem (5) with switchings has real
roots. Fixing one of the real solutions

R, 15 €R

of the equation (11) we get the problem of constructing a solution of the nonlinear boundary-value
problem (5) in a small neighbourhood of the solution

20(t,cp) = Xo(t) ¢y, cp € R,

of the generating boundary-value problem (6). The traditional condition for the solvability of
a boundary-value problem (5) with switchings in a small neighbourhood of the solution of the
generating problem is the requirement [20, 90]

PpsPo: #0, By = Fl (c5,7) e R Gy i=(cp 7)), (13)

where
PBS R — N(Bg)

is an orthoprojector matrix [20, 90].
The solution of the boundary-value problem (5) with switchings is given by

z(t,e) = z0(t,cp) +ur(t,e) + ... +ug(t,e) + ...,
Te) =15 +&()+&E)+...+&((E)+....

The nonlinear vector function Z(z(¢,¢),e) is analytical with respect to the unknown z(¢,¢) in
a small neighbourhood of the solution of the generating boundary-value problem (6) and the
constant 7. Therefore, in the given neighbourhood there is an expansion [94, 95]

Z(z(t,€),e) = Zo(z0(t, cp), ) + Z1(20(t, c5), u1(s,€),€)

+ Za(z0(t, c), ui(s,e), ua(s,€),e) +....
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The first approximation to the solution of the nonlinear periodic boundary-value problem (5) in
the critical case

z1(t,e) = z20(t, cp) +ui(t,e), mi(e) =715 +&i(e),
ui(t,e) = X, (t)ci(e) + ¢ G[Zo (zo(s, c8), 26(8,¢h), 5);75] (t)

determines the solution of the nonlinear periodic boundary-value problem of the first approxi-
mation
uy(t,e) = Auy(t,e) + € Zo(z0(t, ), €), Lui(-,e) = 0.

The matrix By, which is the key matrix in the study of the boundary-value problem (5) takes the
form
By = Po; K[ Ao(s) X (s); 1](-),
where
0Z(z(t,e),¢)

Z(t, E) z(t,e)=z0(t,cf),
e=0

Ao(t) =

is an (r x r)-dimensional matrix. The second approximation to the solution of the nonlinear
periodic boundary-value problem (5) in the critical case

29(t,€) == 20(t, ) +ui(t,e) +ua(t,e), ma(e) =15 + &i(e) + &(e),

determines the solution of the nonlinear periodic boundary-value problem of the second approxi-
mation
uh(t,e) = Aus(t,e) + eZ1(20(t, cf), ui(t,e),€), Llus(-,e) =0.

The condition of solvability of the boundary-value problem of the second approximation
Fi(c1(e),€1(e)) = Pyl K [Z1(20(s, ¢) wi (s, €), 20(s, ¢) ua (s, ). €)1 &1(e) ]| (-) = 0
is a linear equation
Fi(ei(e),&1(2)) = Boéa(e) +m(e) =0, (o) = (aile) &(e),
that at least uniquely solvable in the case (13). Here,
Y1(e) := Fi(é1(e)) — Bo ca(e).

Indeed, let us denote the vector-functions [95, 96]

vt e, 1) = 2o(t, c) + pur(t,e) 4+ ... + pFug(t,e) + ...,

g(e, ) =75 + péi(e) + p2ale) + ...+ pF &(e) + ..,
herewith

Fi(ci(e), &(e)) = PoulK[Z1(20(s, ¢5), ua (s, €),€); &1(€)](0)

= Poy (K[ 2} (0(t.2.0). ) (2.0] O]
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= Py (K[ Ao(s)ui(s, €); &1(e)](-);

therefore,
Bo = Fj, ) (&1(2)) € RO,

Thus, under the condition (13), we obtain at least one solution to the first approximation boundary-
value problem

z1(te) i= 20(t, cf) +ui(t,e), Ti(e) =75 +&(e), ¢i(e) = —By n(e),
ui(t,e) = X, (t)er(e) + e G[Z1(20(s, p), ui(s,€), )5 €1() ] (1)

The conditions of solvability of boundary-value problems for the approximations

Fj(éj(g)) = PQZ EK[Zj(ZU(Sv CS)? ui(t,e), ..., Uj(575)7§j(€)7€)](') =0

are linear equations
Fj(¢j(e)) = Bo¢j(e) +75(e) =0,
where
By = F'(¢j(e)), je) = F(¢(e)) — Bo¢j(e), j=1,2,....k

In the case (13) the last equation is at least uniquely solvable. The sequence of approximations to
the solution of the nonlinear periodic boundary-value problem (5) in the critical case is determined
by the iterative scheme

z1(te) = 20t cp) +uilt,e), () =75 +&(e), ale) =—Bg mle),
ui(t,e) = Xp(t)er(e) + e G[Z1(20(s. €5), ui(s,€),€): &a(e)] (1),
zo(t,e) = z0(t, cp) + ui(t,e) + ua(t,e), ma(e) =715 +&i1(e) + &a(e),
up(t, e) = Xy (t)ea(e) + € G Za(20(s, cp), ur(s, €), ua(s, €),€); &2(e) (1), (14)
Zht1(t €) = 20(t, cp) +ui(t,e) + ...+ upga(t, €),
Th1(€) =70 +&u(e) + .-+ &kv1(8);  up1(t,€) = Xo(t) crpa(e)

+eG[Zk(20(s,ch)sui(s,€), ..., u(s,€),€); &(e)](t), k=0,1,2,....

Theorem. Suppose that there is the critical case of the generating boundary-value problem (6).
In this case, the generating problem (6) has a family of solutions

20(t, co) = Xp(t) o, o € R
In the case of (13) in the small neighbourhood of the generating solution z(t,c;) and the
constant 1; the problem (5) with switchings has at least a unique solution. The sequence of
approximations to the solution

2(€) € C{[0,T)\ {7()}1} NCl0,T],  2(t,-) € C[0, 2]
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of the autonomous boundary-value problem (5) with switchings is determined by an iterative
scheme (14). If there exist constants 0 < v < 1 and 0 < 6 < 1 such that inequalities

lur (£, &)l < vllzo(t, o)l Nlurta(E, &) < lluw(t, €)ll;
1@ < 6lm5l,  [Erar(e)] < gdlair(e)l, k=1,2,...,

are hold, then the iterative scheme (14) converges to the solution of the autonomous boundary-
value problem (5) with switchings.

The obtained convergence condition (15) of the iterative scheme (14) allows us to estimate the
interval of values of the small parameter ¢ € [0,e¢], 0 < &, < eg, for which there is a retention
the convergence of the iterative scheme (14) and different from similar estimates [97, 98].

3. Finding approximations to the periodic solution of the equation with switchings
modelling a nonisothermal chemical reaction. Let us apply our iterative scheme (14) to find
approximations to the periodic solution of the equation modelling a nonisothermal chemical
reaction [72, 99]. The specificity of such models is the fact that in the absence of switching, the
equation modelling a nonisothermal chemical reaction usually has a single solution, which is
the equilibrium position [72]. Moreover, the behaviour of solutions of the equation modelling
a nonisothermal chemical reaction with switchings at nonfixed points in time well reflects the
behaviour of the periodic solution of the equation modelling a nonisothermal chemical reaction
studied in the articles [72, 99].

Example 3. Let us demonstrate the effectiveness of the theorem on the example of the
problem of finding 27 -periodic solutions

(15)

2(-,e) € C*{[0,27] \ {r(e)}1} N C[0,2n], =2(t,-) € C[0, 0]
of the nonlinear equation with switchings
2 (t,e) =w(e) Az(t,e) +eZ(2(t,e),e),
2(0,e) —z(2m,e) =0, 2(0,¢) — 2(7(g),e) =0, (1o
continuous at ¢t = 7(¢). At the point ¢t = 7(g):

0<7(e)<2m, 7(0):=1

the solution of the boundary-value problem (16) might have a limited discontinuity of the first
derivative. The solution of the boundary-value problem (16) with switchings is found in a small
neighbourhood of the solution

Zo(t) S (C{[O,Qﬂ'} \ {7’0}[} N C[O, 271']

of the generating boundary-value problem. Here,

x(t,e), te[0,7(e)], 1—¢g, te|0,7(e)],
z(t,e) == w(e) :=
y(t,e), te[r(e),2n], 1+e, te][r(e),2n],
moreover,
Z(2(t,e),e) = (1 + z(t,e)) e Tuea C) t€[0,7(e)],
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1

Z(2(t,e),e) = (1 +y(t,e)) e Tea (1

), t € [r(e),2m].

There is the critical case for the generating boundary-value problem. Thus, the generating
problem has a two-parameter family of solutions

cost sint )
20(t,c0) = Xp(t) co, Xp(t) := it cost) co € R”.

Coa N T
Cco = ,  Tp = 5
Cob

To find the amplitude ¢y of the generating solution, we obtain the equation

Cob
Fo(co,m5) =7 =0,
Coa

Let us put

herewith
0O =« 0
By = » Ppr=
- 0 0
Hence,
=0, 15 = g

By using the iterative scheme (14) at the first step, we obtain
21(t,e) = z0(t, ¢) +ui(t,e), te]0,2n],
ui(t,e) = Xo(t) c1(e) + & GZ1(20(s, ¢p), ua (s, €), €); §1(€)] (1),

while

e [ m™—4sint
ul(t,z-:):< ), &i(e)=er1y, tel0,2n].

T \—m —4cost

In the second step, we get

2ot €) i= 2o(t, cf) +ur(t,€) +ua(t,e), m(e) =15 +£&1(e) + &ale), &) =27,
ug(t,e) = X, (t)ea(e) + 5G[Z2(ZO(57 08)7’u,l(s,fj),UQ(S,E),E);fg(E)](t),

herewith

u2(t75) = p

e2 72 4 (4 — 272 + 7(2 + 6t)) cost
—72 + (4cost + 72 — 2mw(1 +t)) cost

2 ((4 + 72— 27 (2+1t))sint
7T

2\ 2(s2 —2—3nt)sint

), t € [0, m2(e)],
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&2 [(—m2+2(2+m+2r% —7t)cost
UQ(t,€):

2 72+ (44372 — 27 (1 +t))cost

e2 ((4+37% — 27 (2+1))sint
2 (—4 — Az T2 t) sint

), t € [m2(e), 27].

Note that for any value of the small parameter
e € [0,e0], €0~ 0.657585,

the inequalities (15) are hold. This inequalities indicate the practical convergence of the obtained
approximations to the solution of the periodic problem for the nonlinear equation (16), where
v :=0.997 < 1. Note also that the approximations satisfy the boundary condition (16).

The accuracy of the found approximations to the solution of a periodic problem for a nonlinear
equation (16) is determined by the following inequalities:

Ap(e) := ||z(t, ) — w(e) Az(t,e) — eZ(z1(t, ), k=0,1,2.

5)H<C[0,2n]’
In particular,
Ap(0.1) = 0.127963, A1(0.1) ~0.0293051, A2(0.1) ~ 0.00493 865,
Ap(0.01) =~ 0.0140014, A1(0.01) ~ 0.000252071, A2(0.01) ~ 4.77925 x 1075,

The example of a periodic problem for a nonlinear equation (16) demonstrates that, due to
switching, the autonomous boundary-value problem becomes solvable on a fixed length interval, in
contrast to similar autonomous boundary-value problems without switching, for which, generally
speaking, the right end 7'(¢) of the interval [0, 7'(¢)], where the desired solution of the nonlinear
boundary-value problem for the system (5) is defined, is unknown and to be determined in
the process of solution construction [88, 89, 96, 97]. To construct solutions to the nonlinear
boundary-value problem for the system (5) the least-squares method [100, 101] is also applicable,
in particular, for systems with switchings [77].

Proposed in the paper conditions of solvability and scheme of constructing solutions of
nonlinear boundary-value problems with switching at nonfixed points in time with a Noether
linear part can be transferred to boundary-value problems with switching at nonfixed points in time
with a normally solvable linear part [102], as well as to hybrid boundary-value problems [103].
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