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For continuous argument difference equations of the form x(t+1) = h(x(t)), t \geq 0, where h is a piecewise
linear function with hysteresis, we present and graphically illustrate two fundamentally different scenarios
of the solution behavior: typical solutions are either asymptotically periodic and piecewise constant or
strongly chaotic and asymptotic to functions that are discontinuous at every point.

Для рiзницевих рiвнянь iз неперервним аргументом вигляду x(t + 1) = h(x(t)), t \geq 0, де h —
кусково-лiнiйна функцiя з гiстерезисом, наведено та проiлюстровано два кардинально вiдмiннi
сценарiї якiсної поведiнки розв’язкiв: коли типовими є асимптотично перiодичнi кусково-сталi
розв’язки i коли типовими є сильно хаотичнi розв’язки, асимптотичнi до функцiй, розривних у
кожнiй точцi.

Вступ. Загалом кажучи, систему з гiстерезисом описує вхiд-вихiд модель, складена з функ-
цiональних гiлок i механiзму пам’ятi, що однозначно визначає, яку гiлку слiд викори-
стовувати у кожен момент часу. Розглядуване у цiй статтi рiвняння описує найпростiшу
вхiд-вихiд модель, що складається з двох лiнiйних гiлок, споряджених природним прави-
лом переключення: якщо в якийсь момент використовується певна гiлка, то вона викори-
стовується i надалi, допоки це можливо, i лише тодi, коли ця гiлка стає незастосовною,
вiдбувається переключення на iншу гiлку.

Розглядаємо рiзницеве рiвняння з неперервним часом

x(t+ 1) = h(x(t)), t \in \BbbR +, (1)

де x : \BbbR + \rightarrow \BbbR — невiдома кусково-неперервна функцiя1 i h : [0, 1] \rightarrow [0, 1] — двозначна
функцiя, задана лiнiйними функцiями

f(z) = az i g(z) = b(z  - 1) + 1, a, b > 0. (2)

Наявнiсть гiстерезису реалiзується у двох випадках:

h(z) =

\Biggl\{ 
g(z) при 0 \leq z \leq \beta ,

f(z) при \alpha \leq z \leq 1,
0 < \alpha < \beta < 1, 0 < a < 1, 0 < b < 1, (3)

1 Функцiю з U \subset \BbbR у \BbbR називаємо кусково-неперервною (кусково-сталою), якщо U розбивається на iнтерва-
ли, на кожному з яких ця функцiя є неперервною (сталою), а множина її розривiв не має скiнченних граничних
точок.
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h(z) =

\left\{   f(z) при 0 \leq z \leq \beta ,

g(z) при \alpha \leq z \leq 1,
0 < \alpha < \beta < 1, 1 < a < 1/\beta , 1 < b < 1/(1 - \alpha ), (4)

доповнених правилами переключення: якщо для точки z \in [0, 1] одне зi значень f(z) чи
g(z) вибране як z1 := h(z), то наступнi значення zn+1 := h(zn) = hn+1(z), n = 1, 2, . . . ,

визнаються формулою

zn+1 = h(zn) =

\left\{               

g(zn) при zn = g(zn - 1), zn \leq \beta (zn \geq \alpha ),

f(zn) при zn = g(zn - 1), zn > \beta (zn < \alpha ),

f(zn) при zn = f(zn - 1), zn \geq \alpha (zn \leq \beta ),

g(zn) при zn = f(zn - 1), zn < \alpha (zn > \beta ),

(5)

де другу умову на zn подано без дужок для випадку (3), (5) i у дужках для випадку (4),
(5). При z < \alpha та z > \beta значення z1 визначене однозначно, якщо ж z \in [\alpha , \beta ], то
знаходимо z1 за допомогою тiєї ж гiлки вiдображення h, що i для z < \alpha (звiсно, нарiвно
можна використати ту гiлку, що i для z > \beta ). Моменти переходу з однiєї гiлки на iншу
визначають точки переключення z = \alpha i z = \beta .

Правила (5) перетворюють двозначне вiдображення

z \mapsto \rightarrow h(z), z \in I = [0, 1], (6)

на однозначне вiдображення з пам’яттю (з пiслядiєю): при кожнiй iтерацiї використову-
ється не лише поточна iнформацiя, але й деяка iнформацiя з минулого. Надалi пiд вiд-
ображенням h будемо розумiти саме це вiдображення з пам’яттю (рис. 1). Зазначимо, що
на обох гiлках f i g вiдображення h є стискальним у випадку (3), (5) i розтягальним у
випадку (4), (5)2.

Надалi буде потрiбна низка понять з теорiї динамiчних систем, деякi з яких мають
специфiчнi особливостi для вiдображень iз пам’яттю. Нехай маємо динамiчну систему,
породжену однозначним вiдображенням iз пам’яттю z \mapsto \rightarrow \xi (z), i \xi k — k -та iтерацiя вi-
дображення \xi , тобто \xi k(z) = \xi (\xi k - 1)(z), k = 1, 2, . . . , \xi 0(z) = z. Траєкторiєю Tr(z) точки
z називаємо послiдовнiсть точок z, z1 = \xi (z), z2 = \xi 2(z), . . . ; траєкторiя Tr(zk), k \geq 1,

може не збiгатися з вiдрiзком zk, zk+1, . . . траєкторiї Tr(z). Атрактором траєкторiї Tr(z)
називаємо множину її граничних точок. Точку z (траєкторiю Tr(z)) називаємо перiодич-
ною, якщо iснує цiле p > 0, для якого \xi p(z) = z ; а найменше з таких p називаємо перiодом
точки z (траєкторiї Tr(z)). Кожна p-перiодична точка породжує p-перiодичну траєкторiю,
проте належнiсть точки до перiодичної траєкторiї не гарантує перiодичностi цiєї точки.
Множину попарно вiдмiнних точок p-перiодичної траєкторiї називаємо циклом перiоду p ;
вiн породжується будь-якою перiодичною точкою цiєї траєкторiї. Басейном p-перiодичної
точки z\ast називаємо множину всiх точок z таких, що \mathrm{l}\mathrm{i}\mathrm{m}k\rightarrow \infty \xi pk(z) = z\ast . Басейном циклу
називаємо об’єднання басейнiв усiх перiодичних точок, якi його породжують. Траєкторiю

2 У [8] дослiджено iнший варiант кусково-лiнiйного вiдображення з гiстерезисом, яке на однiй гiлцi є
стискальним, а на другiй — розтягальним.
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Рис. 1. Вiдображення з гiстерезисом i типовi траєкторiї.

називаємо асимптотично перiодичною, якщо її атрактором є цикл; у цьому разi також каже-
мо, що траєкторiя притягується до циклу. Образи множини M \subseteq I визначаємо формулою
\xi i(M) =

\bigcup 
z\in M \xi i(z), i = 1, 2, . . . . Множину M називаємо згодом-iнварiантною, якщо iснує

цiле n > 0 таке, що \xi i(M) = M, i \geq n. Внутрiшнiсть множини M позначаємо \mathrm{i}\mathrm{n}\mathrm{t}M.

Вiдображення h генерує два принципово вiдмiннi сценарiї поведiнки розв’язкiв рiвняння (1).
У випадку (3), (5) розв’язки є регулярними— асимптотично перiодичними, а у випадку (4),
(5) вони сильно хаотичнi — асимптотичнi до функцiї, розривної у кожнiй точцi.

Про цi сценарiї ранiше вже йшлося у роботах [1, 2], але там рiвняння (1) розглядали
побiжно, у межах ширшої тематики. Тому видалося доцiльним присвятити рiвнянню (1)
окремий допис, де систематизовано та значною мiрою доповнено вiдповiднi результа-
ти, зокрема доведеннями i графiчною вiзуалiзацiєю. До рiвнянь вигляду (1) зводяться
певнi класи кусково-лiнiйних крайових задач для рiвнянь iз частинними похiдними [3];
подiбнi крайовi задачi зустрiчаються при математичному моделюваннi низки природних
гiстерезисних явищ (див., наприклад, [4 – 7]) i можуть слугувати iдеалiзованими моделями
у бiльш складних випадках.

Попереднi зауваження. Кожен розв’язок рiвняння (1) однозначно задається своїми
значеннями на початковому iнтервалi [0, 1) i може бути поданий у виглядi

x\varphi (t) = h\lfloor t\rfloor (\varphi (\langle t\rangle )), t \geq 1,

\varphi (t) = x(t), t \in [0, 1),
(7)

де \lfloor \cdot \rfloor i \langle \cdot \rangle позначають цiлу та дробову частини числа, hk — k -та iтерацiя вiдображення
h, отримана за правилами переключення. Функцiї \varphi : [0, 1) \rightarrow I називаємо початковими
функцiями. Оскiльки розглядаються кусково-неперервнi розв’язки, то початковi функцiї
також кусково-неперервнi або неперервнi (що надалi окремо не обумовлюється).

З (7) випливає, що розв’язки x(t) є обмеженими: 0 \leq x(t) \leq 1, i будуються шляхом
почергових переходiв вiд одного з рiвнянь x(t+1) = f(x(t)) або x(t+1) = g(x(t)) до iншого.
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Притому, оскiльки аргумент у цих рiвняннях неперервний, то поведiнка їхнiх розв’язкiв
визначається динамiкою як точок, так i околiв (!) точок при вiдображеннях f i g (див.
[9 – 12]).

Отже, для аналiзу рiвняння (1) важливо розумiти динамiку вiдображення h. Траєкторiї
Tr(z), z \in I, є обмеженими i поглинаються iнтервалом [A,B], де

A = f(\alpha ), B = g(\beta ) i z \in I у випадку (3), (5),

A = g(\alpha ), B = f(\beta ) i z \in \mathrm{i}\mathrm{n}\mathrm{t} I у випадку (4), (5).

Тобто траєкторiї за “скiнченний час” (для кожної свiй) потрапляють до iнтервалу [A,B] i
вже його не залишають (рис. 1), тож саме на [A,B] вiдбуваються всi динамiчнi складностi.

Виявляється, що динамiка вiдображення h, а отже, i розв’язкiв рiвняння (1) значною
мiрою визначається множиною прообразiв точок переключення z = \alpha i z = \beta , тобто мно-
жиною

S(h) =
\bigl\{ 
z \in I : \exists i \geq 0 таке, що hi(z) = \alpha або hi(z) = \beta 

\bigr\} 
. (8)

Залежно вiд структури множини S(h) вiдбуваються кардинально вiдмiннi сценарiї асимпто-
тичної поведiнки розв’язкiв.

Розв’язки, асимптотичнi до перiодичних кусково-сталих функцiй. Розглянемо випадок,
коли вiдображення h визначається формулами (3), (5) i є стискальним на обох гiлках
(рис. 1, a)). У такому разi h — це частинний випадок вiдображення, дослiдженого у [13].
З цiєї роботи випливають, зокрема, такi факти: якщо

g(0) > f(1), тобто a+ b < 1, (9)

то:
1) множина S(h) нiде не щiльна i майже завжди скiнченна;
2) наступнi твердження еквiвалентнi:
– S(h) — скiнченна множина,
– всi траєкторiї вiдображення h асимптотично перiодичнi;
3) майже завжди вiдображення h має або один цикл, або два цикли, перiоди яких

рiзняться на 2 ; а саме, множина D\ast значень параметрiв, при яких справджуються цi
властивостi, мiстить вiдкриту пiдмножину, щiльну в областi D = \{ 0 < \alpha , \beta < 1, a, b >
0, a+ b < 1\} .

Умова (9) означає, що f([0, \beta ]) \cap g([\alpha , 1]) = \varnothing i, отже, у будь-якої точки z \in I iснує не
бiльше одного прообразу. Завдяки цьому виключається можливiсть одночасного iснування
кiлькох перiодичних траєкторiй одного перiоду та iснування траєкторiй, складнiших за
перiодичнi та асимптотично перiодичнi.

Якщо J — iнтервал iз I \setminus S(h), то незалежно вiд того, є множина S(h) скiнченною чи
нескiнченною, hi(J) також є iнтервалом i

\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}hi(J) < Ci \mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m} J, C = \mathrm{m}\mathrm{a}\mathrm{x}\{ a, b\} < 1, i = 1, 2, . . . . (10)

Звiдси випливає, що за скiнченностi множини S(h) iснує цiле p = p(h) > 1 таке, що
функцiя

\scrH (z) = \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

hpk(z) (11)

ISSN 1562-3076. Нелiнiйнi коливання, 2024, т. 27, № 4



ДИНАМIКА РОЗВ’ЯЗКIВ ОДНОГО КЛАСУ КУСКОВО-ЛIНIЙНИХ РIЗНИЦЕВИХ РIВНЯНЬ IЗ ГIСТЕРЕЗИСОМ 447

Рис. 2. Функцiя \scrH (z) при a = 0,2, b = 0,55 : a) \alpha = 0,4, \beta = 0,6, \{ \gamma 1, \gamma 2, \gamma 3\} — цикл перiоду 3, p = 3;
б) \alpha = 0,1, \beta = 0,8, \{ \gamma 1, . . . , \gamma 5\} — цикл перiоду 5, p = 5; в) \alpha = 0,12, \beta = 0,48, \{ \gamma 1, \gamma 2\} i
\{ \sigma 1, . . . , \sigma 4\} — цикли перiоду 2 i 4, p = 4.

визначена при всiх z \in I, притiм границя у правiй частинi (11) є рiвномiрною. Отже,
функцiя \scrH (z) має розриви на певнiй множинi \Upsilon \subset S(h) (яка залежить вiд значень пара-
метрiв iз областi D ) i дорiвнює константi на кожному iнтервалi неперервностi (зокрема на
iнтервалах iз I \setminus S(h)); її область значень — це скiнченна множина \Theta (h), яку утворюють
числовi значення перiодичних точок вiдображення h, а p — найменше спiльне кратне
(надалi позначуване як lcm) їхнiх перiодiв; до того ж

hn(\scrH (z)) = h\lfloor n\rfloor mod p\scrH (z), n = 0, 1, . . . , z \in I. (12)

На рис. 2 наведено приклади функцiї \scrH (z). У випадку a) множина S(h) складається
з множин S\alpha (h) = \{ \alpha \} та S\beta (h) =

\bigl\{ 
\beta , g - 1(\beta )

\bigr\} 
, а вiдображення h має три 3-перiодичнi

точки \gamma 1, \gamma 2 = g(\gamma 1), \gamma 3 = g(\gamma 2). Цi точки утворюють цикл перiоду 3, який притягує
всi траєкторiї. Вiдповiдно, функцiя \scrH (z) набуває значень \gamma 1, \gamma 2 та \gamma 3 i має розриви на
множинi S\beta (h).

У випадку б) ситуацiя схожа (але з однiєю вiдмiннiстю): S\alpha (h) =
\bigl\{ 
\alpha , f - 1(\alpha )

\bigr\} 
, S\beta (h) =\bigl\{ 

\beta , g - 1(\beta ), g - 2(\beta )
\bigr\} 
i всi траєкторiї притягуються до циклу перiоду 5, який утворений чо-

тирма 5-перiодичними точками \gamma 1, \gamma 2 = g(\gamma 1), . . . , \gamma 4 = g(\gamma 3) та неперiодичною точкою
\gamma 5 = f(\gamma 4). Функцiя \scrH (z) розривна на множинi S\beta (h) i внаслiдок iснування у циклi непе-
рiодичної точки набуває тiльки чотирьох значень \gamma 1, . . . , \gamma 4 (а не всiх значень, вiдповiдних
точкам циклу, як у випадку a)). В обох наведених випадках вiдсутнiсть розривiв на множинi
S\alpha (h) зумовлена тим, що всi перiодичнi точки “згенерованi” гiлкою g вiдображення h.

Випадок в) iлюструє ситуацiю, коли вiдображення h має два притягальнi цикли. А
саме, цикл перiоду 2, утворений 2-перiодичними точками \gamma 1 i \gamma 2 = f(\gamma 1), i цикл перiо-
ду 4, утворений 4-перiодичними точками \sigma 1, \sigma 2 = g(\sigma 1), \sigma 3 = g(\sigma 2) та неперiодичною
точкою \sigma 4 = f(\sigma 3). Тепер (завдяки точцi \gamma 2 ) при формуваннi розривiв функцiї \scrH (z) разом
iз множиною S\beta (h) =

\bigl\{ 
\beta , g - 1(\beta ), f - 1

\bigl( 
g - 1(\beta )

\bigr) \bigr\} 
“працює” i множина S\alpha (h) =

\bigl\{ 
\alpha , f - 1(\alpha )

\bigr\} 
.

Функцiя \scrH (z) розривна на множинi S\beta (h) \cup 
\bigl\{ 
f - 1(\alpha )

\bigr\} 
i набуває п’ятьох значень, що вiд-

повiдають перiодичним точкам3.
3 a) \gamma 1 \approx 0,1485, \gamma 2 \approx 0,5316, \gamma 3 \approx 0,7424 ; б) \gamma 1 \approx 0,03357, \gamma 2 \approx 0,4685, \gamma 3 \approx 0,7077, \gamma 4 \approx 0,8392,

\gamma 5 \approx 0,1678; в) \gamma 1 \approx 0,1011, \gamma 2 \approx 0,5056, \sigma 1 \approx 0,9282, \sigma 2 \approx 0,4655, \sigma 3 \approx 0,7061, \sigma 4 \approx 0,1312.
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Описанi вище властивостi траєкторiй вiдображення h очевидним чином трансфор-
муються в асимптотичну перiодичнiсть розв’язкiв розглядуваного рiзницевого рiвняння.
Будемо користуватися, як запропоновано в [1], iнтегральною метрикою

\rho 
\Bigl( 
y1| [\sigma ,\tau ], y2| [\sigma ,\tau ]

\Bigr) 
=

\tau \int 
\sigma 

| y1(t) - y2(t)| dt, (13)

де y| [\sigma ,\tau ] — звуження функцiї y(t) на iнтервал [\sigma , \tau ].
Теорема 1. В областi параметрiв D у майже всiх рiвнянь вигляду (1) всi розв’язки є

асимптотично перiодичними. А саме, коли у рiвняннi (1) параметри належать областi D\ast ,
то при будь-якiй початковiй функцiї \varphi : [0, 1) \rightarrow I розв’язок x\varphi (t) прямує до p-перiодичної
функцiї

\scrP \varphi (t) = h\lfloor t\rfloor mod p (\scrH (\varphi (\langle t\rangle )), t \in \BbbR +, (14)

де p = n або p = lcm (n, n+ 2) i n — вiдповiдно перiод єдиного циклу або менший з перiодiв
двох циклiв вiдображення h. Точнiше,

\rho 
\Bigl( 
x\varphi 

\bigm| \bigm| 
[T,T+p]

,\scrP \varphi 

\bigm| \bigm| 
[T,T+p]

\Bigr) 
 - \rightarrow 0 при T \rightarrow \infty . (15)

Доведення. Нехай k = \lfloor T \rfloor \mathrm{m}\mathrm{o}\mathrm{d} p. Розiб’ємо iнтервал [T, T + p] на множини

lj = [kp+ j, kp+ j + 1), j = 1, . . . , p - 1,

l0 = ([kp, kp+ 1) \cup [k(p+ 1), k(p+ 1) + 1)) \cap [T, T + p]

i введемо позначення

S(h, \varphi ) =
\bigl\{ 
t \in \BbbR + : \varphi (\langle t\rangle ) \in S(h)

\bigr\} 
i Lj = lj \setminus S(h, \varphi ), j = 0, 1, . . . , p - 1. (16)

Зi спiввiдношень (7), (11), (12) i (14), виводимо

\rho 
\Bigl( 
x\varphi | [T,T+p], \scrP \varphi | [T,T+p]

\Bigr) 
=

p - 1\sum 
j=0

\int 
Lj

\bigm| \bigm| \bigm| hj\Bigl( hk(T )\cdot p(\varphi (\langle t\rangle ))
\Bigr) 
 - hj(\scrH (\varphi (\langle t\rangle )))

\bigm| \bigm| \bigm| dt \rightarrow 0 при T \rightarrow \infty .

За означенням функцiя \scrP \varphi (t) є перiодичною з перiодом p.
Функцiю \scrP \varphi (t) називаємо граничною функцiєю для розв’язку x\varphi (t). З (14) випливає,

що функцiя \scrP \varphi (t) набуває значень зi скiнченної множини
\bigcup p - 1

i=0 hi(\Theta (h)), яка є множиною
числових значень усiх точок одного або двох циклiв вiдображення h. Точки розривуфункцiї
\scrP \varphi (t) належать множинi S(h, \varphi ). Якщо початкова функцiя \varphi (t) розривна у точцi t\ast \in 
[0, 1] (покладаємо \varphi (1) = h(\varphi (0))), то у процесi наближення розв’язку x\varphi (t) до граничної
функцiї \scrP \varphi (t) розрив згасатиме, якщо значення \varphi (t\ast  - 0) i \varphi (t\ast +0) потрапляють до басейну
якоїсь однiєї з перiодичних точок вiдображення h. В iншому разi t\ast \in S(h, \varphi ).

На рис. 3 показано типовi розв’язки рiвнянь вигляду (1) у випадку (3), (5). За при-
клад взято рiвняння iз параметрами, яким вiдповiдають функцiї \scrH (z) з рис. 2. Кожен iз
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Рис. 3. Типовi розв’язки у випадку (3), (5) при a = 0,2, b = 0,55 : асимптотична перiодичнiсть a) з перiодом 3
при \alpha = 0,4, \beta = 0,6; б) з перiодом 5 при \alpha = 0,1, \beta = 0,8; в) з перiодом 4 при \alpha = 0,12, \beta = 0,48.

трьох розв’язкiв наближається до кусково-сталої граничної функцiї перiоду 3, 5 чи 4 та
з областями значень \{ \gamma 1, \gamma 2, \gamma 3\} , \{ \gamma 1, . . . , \gamma 5\} чи \{ \gamma 1, \gamma 2, \sigma 1, . . . , \sigma 4\} , вiдповiдно. Зазначи-
мо, що у випадках a) та б) граничнi функцiї всiх розв’язкiв мають один перiод i спiльну
область значень. А у випадку в) перiод i область значень граничної функцiї залежать вiд
початкової функцiї \varphi ; якщо множина \varphi ([0, 1]) перетинатиметься з басейном лише одного
з циклiв, скажiмо, \{ \gamma 1, \gamma 2\} , то вiдповiдна гранична функцiя матиме перiод 2 i набуватиме
двох значень \gamma 1 i \gamma 2.

Рис. 3, a) також iлюструє поведiнку розв’язкiв у точках розриву, породжуваних розри-
вами початкової функцiї \varphi . Розрив у точцi t = 0,5 + n згасає зi зростанням n, оскiльки
обидва значення \varphi (0,5  - 0) i \varphi (0,5 + 0) належать басейну точки \gamma 2. Воднораз значення
\varphi (1  - 0) потрапляє у басейн точки \gamma 3, а значення \varphi (1 + 0) — у басейн точки \gamma 1 i тому
розрив у точцi t = 1 + n майже повторює розриви функцiї \scrH (z) зi зростанням n.

Зазначимо,що у вже згадуванiй роботi [1] дослiджено бiфуркацiйнi властивостi розв’яз-
кiв рiвняння, частинним випадком якого є рiвняння (1). Показано, що розв’язки повторю-
ють бiфуркацiї перiодичних траєкторiй вiдображення h, якi бувають лише двох типiв: бi-
фуркацiї приросту перiоду (period-incrementing bifurcations) i бiфуркацiї додавання перiоду
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Рис. 4. Типовий розв’язок у випадку (4), (5): сильна хаотизацiя при a = 1,6, b = 1,4, \alpha = 0,4, \beta = 0,6.

(period-adding bifurcations) або, як їх ще називають, бiфуркацiї, пiдпорядкованi правилу
Фарея.

Хаотичнi розв’язки. Зовсiм iншу ситуацiю маємо, коли вiдображення h визначається
формулами (4), (5) i є розтягальним на обох гiлках. У цьому разi множина S(h) є скрiзь
щiльною на поглинаючому iнтервалi [A,B] (iнакше б iснував iнтервал J \subset [A,B], що не
мiстить точок iз S(h), а отже, має властивiсть: hi(J) є iнтервалом при кожному i й або
hi(J) = f

\bigl( 
hi - 1(J)

\bigr) 
, або hi(J) = g

\bigl( 
hi - 1(J)

\bigr) 
, i тодi довжина iнтервалу hi(J) зростала б

необмежено при i \rightarrow \infty , що неможливо).
В областi параметрiв

G =
\bigl\{ 
(\alpha , \beta , a, b) : 0 < \alpha < \beta < 1, 1 < a < 1/\beta , 1 < b < 1/(1 - \alpha )

\bigr\} 
виконуються спiввiдношення

f(g(\alpha )) < \alpha , g(f(\beta )) > \beta , тобто f(A)) < \alpha , g(B) > \beta , (17)

якi означають, що f([A, \beta ]) \cup g([\alpha ,B]) = [A,B], завдяки чому iнтервал [A,B] є згодом-
iнварiантним при вiдображеннi h.

Згiдно з [14] за умови (17) для будь-якого iнтервалу J \subset I iснує цiле n = n(J) > 0 таке,
що

hi(J) = [A,B], i = n, n+ 1, . . . . (18)

Це вiдбувається тому, що пiд дiєю вiдображення h кожен iнтервал J \subset I за скiнченне
число iтерацiй накриває iнтервали [A, \beta ] i [\alpha ,B], якi у парi вiдображаються у згодом-
iнварiантний iнтервал [A,B].

Властивiсть (18), з огляду на (7), спричиняє вкрай сильну хаотичнiсть розв’язкiв рiв-
няння (1): будь-який типовий розв’язок коливається (починаючи з деякого моменту) вiд A
до B з необмежено зростаючими частотою i числом розривiв. Приклад на рис. 4.

Для опису таких розв’язкiв iнтегральна метрика, яка усереднює поточковi вiдмiнностi,
вже неприйнятна. Тепер потрiбна метрика, яка б навпаки порiвнювала сукупностi зна-
чень функцiй в околах точок. Застосуємо, як запропоновано у [2], метрику Гаусдорфа для
графiкiв

\rho \Delta 

\Bigl( 
y1| [\sigma ,\tau ], y2| [\sigma ,\tau ]

\Bigr) 
= \Delta 

\Bigl( 
\mathrm{g}\mathrm{r} y1| [\sigma ,\tau ], \mathrm{g}\mathrm{r} y2| [\sigma ,\tau ]

\Bigr) 
, (19)

ISSN 1562-3076. Нелiнiйнi коливання, 2024, т. 27, № 4



ДИНАМIКА РОЗВ’ЯЗКIВ ОДНОГО КЛАСУ КУСКОВО-ЛIНIЙНИХ РIЗНИЦЕВИХ РIВНЯНЬ IЗ ГIСТЕРЕЗИСОМ 451

де \Delta — вiдстань Гаусдорфа мiж (непорожнiми обмеженими замкнутими) множинами i
\mathrm{g}\mathrm{r} — замикання графiка функцiї.

Множиннозначну функцiю \scrF : U \rightarrow 2I , де U \subset \BbbR , 2I —множина замкнутих непорож-
нiх пiдмножин iнтервалу I, називаємо напiвнеперервною зверху функцiєю, якщо для кожної
точки t\ast \in U та будь-яких послiдовностей \{ ti\} \infty i=1 \subset U, \{ zi\} \infty i=1 \subset I з умов: zi \in \scrF (ti),
\mathrm{l}\mathrm{i}\mathrm{m}i\rightarrow \infty ti = t\ast i \mathrm{l}\mathrm{i}\mathrm{m}i\rightarrow \infty zi = z\ast , випливає, що z\ast \in \scrF (t\ast ).

Теорема 2. В областi параметрiв G у всiх рiвнянь вигляду (1) майже всi розв’язки є
хаотичними. А саме, при будь-якiй початковiй функцiї \varphi : [0, 1) \rightarrow \mathrm{i}\mathrm{n}\mathrm{t} I, що вiдмiнна вiд
константи на всякому iнтервалi з [0, 1), розв’язок x\varphi (t) прямує до напiвнеперервної зверху
функцiї

\scrP (t) = [A,B], t \in \BbbR +, де A = g(\alpha ), B = f(\beta ). (20)

Точнiше,

\rho \Delta 

\Bigl( 
x\varphi | [T,T+1], \scrP | [T,T+1]

\Bigr) 
 - \rightarrow 0 при T \rightarrow \infty . (21)

Доведення. Позначимо через M \circledast \theta зсув множини M \subset \BbbR на число \theta , тобто M \circledast \theta =
\{ t : t = \tau + \theta , \tau \in M\} .

Зазначимо такi властивостi розв’язкiв, що випливають iз (7). По-перше, оскiльки \varphi (t) \not =
0, 1, то iснує T\circ = T\circ (\varphi ) > 0 таке, що

A \leq x\varphi (t) \leq B при t > T\circ . (22)

По-друге, оскiльки образ будь-якого вiдкритого iнтервалу при вiдображенi \varphi мiстить вiд-
критий iнтервал, то з огляду на (18) i (22) для будь-якого околу U кожної точки t\ast \in [0, 1)
знайдеться цiле N = N(U) > T\circ таке, що

x\varphi (U \circledast j) = [A,B] при j = N,N + 1, . . . . (23)

У (t, x)-площинi розглянемо множини

\Gamma T = \mathrm{g}\mathrm{r}x\varphi | [T,T+1] i \Pi T = \mathrm{g}\mathrm{r}\scrP | [T,T+1].

Теорему 2 буде доведено, якщо покажемо, що для будь-якого \varepsilon > 0 iснує T\varepsilon > 0 таке, що

\Delta (\Gamma T ,\Pi T ) < \varepsilon при T > T\varepsilon . (24)

Нагадаємо, що вiдстань Гаусдорфа мiж множинами X, Y визначається так: \Delta (X,Y ) =
\mathrm{m}\mathrm{a}\mathrm{x}\{ d(X,Y ), d(Y,X)\} , де d(Q,R) = \mathrm{s}\mathrm{u}\mathrm{p}q\in Q \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(q,R) i \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(q,R) — вiдстань вiд точки q
до множини R. З (22) випливає, що \Gamma T \subset \Pi T при T > T\circ , тому

d(\Gamma T ,\Pi T ) = 0 при T > T\circ . (25)

Проаналiзуємо величину d(\Pi T ,\Gamma T ). Вiзьмемо довiльне \varepsilon > 0 i будь-яке скiнченне
покриття \{ Vs\} ls=1 множини \Pi 0 прямокутниками vs \times [A,B], де vs = [ts  - \varepsilon /4, ts + \varepsilon /4]
l = l(\varepsilon ) \geq 1. Покриття \{ Vs(T )\} ls=1 множини \Pi T (при будь-якому T > 0) отримується з
\{ Vs\} ls=1 за допомогою певних зсувiв, а саме Vs(T ) = vs(T )\times [A,B], де

vs(T ) =

\left\{   vs \circledast k при ts \geq r,

vs \circledast (k + 1) при ts < r
i k = \lfloor T \rfloor , r = \langle T \rangle . (26)
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З (24) i (26) випливає iснування T\varepsilon > T\circ такого, що проєкцiя графiка \mathrm{g}\mathrm{r}x\varphi | vs(T ) на вiсь x

дорiвнює iнтервалу [A,B] при T > T\ast i всiх s = 1, . . . , l. Це означає, що для кожної точки
\pi (t\prime , x\prime ) \in \Pi T знайдеться точка \gamma (t\prime \prime , x\prime \prime ) \in \Gamma T така, що x\prime = x\prime \prime , | t\prime  - t\prime \prime | \leq \varepsilon /2, а отже,

d(\Pi T ,\Gamma T ) \leq \varepsilon /2 при T > T\varepsilon . (27)
З (25) i (27) отримуємо (24).

З (20) випливає, що функцiя \scrP (t) як функцiя з \BbbR + в I розривна у кожнiй точцi, а
як функцiя з \BbbR + у 2I напiвнеперервна зверху i набуває єдиного значення, що є iнтерва-
лом [g(\alpha ), f(\beta )].

Функцiя \scrP (t) виявляється граничною функцiєю для типових розв’язкiв рiвняння (1),
незалежно вiд їхнiх початкових функцiй. Ступiнь хаотичностi цих розв’язкiв визначається
складнiстю функцiї \scrP (t).

По-перше, зi збiльшенням t з типовими розв’язками вiдбувається каскад градiєнтних
катастроф: модуль похiдної розв’язку (у точках гладкостi) на будь-якому iнтервалi [T, T +
\delta ] необмежено зростає при T \rightarrow \infty .

По-друге, у типових розв’язкiв вельми нестандартна геометрiя. Кожен такий розв’язок
демонструє “space-filling”-властивiсть: для будь-якого \varepsilon > 0 i кожної початкової функцiї
\varphi , що задовольняє умови теореми 2, iснує T\ast = T\ast (\varepsilon , \varphi ) > 0 таке, що \mathrm{g}\mathrm{r}x\varphi (t) перетинається
з \varepsilon -околом кожної точки з пiвсмуги \Pi T = \{ (t, x) \in [T,\infty ) \times [g(\alpha ), f(\beta )]\} при T > T\ast , а
отже, що бiльше T, то щiльнiше графiк розв’язку заповнює пiвсмугу \Pi T . Такi розв’язки
називаємо сильно хаотичними.

По-третє, всi типовi розв’язки потрапляють за горизонт передбачуваностi: для будь-
яких \varepsilon > 0 i \delta > 0 i кожної початкової функцiї \varphi , що задовольняє умови теореми 2, iснує
N = N(\varepsilon , \delta , \varphi ) > 0 таке, що

\mathrm{s}\mathrm{u}\mathrm{p}
| t\prime  - t\prime \prime | <\varepsilon 

\bigm| \bigm| x\varphi (t\prime + n) - x\varphi (t
\prime \prime + n)

\bigm| \bigm| > f(\beta ) - g(\alpha ) - \delta при n > N,

тобто якими б близькими не були t\prime , t\prime \prime \in \BbbR +, значення x\varphi (t
\prime +n) i x\varphi (t\prime \prime +n) рiзняться при

певному n = n\ast на величину, рiвну дiаметру iнтервалу [A,B]. Такi розв’язки називаємо
згодом-непередбачуваними, їхнє обчислення ранiше чи пiзнiше втрачає сенс i потребує ймо-
вiрнiсних оцiнок. Для рiвнянь вигляду (1) але з неперервною нелiнiйнiстю було розвинуто
концепцiю автостохастичностi, коли згодом-непередбачуванi розв’язки можна асимпто-
тично точно описати за допомогою випадкових процесiв (див. [15, 16] i наведену там
бiблiографiю); такий опис можливий за умови, що нелiнiйнiсть має iнварiантну мiру, абсо-
лютно неперервну щодо мiри Лебега. Є всi пiдстави [2] вважати, що цi результати можна
поширити на випадок нелiнiйностi з гiстерезисом.

Зауваження. Умова лiнiйностi вiдображень f i g, що задають праву частину рiвнян-
ня (1), не є принциповою. Теореми 1 i 2 залишаються справедливими4, коли вiдображення
f i g неперервнi, монотонно зростають на [0, 1] i мають вiдповiдно такi властивостi:

0 < g(z) < z < f(z) < 1 при z \in (0, 1) i f, g стискальнi, (28)

0 < f(z) < z < g(z) < 1 при z \in (0, 1) i f, g розтягальнi. (29)
Про перший iз цих випадкiв йдеться в [1]. До тогож у випадку (28) теорема 1 справджується
для будь-яких початкових функцiї (без жодних обмежень).

4Уформулюваннях теореми 1 i 2 умови на параметри a, b замiнюються на умови g(0) > f(1) i f(g(\alpha )) < \alpha ,
g(f(\beta )) > \beta вiдповiдно.
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Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв. Усi необхiднi данi мiстяться в статтi. Всi автори зробили рiвномiрний внесок
у цю роботу. Роботу частково пiдтримано фондом Саймонса (the Simons Foundation),
грант 1290607 (“Research during the war at the biggest Ukrainian Mathematical Institution”).
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