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ЛIНIЙНА МАТЕМАТИЧНА МОДЕЛЬ ПРОСТОРОВОГО РУХУ
ТОРОЇДАЛЬНОГО БАКА З РIДИНОЮ
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Based on variational methods of solving main boundary-value problems of the linear theory of three-
dimensional motions of solids with cavities partially filled with a liquid, we derive a modal system of
equations of motion and give values of the hydrodynamic coefficients in the case of toroidal cavities.
Formulas for the hydrodynamic forces and moments acting on walls of toroidal tanks are obtained.
Implementation of the linear modal theory is illustrated for Sretenskii’s problem and the eigenfrequency
problem of joint vibrations of a water tower with a toroidal elevated tank.

На основi варiацiйних методiв розв’язування базових крайових задач лiнiйної теорiї просторово-
го руху твердих тiл iз порожнинами, частково заповненими рiдиною, одержано модальну систему
рiвнянь руху та наведено значення гiдродинамiчних коєфiцiєнтiв для випадку порожнин тороїдаль-
ної форми. Отримано формули для визначення гiдродинамiчних сил i моментiв взаємодiї рiдини
зi стiнками тороїдальних резервуарiв. Застосування лiнiйної модальної моделi проiлюстровано на
прикладi задачi Сретенського та задачi про визначення власних частот сумiсних коливань водона-
пiрної вежi (башти) з тороїдальним баком.

Вступ. Дослiдження коливань рiдини в тороїдальних резервуарах становлять значний iн-
терес у зв’язку з необхiднiстю розв’язання комплексу проблем, пов’язаних зi створенням
та експлуатацiєю конструкцiй, що мiстять тороїдальнi резервуари з рiдиною. Цi дослiд-
ження також постiйно стимулюють вимоги до авiацiйної, морської, ракетної та космiчної
технiки, а також посилення вимог до проєктування таких цивiльних об’єктiв, як наземнi
сховища для екологiчно небезпечних рiдин, морськi платформи та водонапiрнi башти, якi
будуються в сейсмонебезпечних районах.

Особливо пiдкреслимо суттєву роль експериментальних дослiджень, якi дають змо-
гу побудувати загальнi та спрощенi (у виглядi механiчних аналогiв) математичнi моделi,
здатнi адекватно описувати динамiку таких складних багатокомпонентних механiчних
систем. Це переконливо продемонстровано нещодавнiми роботами Дутта та iн. [1, 2],
Свiдена [3], присвяченими проблемам динамiки рiдини у сховищах форм фiгур обертан-
ня, а також роботами Аслама та iн. [4], Мак Картi та iн. [5] для сховищ тороїдальних
форм.

Загальну методологiю математичного моделювання динамiки поведiнки рiдини у за-
значених об’єктах при рiзноманiтних зовнiшнiх впливах на сьогоднi добре розроблено.
Сформульовано необхiднi задачi для визначення поля швидкостей i тиску в об’ємi рiдини,
а у випадку просторових безвихорових рухiв iдеальної рiдини добре вивчено спектральну
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крайову задачу про власнi коливання рiдини та крайову задачу Неймана для визначення
потенцiалiв Стокса –Жуковського. Розв’язки цих крайових задач дають змогу визначити
повну сукупнiсть гiдродинамiчних характеристик системи, включно з моментами iнер-
цiї рiдких мас. Для випадку тороїдальних резервуарiв точних розв’язкiв наведених вище
крайових задач немає, що потребує виведення спецiалiзованих наближених методiв їхнього
розв’язання. Найпоширенiшимиметодами є варiацiйнi методи, а також рiзнi варiанти мето-
дiв кiнцевих i граничних елементiв. Особливо варто пiдкреслити важливу роль варiацiйних
методiв, якi дають змогу отримувати наближенi розв’язки в аналiтичнiй формi, що не тiль-
ки спрощує аналiз розв’язкiв базових крайових задач, але також має важливе значення
для подальшого розвитку модальних пiдходiв у лiнiйнiй та нелiнiйнiй теорiї сумiсних рухiв
твердих тiл iз рiдинами. Розвиток варiацiйних методiв для тороїдальних резервуарiв має
ряд особливостей, пов’язаних iз геометрiєю порожнини. Про подiбнi особливостi йдеться
у фундаментальних працях [6 – 8].

У цiй статтi на основi методу Луковського [9] виведено лiнiйнi модальнi рiвняння,
що описують коливання рiдини в горизонтальному тороїдальному резервуарi, який здiйс-
нює малi поступальнi та кутовi перемiщення, а також формули для гiдродинамiчних сил
i моментiв (перша задача динамiки). Доповнюючи роботи [10, 11], наведено у широко-
му дiапазонi геометричних параметрiв чисельнi значення гiдродинамiчних коефiцiєнтiв,
включаючи момент iнерцiї рiдини.

Незважаючи на те що цю лiнiйну модальну теорiю побудовано для розв’язку першої
задачi динамiки, у статтi наведено два iлюстративнi приклади використання її результатiв
для опису сумiсних (зчеплених) рухiв конструкцiй iз тороїдальним резервуаром, частково
заповненим рiдиною (друга задача динамiки). Перший приклад присвячено задачi Сре-
тенського, яка описує вимушенi (без тертя) горизонтальнi коливання твердого тiла (вiзка)
з цистерною за наявностi пружного зв’язку. У другому прикладi розглянуто власнi частоти
коливань системи, що складається з вертикальної балки i тороїдального бака з рiдиною,
жорстко закрiпленого на вершинi балки. Цю механiчну систему використовують для мо-
делювання водонапiрних башт.

1. Постановка задачi. Розглянемо механiчну систему, що складається з абсолютно
жорсткої горизонтальної тороїдальної ємностi, частково заповненої iдеальною нестисли-
вою рiдиною. У статичному положеннi рiвноваги вiсь симетрiї бака паралельна вектору
прискорення сили тяжiння. Змоченi стiнки резервуара, як показано на рис. 1, будемо по-
значати через S, а незбурену вiльну поверхню рiдини — \Sigma 0. Тут R позначає великий
радiус директриси тора, а r — малий радiус твiрної тора. За характерний лiнiйний розмiр
обрано радiус твiрної тора r. Жорстко зв’яжемо рухому систему координат Oxyz iз цент-
ром кiльцевої вiльної поверхнi \Sigma 0, спрямовуючи вiсь Ox вертикально вздовж осi симетрiї
резервуара.

Гiдродинамiчний аналiз передбачає, що рухи бака вiдомi i розглядається перша задача
динамiки. Крiм того, передбачаємо, що танк здiйснює невеликi коливальнi рухи щодо ста-
тичного положення рiвноваги у полi тяжiння. Цi малi перемiщення (разом iз системою ко-
ординат Oxyz, жорстко зв’язаною з баком) вiдбуваютьсящодо деякої iнерцiальної системи
координат O\prime x\prime y\prime z\prime , пов’язаної iз Землею, та повнiстю описуються вектором поступальної
швидкостi \bfv 0(t) = ( \.\eta 1, \.\eta 2, \.\eta 3) i вектором миттєвої кутової швидкостi \omega (t) = ( \.\eta 4, \.\eta 5, \.\eta 6).
Шiсть функцiй \eta i, що описують малi поступальнi та кутовi рухи, визначають шiсть неза-
лежних ступенiв свободи. У зв’язанiй системi координат Oxyz лiнеаризованi проєкцiї
вектора прискорення сили тяжiння мають вигляд \bfg = (g1, g2, g3) = ( - g, g\eta 6, - g\eta 5).
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Рис. 1. Тороїдальний резервуар, частково заповнений рiдиною, що здiйснює заданi малi коливальнi рухи у
просторi.

У припущеннi безвихорового потенцiйного потоку рiдини потенцiал абсолютної швид-
костi \Phi (x, y, z, t) та функцiя, що описує збурену поверхню рiдини \zeta (x, y, z, t) = x - \xi (y, z, t),
є розв’язками такої крайової задачi (див., наприклад, [12 – 14]):

\bigtriangleup \Phi = 0 в Q0, (1.1)

\partial \Phi 

\partial n
= \bfv 0 \bfn + \omega (\bfr \times \bfn ) на S0, (1.2)

\partial \Phi 

\partial n
= \bfv 0 \bfn + \omega (\bfr \times \bfn ) - \partial \xi 

\partial t
на \Sigma 0, (1.3)

\partial \Phi 

\partial t
 - \bfg \bfr = 0 на \Sigma 0, (1.4)\int 
\Sigma 0

\xi dS = 0, (1.5)

де S0 — змочена поверхня резервуара у положеннi рiвноваги, \bfn —орт зовнiшньої нормалi
до границi об’єму Q0 i \bfr = (x, y, z).

Крайову задачу необхiдно доповнити початковими умовами, якi задають початкове
положення поверхнi рiдини та початковий нормальний розподiл швидкостей (при t = t0 ):

\xi (y, z, t0) = \xi 0(y, z),
\partial \Phi 

\partial n

\bigm| \bigm| \bigm| \bigm| 
\Sigma (t0)

= \Phi 0(x, y, z). (2)

Якщо розглядаємо вимушенi коливання рiдини пiд впливом гармонiйних збурень iз
перiодом T, то початковi умови (2) можна замiнити умовами перiодичностi

\xi (y, z, t+ T ) = \xi (y, z, t), \nabla \Phi (x, y, z, t+ T ) = \nabla \Phi (x, y, z, t). (3)
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Розв’язки задачi (1), якi пiдпорядкованi умовам перiодичностi (3), описують так званi
стацiонарнi режими руху рiдини.

Розв’язок крайової задачi (1) дозволяє отримати розподiл абсолютних швидкостей час-
тинок рiдини \bfv a = \nabla \Phi i, використовуючи лiнеаризований iнтеграл Лагранжа –Кошi у
зв’язанiй системi координат

\partial \Phi 

\partial t
 - \bfg \bfr +

p - p0
\rho 

= 0 (4)

(\rho — густина рiдини, p0 — атмосферний тиск), поле тиску p. Розглядаючи вiдповiднi
iнтеграли тиску вздовж змочених стiнок бака, можна отримати основнi гiдродинамiчнi
характеристики, тобто iмпульс i кутовий момент рiдини щодо O, а також результуючi
гiдродинамiчнi силу i момент, а отже, розв’язати першу задачу динамiки.

2. Лiнiйна модальна теорiя. 2.1. Загальнi модальнi рiвняння. Наведемо розв’язок зада-
чi (1) у виглядi [12, 14]

\xi (y, z, t) =
\sum 
N

\beta N (t)\phi N | \Sigma 0
=
\sum 
N

\beta N (t)\xi N (y, z), (5)

\Phi (x, y, z, t) = \bfv 0(t) \bfr + \omega (t)\bfOmega 0(x, y, z) +
\sum 
N

RN (t)\phi N (x, y, z), (6)

де \phi N (x, y, z) —система власних форм коливання рiдини, визначеної розв’язками крайової
задачi на власнi значення \xi N (y, z) = \phi N (0, y, z) :

\bigtriangleup \phi = 0, \bfr \in Q0,
\partial \phi 

\partial n
= 0, \bfr \in S0,

\partial \phi 

\partial n
= \kappa \phi , \bfr \in \Sigma 0,

\int 
\Sigma 0

\phi dS = 0,
(7)

i гармонiчна вектор-функцiя \bfOmega 0(x, y, z) = (\Omega 01,\Omega 02,\Omega 03) (три потенцiали Стокса –Жуков-
ського) є розв’язком крайової задачi Неймана

\bigtriangleup \bfOmega 0 = 0, \bfr \in Q0,
\partial \bfOmega 0

\partial n
= \bfr \times \bfn , \bfr \in S0 +\Sigma 0. (8)

У найзагальнiшому випадку N —це один або кiлька цiлих iндексiв, якi перенумерову-
ють власнi форми \phi N (x, y, z) з урахуванням їхньої кратностi. Пiдставляючи (5) i (6) у вихiд-
ну крайову задачу (1) та враховуючи умову ортогональностi

\int 
\Sigma 0

\xi N1\xi N2 dS = 0, N1 \not = N2,

отримуємо спiввiдношення \.\beta N = \kappa NRN i таку лiнiйну (модальну) систему звичайних
диференцiальних рiвнянь щодо модальних функцiй (узагальнених координат) \beta N (t) :

\"\beta N + \sigma 2N\beta N = KN (t), (9)

де \sigma 2N = g\kappa N i

KN (t) =  - \lambda 2N
\mu N

(\"\eta 2  - g\eta 6) - 
\lambda 3N
\mu N

(\"\eta 3 + g\eta 5) - 
1

\mu N

6\sum 
k=4

\lambda 0(k - 3)N \"\eta k. (10)
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Гiдродинамiчнi коефiцiєнти, що входять до (10), визначаємо iнтегралами

\mu N =
\rho 

\kappa N

\int 
\Sigma 0

\xi 2N dS, \lambda 2N = \rho 

\int 
\Sigma 0

y\xi N dS,

\lambda 3N = \rho 

\int 
\Sigma 0

z\xi N dS, \lambda 0kN = \rho 

\int 
\Sigma 0

\xi N\Omega 0k dS.

(11)

Таким чином, якщо вiдомi функцiї \eta k(t), k = 1, . . . , 6, що описують коливання бака з
шiстьма ступенями свободи, а також гiдродинамiчнi коефiцiєнти (11), то миможемо знайти
модальнiфункцiї \beta N (t) iз системилiнiйних звичайнихдиференцiальних рiвнянь (9), а отже,
вивести потенцiал швидкостей (6) i вiдповiдне поле тиску за формулою (4). Використання
модальної теорiї усуває потребу у просторовiй i часовiй дискретизацiї початкової граничної
задачi (1).

Явнi формули для гiдродинамiчної сили i моменту у термiнах функцiй \beta M i \eta j , j =
1, . . . , 6, отримав Луковський [13] для найбiльш загального нелiнiйного випадку. Неза-
лежне виведення формул Луковського для лiнiйних i нелiнiйних коливань рiдини наведено
також у [14]. Модальнi рiвняння (9) i згаданi формули Луковського для сили i моменту
значно спрощуються для випадку осесиметричних резервуарiв.

2.2. Модальна система для осесиметричних бакiв. Для осесиметричних резервуарiв
природним є перехiд до цилiндричної системи координат x = x, y = r cos \theta , z = r sin \theta 
i вiдокремлення кутової змiнної в основних крайових задачах (7) i (8). У цьому випадку
iндекси N = m, i, 1 i N = m, i, 2, m = 0, 1, . . . , i = 1, 2, . . . i власнi функцiї мають такий
вигляд:

\phi m,i,1 = \phi 
(m)
i (r, x) cos(m\theta ), \phi m,i,2 = \phi 

(m)
i (r, x) sin(m\theta ). (12)

Обидвi власнi функцiї \phi m,i,1 i \phi m,i,2 (для m \not = 0) вiдповiдають одному власному значенню
\kappa m,i, яке визначається iз задачi (7).

Задача про потенцiал Стокса –Жуковського також допускає вiддiлення кутової змiнної

\Omega 01 = 0, \Omega 02 =  - \chi (r, x) sin \theta , \Omega 03 = \chi (r, x) cos \theta , (13)

де \chi (r, x) — розв’язок вiдповiдної крайової задачi у меридiональному перерiзi резервуара.
Структура розв’язкiв (12) i (13) вказує на те,що ненульовi правi частини (10) у модальнiй

системi (9) пов’язанi з гiдродинамiчними коефiцiєнтами

\kappa i = \kappa 1,i, \sigma 2i = g\kappa i = \sigma 21,i, (14.1)

\mu 1,i,1 = \mu 1,i,2 = \mu i =
\pi \rho 

\kappa 1,i

\int 
L0

r
\bigl( 
\phi 
(1)
i

\bigr) 2
dr, (14.2)

\lambda 2(1,i,1) = \lambda 3(1,i,2) = \lambda i = \pi \rho 

\int 
L0

r2\phi 
(1)
i dr, (14.3)

\lambda 03(1,i,1) =  - \lambda 02(1,i,2) = \lambda 0i = \rho \pi 

\int 
L0

r2\chi \phi 
(1)
i dr, (14.4)

де L0 — перетин незбуреної вiльної границi з меридiональним перерiзом резервуара.
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Таким чином, для осесиметричних резервуарiв iснують тiльки двi незалежнi лiнiйнi мо-
дальнi системи з ненульовими правими частинами. Цi системи вiдповiдають за коливання
рiдини у площинах Oxy i Oxz :

\mu i

\Bigl( 
\"\beta ci + \sigma 2i \beta 

c
i

\Bigr) 
=  - \lambda i(\"\eta 2  - g\eta 6) - \lambda 0i\"\eta 6, (15.1)

\mu i

\Bigl( 
\"\beta si + \sigma 2i \beta 

s
i

\Bigr) 
=  - \lambda i(\"\eta 3 + g\eta 5) + \lambda 0i\"\eta 5, (15.2)

де iндекс i = 1, 2, . . . перенумеровує власнi значення \kappa i у порядку зростання та, вiдповiдно,
перенумеровує функцiї \phi (1)i у (12).

2.3. Гiдродинамiчна сила та момент для осесиметричних бакiв. Згiдно з формула-
ми Луковського [13, 14] лiнiйнi компоненти гiдродинамiчної сили у системi координат,
пов’язанiй iз резервуаром, використовують положення центра тяжiння незбуреної рiдини:

\bfr lC0 = (xlC0 , ylC0 , zlC0) = \rho 

\int 
Q0

\bfr dQ/Ml, (16)

Ml — маса рiдини у системi координат Oxyz. Для осесиметричного випадку ylC0 =
zlC0 = 0. Звiдси маємо такi вирази для проєкцiй гiдродинамiчної сили на осi системи
координат Oxyz :

F1(t) = Fx(t) =Ml( - g  - \"\eta 1), (17.1)

F2(t) = Fy(t) =Ml( - \"\eta 6xlC0 + [g\eta 6] - \"\eta 2) - 
\infty \sum 
k=1

\"\beta ck\lambda k, (17.2)

F3(t) = Fz(t) =Ml(\"\eta 5xlC0  - [g\eta 5] - \"\eta 3) - 
\infty \sum 
k=1

\"\beta sk\lambda k. (17.3)

У цьому випадку лiнiйнi складовi [g\eta 6], [g\eta 5] зникають iз виразiв для F2(t), F3(t) при
проєктуваннi лiнiйної гiдродинамiчної сили на iнерцiйну систему координат, пов’язану iз
Землею.

Лiнеаризована формула Луковського для гiдродинамiчного моменту (щодо O ) також
включає елементи тензора iнерцiї рiдини \bfJ 1

0, визначеного через потенцiали Стокса –
Жуковського

J1
0ij = \rho 

\int 
S0+\Sigma 0

\Omega 0i
\partial \Omega 0j

\partial n
dS. (18)

Для осесиметричного резервуара цей тензор мiстить лише два ненульовi елементи

J1
022 = J1

033 = J0 = \pi \rho 

\int 
L

\chi 
\partial \chi 

\partial n
ds, (19)

де L — перетин бiчної поверхнi S iз меридiональним перерiзом резервуара [10, 11].

ISSN 1562-3076. Нелiнiйнi коливання, 2024, т. 27, № 3



ЛIНIЙНА МАТЕМАТИЧНА МОДЕЛЬ ПРОСТОРОВОГО РУХУ ТОРОЇДАЛЬНОГО БАКА З РIДИНОЮ 427

Використовуючи лiнеаризованi формули Луковського [9, 14], для осесиметричного ре-
зервуара можна показати, що F4 = MOx = 0, а двi iншi компоненти обчислюються за
формулами

F5(t) =MOy(t) =MlxlC0(g\eta 5 + \"\eta 3) - J0\"\eta 5  - 
\infty \sum 
j=1

\Bigl( 
 - \lambda 0j \"\beta sj + g\lambda j\beta 

s
j

\Bigr) 
, (20.1)

F6(t) =MOz(t) =MlxlC0(g\eta 6  - \"\eta 2) - J0\"\eta 6  - 
\infty \sum 
j=1

\Bigl( 
\lambda 0j \"\beta 

c
j  - g\lambda j\beta 

c
j

\Bigr) 
. (20.2)

Для перерахунку гiдродинамiчного моменту щодо iншої, довiльно взятої, точки \`O мож-
на скористатися формулою

\bfM 1
\`O
= \bfr O \`O \times \bfF +\bfM O, (21)

де \bfF = (F1, F2, F3), \bfM O = (F4, F5, F6), \bfr O \`O — радiус-вектор початку координат O щодо
точки \`O.

2.4. Безрозмiрнi гiдродинамiчнi коефiцiєнти. Гiдродинамiчнi коефiцiєнти, що виника-
ють у модальних рiвняннях i виразах для гiдродинамiчних сил i моментiв, є функцiями
лiнiйних розмiрiв тороїдального резервуара i густини рiдини. Тут R позначає великий ра-
дiус директриси тора, а r — малий радiус твiрної тора. За характерний лiнiйний розмiр
обрано радiус твiрної тора r. Глибину заповнення резервуара рiдиною позначено через
H. Вiдношення радiусiв \delta R = r/R, R \geq r, є безрозмiрною характеристикою резервуара,
а вiдношення \delta H = H/2r стає безрозмiрною характеристикою заповнення бака рiдиною.
Зокрема, при \delta H \rightarrow 0 глибина рiдини прямує до нульового об’єму заповнення резервуара,
а при наближеннi \delta H до 1 заповнення резервуара прямує до тороїдальної порожнини.

Зв’язок мiж розмiрним i безрозмiрним гiдродинамiчними коефiцiєнтами (останнiй бу-
демо позначати рискою згори) має вигляд

\kappa i =
\=\kappa i
r0
, \mu i = \rho r30 \=\mu i, \lambda i = \rho r30

\=\lambda i, \lambda 0i = \rho r40
\=\lambda 0i, J0 = \rho r50 \=J0. (22)

У роботi [10] автором виведено варiацiйнийметод для визначення власних частот i влас-
них функцiй \phi (1)i коливання рiдини у тороїдальних резервуарах, у [11] одержано варiацiй-
ний метод для визначення потенцiалiв Стокса –Жуковського для тороїдальних областей i
для розрахунку \=J0. Знаючи \phi (1)i (r, x) i \chi (r, x), можна ефективно розрахувати гiдродинамiч-
нi коефiцiєнти \=\mu i, \=\lambda i i \=\lambda 0i. Однак потрiбно враховувати, що \phi (1)i визначаються з точнiстю
до довiльного множника, а отже, з точнiстю до постiйного множника визначаються гiд-
родинамiчнi коефiцiєнти \=\mu i, \=\lambda i i \=\lambda 0i. Для усунення неоднозначностi (пов’язаної з цим
фактором) при визначеннi гiдродинамiчних коефiцiєнтiв застосовуємо такi нормування:

\=\phi 
(1)
i (1, 0) = 1. (23)

Таким чином, вимагалося, щоб власнi функцiї набували максимального абсолютного зна-
чення, рiвного одиницi, на лiнiї контакту незбуреної вiльної границi та бiчної стiнки. При
такiй нормалiзацiї, яка є природною для модальних теорiй, модальнi функцiї \beta ci (t) i \beta si (t)
вiдiграють роль (безрозмiрної) амплiтуди хвилi на стiнцi.
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Варiацiйний розв’язок для власної функцiї \phi (m)
i (r, x) подано у виглядi [10]

\phi 
(m)
i (r, x) =

q1\sum 
k=1

a
(m,i)
k w

(m)
k (r, x) +

q2\sum 
k=1

a
\ast (m,i)
k w

\ast (m)
k (r, x), (24)

де m = 0, 1, . . . , i = 1, 2, . . . , а координатнi функцiї w(m)
k (r, x) i w\ast (m)

k (r, x) задоволь-
няють вiдповiдне рiвняння у меридiональному перерiзi, тим самим пiдтверджуючи, що
\phi 
(m)
i (r, x) cos(m\theta ) i \phi (m)

i (r, x) sin(m\theta ) є гармонiчними функцiями. Варiацiйна процедура
звела обчислення до узагальненої спектральної матричної задачi для визначення власних
значень \=\kappa m,i i власних векторiв a(m,i)

j розмiрностi q = q1 + q2 :

q\sum 
k,l=1

a
(m,i)
l

\Bigl( 
\alpha 
(m,i)
kl  - \=\kappa m,i\beta 

(m,i)
kl

\Bigr) 
= 0 (25)

при фiксованому m i змiнному iндексi i вiд 1 до, загалом кажучи, q. Елементи матриць
визначаємо за формулами

\alpha 
(m)
kl =

\int 
L

r
\partial w

(m)
k

\partial n
w

(m)
l ds, \beta 

(m)
kl =

\int 
L0

r w
(m)
k w

(m)
l dr, (26)

де L0 i L — меридiональнi перерiзи \Sigma 0 i S. Умова нормалiзацiї (23) у застосуваннi до
варiацiйного розв’язку (24) означає, що для власних векторiв\Bigl( 

a
(1,i)
1 , a

(1,i)
2 , . . . , a(1,i)q1 , a

\ast (1,i)
1 , a

\ast (1,i)
2 , . . . , a\ast (1,i)q2

\Bigr) 
апроксимацiя \phi (1)i (r, x) sin(\theta ) нормується (дiлиться) на

N1,i =

q1\sum 
k=1

a
(1,i)
k w

(1)
k (1, 0) +

q2\sum 
k=1

a
\ast (1,i)
k w

\ast (1)
k (1, 0). (27)

Використовуючи цю нормалiзацiю, безрозмiрнi гiдродинамiчнi коефiцiєнти \=\mu i i \=\lambda i розра-
ховуємо за формулами

\=\mu i =
\pi \=\kappa 1,i
N

2

1,i

q\sum 
k=1

q\sum 
l=1

a
(1,i)
k a

(1,i)
l \beta kl, \=\lambda i =

\pi \=\kappa 1,i
N1,i

q\sum 
k=1

\beta 1ka
(1,i)
k . (28)

Бiльш того, якщо для варiацiйного розв’язку \chi (r, x) як базисну множину функцiй ви-
брати тi самi координатнi функцiї, що й у [10] або [11], то гiдродинамiчнi коефiцiєнти, що
залишилися, записуємо у виглядi

\=\lambda 0i =
\pi \=\kappa 1,i
N1,i

q\sum 
k=1

q\sum 
l=1

\beta kla
(1,i)
k b

(1)
l , (29)

\bfJ 1
0ij = \pi \rho 

q\sum 
k=1

b
(1)
k \gamma 

(1)
k , (30)
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де

\chi (r, x) =

q1\sum 
k=1

b
(1)
k w

(1)
k (r, x) +

q1\sum 
k=1

b
(1)\ast 
k w

\ast (1)
k (r, x) (31)

є заданим варiацiйним розв’язком задачi Рiтца

q\sum 
i,j=1

\alpha 
(m)
ij b

(m)
j = \gamma 

(m)
i . (32)

Елементи вектора \gamma (m)
i визначаємо за формулою

\gamma 
(m)
i =

\int 
L

gw
(m)
k dS, (33)

де g являє собою векторний добуток (\bfr \times \bfn ) як праву частину другого рiвняння у крайовiй
задачi Неймана (8) з однотипною нормалiзацiєю \=\chi (1, 0) = 1 для вектора b(1)j ,

\bigl( 
b
(1)
1 , b

(1)
2 , . . . ,

b
(1)
q1 , b

\ast (1)
1 , b

\ast (1)
2 , . . . , b

\ast (1)
q2

\bigr) 
.

Використовуючи функцiональний базис полiномiального типу [10, 11] i формули (24) –
(28), можна ефективно обчислити власнi значення \=\kappa i i гiдродинамiчнi коефiцiєнти \=\mu i,
\=\lambda i, а використовуючи формули (29) – (31), можна ефективно розрахувати тензор iнерцiї
\=J0 i гiдродинамiчний коефiцiєнт \=\lambda 0i. Особливiстю чисельної реалiзацiї є менша точнiсть
обчислення \=\mu i, \=\lambda i та \=\lambda 0i, нiж точнiсть обчислення \=\kappa i i \=J0 до двох значущих цифр. Це
пов’язано з тим, що власнi вектори визначаються з меншою точнiстю, нiж власнi значен-
ня, що впливає на точнiсть пiдсумовування у формулах (28) i (29), а також на точнiсть
обчислення норми (27).

У табл. 1 – 4 наведено числовi значення розглянутих гiдродинамiчних коефiцiєнтiв з
диференцiйованою точнiстю. Зберiгаються лише тi значущi цифри, якi стабiлiзуються пiд
час застосування нашого варiацiйного методу.

3. Приклади застосування лiнiйної модальної теорiї. Сумiсне використання лiнiйної
модальної системи та формул для гiдродинамiчних сил та моментiв дозволяє розв’язувати
задачi динамiки сумiсних коливань складних композитнихмеханiчних об’єктiв, щомiстять
тороїдальнийрезервуар, частково заповненийрiдиною.Уцiй роботi розглядаємодвi тестовi
задачi, якi iлюструють таку можливiсть.

3.1. Задача Сретенського. Розглянемо механiчну систему на рис. 2, яка складається з
платформи масою Mp, що допускає горизонтальний поступальний рух без тертя та при-
крiплена до нерухомої стiни за допомогою пружини з коефiцiєнтом Гука k. На платформi
жорстко закрiплено твердий тороїдальний резервуар масою Mt, частково заповнений рi-
диною масою Ml. Задача полягає у визначеннi малих коливних рухiв платформи (щодо
її статичного положення рiвноваги), викликаних дiєю невеликої горизонтальної рушiйної
сили, тобто необхiдно розв’язати другу задачу динамiки стосовно заданої багатокомпо-
нентної механiчної системи. Оскiльки в задачi допускаються лише поступальнi рухи з
одним ступенем свободи (для спрощення вздовж осi Oz ), то \eta 1 = \eta 2 = \eta 4 = \eta 5 = \eta 6 = 0,
а отже, рух платформи описує функцiя \eta 3(t). Припускаючи, що \eta 3(t) вiдоме, ми можемо
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Таблиця 1. Безрозмiрнi елементи тензора iнерцiї \=J0
i власнi значення \=\kappa i, i = 1, . . . , 6, для тороїдального бака

\=H \=J0 \=\kappa 1 \=\kappa 2 \=\kappa 3 \=\kappa 4 \=\kappa 5 \=\kappa 6

1/12 2,27871 0,02861 1,07802 2,97200 5,47291 8,30148 11,25169
1/6 6,10530 0,05872 1,16155 2,95790 5,09668 7,29667 9,47053
1/4 10,63534 0,09017 1,24988 2,96147 4,84944 6,71646 8,55762
1/3 15,55334 0,12296 1,34286 2,98704 4,71013 6,39999 8,08050
5/12 20,68169 0,15731 1,44171 3,04049 4,66570 6,26730 7,87402
1/2 25,90295 0,19376 1,55026 3,13096 4,71397 6,28644 7,87465
7/12 31,12421 0,23338 1,67687 3,27421 4,86714 6,45982 8,07877
2/3 36,25256 0,27819 1,83850 3,49994 5,16093 6,82858 8,59068
3/4 41,17056 0,33244 2,07172 3,87114 5,68251 7,52643 10,02121
5/6 45,70060 0,40715 2,47215 4,55443 6,69411 9,20195 18,08724

11/12 49,52719 0,54587 3,42570 6,22768 10,7898 22,5276 218,1192

Таблиця 2. Безрозмiрнi гiдродинамiчнi коефiцiєнти \=\mu 1i, i = 1, . . . , 6

\=H \=\mu 1 \=\mu 2 \=\mu 3 \=\mu 4 \=\mu 5 \=\mu 6

1/12 0,331716 0,528614 0,978024 1,245574 1,547291 2,30148
1/6 0,529906 0,795926 1,471898 1,966621 2,795045 7,29667
1/4 1,008249 2,593614 2,593614 5,182392 8,155089 12,71646
1/3 1,623971 2,850439 3,550439 6,143013 9,743707 14,35697
5/12 2,307964 3,475205 4,482121 8,050722 12,550325 16,92756
1/2 3,006049 5,328043 6,307809 9,627927 14,711201 17,10187
7/12 3,672623 6,319603 7,607751 11,607751 15,529294 17,52929
2/3 4,274394 6,742991 7,838503 12,499941 16,160931 18,28558
3/4 4,419053 6,932445 8,071722 12,971143 16,682521 18,92209
5/6 4,568607 7,074299 8,378440 13,260417 17,060417 19,23178

11/12 4,806219 7,162866 8,609619 13,666270 17,666270 19,53359

знайти лiнiйнi вимушенi коливання рiдини з модальної системи (15.2) iз неоднорiдною
правою частиною, яка залежить вiд \"\eta 3 :

\mu i

\Bigl( 
\"\beta si + \sigma 2i \beta 

s
i

\Bigr) 
=  - \lambda i\"\eta 3, i = 1, 2, . . . , (34)

а такожвизначити горизонтальну гiдродинамiчну силу F3, прикладену до резервуара (плат-
форми), використовуючи формулу (17.3), яка в цьому випадку спрощується до вигляду

F3(t) =  - Ml\"\eta 3  - 
\infty \sum 
k=1

\"\beta sk\lambda k. (35)

Як видно з рiвнянь (34), (35), гiдродинамiчна сила насправдi є функцiєю \eta 3, оскiльки
модальнi функцiї \beta si залежать лише вiд \"\eta 3 i початкових збурень рiдини. Вираз для гiдро-
динамiчної сили тепер має бути включений у рiвняння динамiки платформи.
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Рис. 2. Рухома платформа з тороїдальним резервуаром, частково заповненим рiдиною.

Таблиця 3. Безрозмiрнi гiдродинамiчнi коефiцiєнти \=\lambda i, i = 1, . . . , 7

\=r1 \=\lambda 1 \=\lambda 2 \=\lambda 3 \=\lambda 4 \=\lambda 5 \=\lambda 6 \=\lambda 7

1/12 0,527087 1,383505 0,076617 –0,001955 –0,000033 0 0
1/6 1,133396 –1,776806 0,066017 –0,086908 –0,010050 –0,000605 0,000018
1/4 2,126491 –2,512284 0,128692 –0,432500 0,076971 –0,002015 0,001028
1/3 3,332646 –3,299743 0,220560 –0,792915 0,114771 –0,048139 0,046232
5/12 4,634409 –3,954156 0,337404 –1,170445 0,187915 –0,734122 0,148864
1/2 5,930598 –4,449959 0,475904 –1,530174 0,283686 –0,985259 0,279634
7/12 7,128783 –4,884980 0,654397 –1,909001 0,419766 –1,395903 0,449914
2/3 8,148718 –5,629190 1,024889 –3,084708 1,270017 –1,569971 0,406676
3/4 8,935187 –8,019213 3,186148 –3,340973 0,506917 –0,906152 0,199770
5/6 8,778947 –6,779341 1,018731 –1,343009 0,081077 –0,042263 –0,008281

11/12 8,406990 –6,070639 –0,072712 –0,060359 0,006409 –0,081062 –0,003418

Розглянемо рiвняння руху платформи

(Mt +Mp)\"\eta 3 =  - k\eta 3 + F3 + F, (36)

яке випливає з другого закону Ньютона. Тут враховуємо, що на платформу дiє певна вiдома
рушiйна сила F (t), сила пружностi пружини  - k\eta 3 i гiдродинамiчна сила F3(t). З огляду
на формулу для гiдродинамiчної сили (35) рiвняння (36) перепишемо у виглядi

M0

\bigl( 
\"\eta 3 + \sigma 20\eta 3

\bigr) 
+

\infty \sum 
k=1

\"\beta sk\lambda k = F, (37)

де M0 = Mt + Mp + Ml — повна маса всiєї системи, а \sigma 20 = k/M0 — квадрат власної
частоти пружних, пов’язаних iз наявнiстю пружини, коливань платформи з нерухомою
(“замороженою”) рiдиною.

Таким чином, для розв’язання другої задачi динамiки, яка полягає у визначеннi дина-
мiки платформи та рiдини при вiдомiй зовнiшнiй силi F (t), необхiдно розв’язати систему
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Таблиця 4. Безрозмiрнi гiдродинамiчнi коефiцiєнти \=\lambda 0i, i = 1, . . . , 7

\=r1 \=\lambda 01 \=\lambda 02 \=\lambda 03 \=\lambda 04 \=\lambda 05 \=\lambda 06 \=\lambda 07

1/12 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000 0,000000
1/6 0,000214 0,000173 –0,000031 0,000002 0,000001 0,000000 0,000000
1/4 0,000113 0,000062 –0,000045 0,000145 –0,000130 –0,000049 0,000000
1/3 0,489075 0,069443 –0,060604 0,139207 –0,083495 0,206376 –0,108247
5/12 2,368444 –0,077772 –0,090874 0,103051 –0,062127 0,127616 –0,073640
1/2 3,238161 –0,371400 –0,030382 –0,040659 –0,004499 –0,015688 –0,000828
7/12 4,072521 –0,674300 0,072720 –0,150495 0,062693 –0,091507 0,056728
2/3 4,732498 –1,021558 0,301828 –0,382280 0,392011 15,440803 0,104167
3/4 5,093536 –1,627332 1,290406 5,075571 –0,207137 0,134092 –1,835137
5/6 5,052119 –1,452614 0,477405 –0,233143 0,040586 –0,073826 –0,010201

11/12 4,730985 –1,250930 –0,034877 –0,010581 0,003092 –0,014136 –0,002586

зв’язаних диференцiальних рiвнянь (37) i (34). При цьому рiвняння (37) вiдповiдає за рух
платформи, а система модальних рiвнянь (34) описує коливання вiльної поверхнi рiдини.

Розглянемо окремий випадок, коли зовнiшню силу описує гармонiйний закон F =
\eta aM0\sigma 

2 cos(\sigma t), де \eta a — амплiтуда, а \sigma — збурююча частота, i знайдемо усталенi 2\pi /\sigma -
перiодичнi (стацiонарнi) рухи цiєї механiчної системи, якi можна подати у виглядi

\beta i = Ai cos(\sigma t), \eta 3 = B cos(\sigma t). (38)

Тут B — амплiтуда коливань платформи, Ai — амплiтуди власних форм.
Пiдставляючи вирази (38) у рiвняння (37) i (34), можемо знайти B i Ai. Уцьому випадку

безрозмiрну амплiтуду коливань платформи описує рiвняння

\=B =
B

\eta a
=

\Biggl( \bigl( 
\=\sigma 20  - 1

\bigr) 
 - \rho r30
M0

\infty \sum 
i=1

\=\lambda 2i
\=\mu i
\bigl( 
\=\sigma 2i  - 1

\bigr) \Biggr)  - 1

, (39)

де \=\sigma 0 = \sigma 0/\sigma , \=\sigma i = \sigma i/\sigma .
Проаналiзуємо залежнiсть безрозмiрної амплiтуди усталених коливань платформи \=B

вiд частоти збурення для випадку, коли власна парцiальна частота платформи \sigma 0 i перша
власна частота рiдини \sigma 1 збiгаються. У нашому числовому аналiзi використовуємо сiм еле-
ментiв нескiнченної суми у (39) (вплив семи мод), що, як показали розрахунки, забезпечує
стабiлiзацiю трьох значущих цифр \=B для тороїдальних резервуарiв iз геометрiєю R = 2 i
r = 1. У тестових прикладах на рис. 3 вибрано \rho r30/M0 = 0,5. Як видно з графiкiв на рис. 3,
основний резонансний вiдгук коливань платформи спостерiгається при \sigma /\sigma 0 < 1, тобто для
збурюючих частот, менших за мiнiмальну парцiальну частоту \sigma 0 = \sigma 1. При \sigma = \sigma 0 = \sigma 1
амплiтуда стацiонарних коливань платформи дорiвнює нулю, тобто вiдбувається так зване
динамiчне затухання. Як видно з формули (39), амплiтуда коливань платформи також стає
нульовою при \sigma = \sigma i, i \geq 2, якщо вимушена частота збiгається з найвищими власними
частотами коливання рiдини.

3.2. Модель водонапiрної башти з тороїдальним баком. Розглянемо задачу, яка виникає
при моделюваннi коливань водонапiрної башти з пiднятим тороїдальним баком, жорстко
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Рис. 3. Значення безрозмiрної амплiтуди усталених коливань платформ як функцiї \=\sigma = \sigma /\sigma 0 . У розрахунках
прийнято, що \sigma 0 = \sigma 1 , r = 1 , R = 2 i \rho r30/M0 = 0,5 .
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Рис. 4. Схематичне зображення водонапiрної башти з пiднятим тороїдальним баком.

закрiпленим на вершинi башти. Вiдповiдну механiчну систему схематично показано на
рис. 4. При моделюваннi коливань цiєї системи будемо вважати, що маса тороїдального
резервуара Mt значно менша за масу рiдини Ml. Крiм того, припустимо, що вежа здiйснює
поперечнi коливнi рухи без кручення i стиснення (врахуванням вертикального стиску вежi
за рахунок маси рiдини знехтувано), а її коливання вiдбуваються в площинi Oxz i описанi
досить точно в рамках моделi балки Ейлера. Висота башти (довжина) L, зовнiшнiй радiус
постiйний i дорiвнює рiзницi мiж радiусом обертання та радiусом твiрної Rb = R  - r,
а внутрiшнiй радiус (радiус балки) також постiйний i дорiвнює Ri = kir1, 0 < ki < 1.
Коливання водонапiрної башти з рiдиноюописано в нерухомiй системi координат \`O\`x\`y\`z, що
збiгається з верхньою точкою башти, до якої жорстко закрiплено резервуар у статичному
положеннi рiвноваги.

3.3. Рiвняння балки та граничнi умови на нижньому (закрiпленому) кiнцi. Коливання
балки моделюють рiвняння Ейлера

mb
\"W +

\bigl( 
EIW \prime \prime \bigr) \prime \prime = 0, (40)

де функцiя W (\`x, t) описує вiдхилення балки в площинi \`O\`x\`z, E —модуль пружностiЮнга,
I — екваторiальний момент iнерцiї балки

\bigl( 
постiйне значення для постiйного перерiзу,
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що дорiвнює Ib = \pi 
\bigl( 
R4

b  - R4
i

\bigr) 
/4
\bigr) 
, mb = \pi \rho c

\bigl( 
R2

b  - R2
i

\bigr) 
— лiнiйна маса балки (маса на

одиницю довжини), а \rho c — густина матерiалу. Тут крапка позначає диференцiювання за
часом, а штрих позначає диференцiювання за лiнiйною координатою \`x. Граничнi умови
на фiксованому кiнцi (основi вежi) набувають вигляду

W ( - L, t) = 0, W \prime ( - L, t) = 0. (41)

3.4. Крайовi умови на верхньому (вiльному) кiнцi. На вiльному кiнцi балки (точка крiп-
лення резервуара), iгноруючи масу твердого резервуара, повинна бути виконана гранична
умова, яка виражає рiвнiсть крутних моментiв i сил пружностi балки та гiдродинамiчних
моментiв i сил, пов’язаних iз рiдиною. У нашому випадку такi умови мають вигляд

EIW \prime \prime (0, t) =  - F \`O
5 ,

\bigl( 
EIW \prime \prime \bigr) \prime (0, t) =  - F \`O

3 , (42)

де F \`O
3 (t) — горизонтальна складова гiдродинамiчної сили в системi координат \`O\`x\`y\`z, а

F
\`O
5 (t) — гiдродинамiчний момент щодо осi \`O\`y.

При цьому гiдродинамiчна сила F \`O
3 (t) i момент F \`O

5 (t) виникають через те, що верхнiй
кiнець балки зазнає горизонтальних перемiщень u(t) i нахилiв на малий кут \theta (t), якi
визначаються за формулами

u =W (0, t), \theta =  - W \prime (0, t), (43)

тобто F \`O
3 (t) i F \`O

5 (t) є по сутi складними функцiями W (0, t), W \prime (0, t) та їхнiми похiдними
за часом. Вiдповiднi вирази для гiдродинамiчної сили та моменту можна отримати за допо-
могою лiнiйної модальної теорiї, де необхiдно враховувати положення нерухомої системи
координат \`O\`x\`y\`z i зв’язок мiж u, \theta i \eta 3, \eta 5 :

\eta 5 = \theta , \eta 3 = u - h\theta ,

якi є у вихiднiй крайовiй задачi (1) (як вiдомi вхiднi параметри), у модальнiй системi (15.2)
i у формулах для гiдродинамiчних сил i моментiв (17.3) i (20.1).

З урахуванням формул (17.3) (у проєкцiях на нерухому систему координат \`O\`x\`y\`z ), (20.1)
i (21) щодо \`O гiдродинамiчна сила i момент у (42) визначаються за формулами

F
\`O
3 =Ml

\Bigl( 
\"\theta XlC0  - \"u

\Bigr) 
 - 

\infty \sum 
k=1

\"\beta sk\lambda k, (44)

F
\`O
5 =MlXlC0(g\theta + \"u) - \`J0\"\theta  - 

\infty \sum 
j=1

\Bigl( 
 - \`\lambda 0j \"\beta 

s
j + g\lambda j\beta 

s
j

\Bigr) 
, (45)

де XlC0 — вертикальна координата центру мас рiдини в системi \`O\`x\`y\`z, \`J0 =Mlh(2XlC0  - 
h) + J0 i \lambda O0i = \`\lambda 0i + h\lambda i, а також модальнi функцiї \beta sj є розв’язками рiвнянь (15.2), якi
можна переписати як

\mu i

\Bigl( 
\"\beta si + \sigma 2i \beta 

s
i

\Bigr) 
=  - \lambda i(\"u+ g\theta ) + \`\lambda 0i\"\theta . (46)
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Таким чином, граничнi умови на вiльному кiнцi мають вигляд (42), де правi частини
залежать вiд W (0, t), W \prime (0, t) та їхнiх похiдних за часом за допомогою пiдстановки ви-
разiв (44) i (45). Функцiї u(t) i \theta (t) визначенi рiвностями (43), а \beta si — розв’язки модальної
системи (46), якi також залежать лише вiд u(t), \theta (t) i початкових збурень рiдини.

3.5. Власнi сумiснi коливання. Розглянемо власнi спiльнi коливання системи, поклавши

W (\`x, t) = \scrW (\`x) cos\sigma t, \beta si (t) = Bi cos\sigma t, (47)

де \sigma —невiдома власна частота, а змiннi Bi i функцiя \scrW (\`x)задають амплiтуди вiдповiдних
власних форм коливань рiдини та геометрiю прогину балки для вiдповiдної форми власних
коливань.

Пiдстановка (47) у модальнi рiвняння (46) дозволяє явно визначити

Bi =
\sigma 2

\mu i
\bigl( 
\sigma 2i  - \sigma 2

\bigr) \biggl[ \lambda i\scrW (0) +

\biggl( 
\lambda ig

\sigma 2
+ \`\lambda 0i

\biggr) 
\scrW \prime (0)

\biggr] 
i таким чином отримати простiшi вирази для граничних умов на вiльному кiнцi для функ-
цiї \scrW (\`x). Задача сумiсних власних коливань зводиться до знаходження нетривiальних
розв’язкiв однорiдної задачi

 - \sigma 2mb\scrW +
\bigl( 
EI\scrW \prime \prime \bigr) \prime \prime = 0, \`x \in [ - L, 0], (48.1)

\scrW ( - L) = \scrW \prime ( - L) = 0, (48.2)

EI\scrW \prime \prime (0) = \sigma 2
\bigl[ 
A1\scrW (0) +A3\scrW \prime (0)

\bigr] 
, (48.3)\bigl( 

EI\scrW \prime \prime \bigr) \prime (0) =  - \sigma 2
\bigl[ 
A2\scrW (0) +A1\scrW \prime (0)

\bigr] 
(48.4)

щодо функцiї \scrW (\`x) i невiдомого параметра \sigma 2. Тут коефiцiєнти A1(\sigma 
2), A2(\sigma 

2) i A3(\sigma 
2)

залежать вiд \sigma 2 i мають явний вигляд (\=\sigma j = \sigma j/\sigma ) :

A1 =MlXlC0 +
\infty \sum 
j=1

\lambda j

\Bigl( 
\`\lambda 0j + \lambda jg/\sigma 

2
\Bigr) 

\mu j
\bigl( 
\=\sigma 2j  - 1

\bigr) , (49.1)

A2 =Ml +
\infty \sum 
j=1

\lambda 2j

\mu i
\bigl( 
\=\sigma 2j  - 1

\bigr) , (49.2)

A3 =
MlXlC0g

\sigma 2
+ \`J0 +

\infty \sum 
j=1

\Bigl( 
\`\lambda 0j + \lambda jg/\sigma 

2
\Bigr) 2

\mu j
\bigl( 
\=\sigma 2j  - 1

\bigr) . (49.3)

Задача (48) допускає варiацiйне формулювання, яке зводить її до визначення екстре-
мальних точок квадратичного функцiонала

F (\scrW ) =

0\int 
 - L

\Bigl[ 
\sigma 2mb\scrW  - 

\bigl( 
EI\scrW \prime \prime \bigr) 2\Bigr] d\`x+ \sigma 2

\Bigl[ 
A2\scrW 2 +A3

\bigl( 
\scrW \prime \bigr) 2 + 2A1\scrW \scrW \prime 

\Bigr] 
\`x=0

(50)
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прикiнетичному обмеженнi (48.2).Це дозволяє застосовувати варiацiйнiметодирозв’язання,
представляючи \scrW (\`x) у формi

\scrW =

q\sum 
k=1

ak\psi k,

де кожна з функцiй \psi k(\`x) задовольняє однорiднi граничнi умови (48.2).
Використовуючи необхiдну умову екстремуму для функцiонала (50), приходимо до

визначення нулiв детермiнанта

D(\sigma ) = det
\bigm| \bigm| \{ eij\}  - \sigma 2\{ fij\} 

\bigm| \bigm| = 0, (51)

де елементи матрицi обчислено за формулами

eij =

0\int 
 - L

EI\psi \prime \prime 
i \psi 

\prime \prime 
j d\`x,

fij =

0\int 
 - L

mb\psi i\psi j d\`x+
\bigl[ 
A2(\sigma 

2)\psi i\psi j +A3

\bigl( 
\sigma 2
\bigr) 
\psi \prime 
i\psi 

\prime 
j +A1(\sigma 

2)
\bigl( 
\psi i\psi 

\prime 
j + \psi \prime 

i\psi j

\bigr) \bigr] 
\`x=0

.

3.6. Численнi експерименти. Розглянемо задачу визначення власних частот сумiсних
коливань механiчної системи. Для цього використаємо варiацiйний метод розв’язання
задачi (48), де базиснi функцiї \psi k = \^\psi k/Nk мають вигляд

\^\psi k(\`x) = (\`x+ L)(k+1), Nk =

\sqrt{}     0\int 
 - L

\^\psi 2
k(\`x) d\`x.

Проаналiзуємо випадок, коли перша власна частота коливання рiдини \sigma 11 пов’язана з
рухомiстю вiльної поверхнi i перша власна частота \sigma 01 балки з резервуаром, частково запов-
неним рiдиною, вiльна поверхня якої не здiйснює коливань (закрита “абсолютно твердою
кришкою”). Останню парцiальну частоту можна визначити в рамках нашого варiацiйного
методу, де у формулах (49) потрiбно покласти Bi = 0.

Прирiвнюючи \sigma 01 i \sigma 11 i фiксуючи Rb = R  - r = 1 i \=H = 1/2, ми можемо варiювати
спiввiдношенням Rb/Hb, у якому вхiднi величини, вираженi через коефiцiєнти kb, ki,
0 < ki < 1, kb > 1, Hb = L = kbRb, Ri = kiRb, щоб знайти необхiднi значення фiзичних i
геометричних величин, якi забезпечують рiвнiсть указаних парцiальних частот. Ця рiвнiсть
виконується, наприклад, у випадку ki = 0,8 та kb = 51. Передбачалося, що рiдина — вода
\rho l = 1,0\cdot 103 кг/м3 ), а башту побудовано iз залiзобетону (\rho c = 2,4\cdot 103 кг/м3, модуль Юнга
E = 6\cdot 106 Н/м2 ).

Графiк функцiї D(\sigma ) (рiвняння (51)) для наведених вище вхiдних геометричних i фiзич-
них параметрiв показано на рис. 5 (суцiльна лiнiя). Тут парцiальнi частоти, що збiгаються,
позначено словом “плескання” (“sloshing”). Якщо не брати до уваги рухомостi вiльної по-
верхнi рiдини, то графiк D(\sigma ) збiгається зi спадною монотонною функцiєю, зображеною
пунктирною лiнiєю.
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Рис. 5. Детермiнант D(\sigma ) для обраних геометричних i фiзичних параметрiв системи як функцiя \sigma .

4. Висновки. З використанням варiацiйних методiв розв’язування базових крайових
задач, розроблених у попереднiх роботах, побудовано лiнiйну модальну теорiю коливан-
ня рiдини у тороїдальному баку. Проведено необхiднi розрахунки та зведено в таблицi
всi значення безрозмiрних гiдродинамiчних коефiцiєнтiв модальної теорiї для практично
важливих геометричних пропорцiй тороїдальних резервуарiв.

За допомогою лiнiйної модальної теорiї розв’язано задачу Сретенського про спiльнi
поступальнi коливання платформи з тороїдальним резервуаром, що мiстить рiдину пiд
пружним зв’язком, а також задачу про власнi сумiснi коливання водонапiрної башти з
пiднятим тороїдальним резервуаром.

Автор заявляє про вiдсутнiсть конфлiкту iнтересiв. Усi необхiднi данi мiстяться в статтi.
Роботу виконано за часткової фiнансової пiдтримки за проєктом “Математичне моделю-
вання динамiки складних сильних систем i процесiв, спричинених безпекою держави”,
НДР #0123U100853.
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