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We consider a parabolic inclusion with an upper semicontinuous multivalued interaction function that
satisfies the sign and growth conditions of the reaction – diffusion type. We prove the global solvability of
the corresponding initial boundary-value problem in the phase space L2 and establish the existence of a
global attractor. The conditions for the boundedness of the attractor in the space L\infty are found.

Розглянуто параболiчне включення з напiвнеперервною зверху багатозначною функцiєю взаємодiї,
що задовольняє умови знака, i зростання типу реакцiя – дифузiя. Доведено глобальну розв’язнiсть
вiдповiдної початкової крайової задачi у фазовому просторi L2 й установлено iснування глобального
атрактора. Одержано умови обмеженостi атрактора у просторi L\infty .

1. Вступ. Питання глобальної розв’язностi та притягуючих множин для параболiчних
включень, тобто параболiчних рiвнянь iз багатозначною правою частиною, iнтенсивно
вивчають протягом останнiх рокiв [1 – 11], включаючи задачi усереднення [12, 13], iм-
пульсно та стохастично збуренi задачi [14 – 19]. Стандартними умовами для багатозна-
чної функцiї взаємодiї, якi забезпечують глобальну розв’язнiсть, є не бiльш як лiнiйне
зростання [3] або наявнiсть неперервного селектора [20]. У роботi [21] для напiвнепе-
рервних правих частин загального вигляду встановлено глобальну розв’язнiсть для обме-
жених початкових даних. У цiй статтi за умов знака i зростання типу реакцiя – дифузiя
[22] встановлюємо глобальну розв’язнiсть у фазовому просторi L2. Для вiдповiдної ба-
гатозначної розв’язуючої напiвгрупи (m-напiвпотоку [4]) доведено iснування у фазовому
просторi L2 глобального атрактора — компактної iнварiантної множини, що притягує всi
траєкторiї рiвномiрно за обмеженими (у L2 -нормi) початковими даними [22]. За додат-
кових умов для вхiдних даних також встановлено обмеженiсть одержаного атрактора у
просторi L\infty .

2. Постановка задачi. В обмеженiй областi \Omega \subset \BbbR d, d \geq 1, щодо невiдомої функцiї
u = u(t, x), (t, x) \in Q = (0,+\infty )\times \Omega , розглядаємо початково-крайову задачу
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\partial u

\partial t
 - \bigtriangleup u \in f(u) + h(x),

u| \partial \Omega = 0,

u| t=0 = u0.

(1)

Тут h \in L2(\Omega ), багатозначне вiдображення f задовольняє умови

f : \BbbR \mapsto \rightarrow Cv(\BbbR ) напiвнеперервне зверху [23], 0 \in f(0), (2)

iснують константи C \geq 0, \alpha 1, \alpha 2 > 0, p \geq 2 такi, що

\forall s \in \BbbR \forall \xi \in f(s)  - C  - \alpha 1| s| p \leq \xi s \leq C  - \alpha 2| s| p, (3)

Cv(\BbbR ) — множина всiх опуклих компактiв у \BbbR .
Будемо розглядати задачу (1) у фазовому просторi X = L2(\Omega ), норму i скалярний

добуток у якому позначатимемо через \| \cdot \| , (\cdot , \cdot ). Також для v \in L\infty (\Omega ) будемо позначати
\| v\| \infty = \mathrm{e}\mathrm{s}\mathrm{s} \mathrm{s}\mathrm{u}\mathrm{p}x\in \Omega | v(x)| .

Для u0 \in X, T > 0 розв’язок (1) на [0, T ] будемо розумiти у сенсi такого означення.
Означення 1. Функцiю u = u(t, x), (t, x) \in QT = (0, T )\times \Omega , будемо називати (слабким)

розв’язком (1) на (0, T ), якщо iснує l \in Lq(QT ),
1

q
+

1

p
= 1 така, що u — слабкий розв’язок

задачi
\partial u

\partial t
 - \bigtriangleup u = l + h,

u| \partial \Omega = 0,

u| t=0 = u0,

(4)

l(t, x) \in f(u(t, x) майже скрiзь на QT . (5)

Те, що u — слабкий розв’язок задачi (4), означає, що u \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
i

\forall v \in C\infty 
0 (\Omega ) \forall \eta \in C\infty 

0 (0, T )  - 
T\int 
0

(u, v)\eta t +

T\int 
0

(\nabla u,\nabla v)\eta 

=

T\int 
0

\int 
\Omega 

(l(t, x) + h(x))v(x)\eta (t) dx dt. (6)

З (6) i теорем вкладення [22] виводимо, що

\partial u

\partial t
\in L2

\bigl( 
0, T ;H - 1(\Omega )

\bigr) 
+ Lq(0, T ;Lq(\Omega )) \subset Lq

\bigl( 
0, T ;H - s(\Omega )

\bigr) 
,

s = \mathrm{m}\mathrm{a}\mathrm{x}

\biggl\{ 
1, n

\biggl( 
1

2
 - 1

p

\biggr) \biggr\} 
.
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Останнє вкладення означає [22], що u \in \BbbC ([0, T ];H - s(\Omega )), зокрема умова u| t=0 = u0 має
сенс. У роботi доведено, що за умов (2), (3) задача (1) має розв’язок для будь-яких u0 \in X,
T > 0 (теорема 1).

Також встановлено, що одержаний розв’язок належить Lp(QT ).
Тодi коректно означене вiдображення G : \BbbR + \times X \mapsto \rightarrow 2X має вигляд

G(t, u0) =
\bigl\{ 
u(t) | u(\cdot ) — розв’язок (1), u \in Lp

\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR +;L
p(\Omega ))

\bigr\} 
.

У цiй роботi доведено, що m-напiвпотiк G має глобальний атрактор \Theta , i якщо h \in 
L\infty (\Omega ), то \Theta \subset L\infty (\Omega ) (теорема 2).

3. Основнi результати. З умов (3) одержуємо

| s| \geq 
\biggl( 
C

\alpha 2

\biggr) 1
p

\Rightarrow \forall \xi \in f(s) \xi \cdot s \leq 0.

Тодi справедливий такий результат.
Лема 1 [21]. За умови h \in L\infty (\Omega ) для всiх u0 \in L\infty (\Omega ) задача (1) має розв’язок u(\cdot ) на

[0,+\infty ), причому iснує константа K = K(\| u0\| \infty , \| h\| \infty ) > 0 така, що

\mathrm{s}\mathrm{u}\mathrm{p}
t\geq 0

\| u(t)\| \infty \leq K. (7)

Зауваження 1. Уроботi [21] за умов h, u0 \in L\infty (\Omega ) доведено iснування м’якого розв’яз-
ку (1), тобто функцiї u \in \BbbC 

\bigl( 
[0, T ];L2(\Omega )

\bigr) 
такої, що u(0) = u0 i

\forall t \geq 0 u(t) = S(t - s)u0 +

t\int 
0

S(t - s)l(s) ds+

t\int 
0

S(t - s)h ds,

де l(t, x) \in f(u(t, x)) майже скрiзь i S(t) — C0 -напiвгрупа, породжена \Delta у L2(\Omega ).
Проте оскiльки завдяки (7) l \in L\infty (QT ) для довiльного T > 0, зокрема, l \in L2(QT ), то

з [24] виводимо, що u — слабкий розв’язок (4).
Теорема 1. За умов (2), (3) для всiх u0 \in X, T > 0 задача (1) має розв’язок на (0, T ) у

сенсi означення 1.
Доведення. Для u0 \in X, h \in X нехай

\bigl\{ 
un0
\bigr\} 
, \{ hn\} \subset L\infty (\Omega ) такi, що

un0 \rightarrow u0, hn \rightarrow h у X, (8)

un — розв’язок (1) iз початковими даними un0 , hn, iснування якого гарантовано лемою 1,
ln — вiдповiдна права частина з означення 1.

Оскiльки напiвнеперервне зверху вiдображення переводить компакт у компакт [23],
ln(t, x) \in f(un(t, x)) м.с. на Q = (0,+\infty ) \times \Omega , то завдяки (7) ln \in L\infty (Q). Оскiльки un —
слабкий розв’язок задачi

\partial u

\partial t
 - \bigtriangleup u = ln + hn,

u| \partial \Omega = 0,

u| t=0 = un0 ,
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то un \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
,
\partial un
\partial t

\in L2
\bigl( 
0, T ;H - 1(\Omega )

\bigr) 
i для м.в. t > 0

1

2

d

dt
\| un(t)\| 2 + \| un(t)\| 2H1

0
=

\int 
\Omega 

ln(t, x)un(t, x) dx+ (hn, un).

Звiдси згiдно з умовами (3)

1

2

d

dt
\| un(t)\| 2 + \| un(t)\| 2H1

0
+ \alpha 2\| un(t)\| pLp \leq C| \Omega | + \| hn\| \| un\| .

Використовуючи нерiвнiсть Пуанкаре i (8), остаточно маємо

d

dt
\| un(t)\| 2 + \delta 1\| un(t)\| 2 + \delta 2\| un(t)\| 2H1

0
+ \delta 3\| un(t)\| pLp \leq C1, (9)

де додатнi константи \delta 1, \delta 2, \delta 3, C1 не залежать вiд n.
З (9) завдяки неперервностi t \mapsto \rightarrow \| un(t)\| отримуємо

\forall t \geq 0 \| un(t)\| 2 \leq \| un(0)\| 2e - \delta 1t +
C1

\delta 1
, (10)

\forall t \geq s \geq 0 \| un(t)\| 2 + \delta 2

t\int 
s

\| un(\tau )\| 2H1
0
+ \delta 3

t\int 
s

\| un(\tau )\| pLp

\leq \| un(s)\| 2 + C1(t - s). (11)

Отже,

\forall T > 0 \{ un\} обмежена в L\infty (0, T ;X) \cap L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap Lp(QT ).

Згiдно з умовами (3)

| ln(t, x)| \leq C2

\bigl( 
1 + | un(t, x)| p - 1

\bigr) 
. (12)

З (12) для q =
p

p - 1
виводимо

\int 
QT

| ln(t, x)| q \leq C3

\left(   1 + \int 
QT

| un(t, x)| p

\right)   . (13)

З (11) i (13) маємо, що

\{ ln\} обмежена в Lq(QT ). (14)

Таким чином, за пiдпослiдовнiстю

un \rightarrow u слабко в L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap Lp(QT ),

ln \rightarrow l слабко в Lq(QT ).
(15)
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Це дає можливiсть перейти до межi у рiвностi (6), записанiй для un, ln i одержати (6) для
функцiй u, l, причому u \in Lp(QT ).

Крiм того, (12) i (14) означають, що\biggl\{ 
\partial un
\partial t

\biggr\} 
обмежена в Lq

\bigl( 
0, T ;H - 1(\Omega )

\bigr) 
.

За теоремою про компактнiсть [22] такi вкладення є компактними:\biggl\{ 
v \in L2

\bigl( 
0, T ;H1

0 (\Omega )
\bigr) \bigm| \bigm| \bigm| \partial v

\partial t
\in Lq

\bigl( 
0, T ;H - 1(\Omega )

\bigr) \biggr\} 
\Subset L2

\bigl( 
0, T ;L2(\Omega )

\bigr) 
, (16)

\biggl\{ 
v \in L\infty \bigl( 0, T ;L2(\Omega )

\bigr) \bigm| \bigm| \bigm| \partial v
\partial t

\in Lq
\bigl( 
0, T ;H - 1(\Omega )

\bigr) \biggr\} 
\Subset \BbbC 

\bigl( 
[0, T ], H - 1(\Omega )

\bigr) 
. (17)

З (16) i (17) одержуємо, що за пiдпослiдовнiстю

un \rightarrow u в L2(QT ) i м.с. в QT , (18)

un(t) \rightarrow u(t) слабко в L2(\Omega ) \forall t \in [0, T ]. (19)

З (8) i (19), зокрема, виводимо, що u(0) = u0, тобто u —слабкий розв’язок (4). Залишилося
показати, що виконується (5).

Маємо

для м.в. (t, x) \in QT \forall n \geq 1 ln(t, x) \in f(un(t, x)). (20)

Оскiльки ln \rightarrow l слабко в Lq(QT ), то iснує послiдовнiсть опуклих комбiнацiй з \{ ln\} , яка
збiгається до l сильно в Lq(QT ), тобто \exists 

\bigl\{ 
\alpha 
(n)
i

\bigr\} 
, \alpha 

(n)
i \geq 0,

\sum n

i=1
\alpha 
(n)
i = 1, такi, що

n\sum 
i=1

\alpha 
(n)
i li \rightarrow l у Lq(QT ) i м. с. у QT . (21)

Тому що f напiвнеперервна зверху i un(t, x) \rightarrow u(t, x) м. с. у QT , то \forall \varepsilon > 0, \forall (t, x) \in \widetilde QT —
множинi повної мiри, де виконуються вказанi збiжностi, iснує n0 = n0(t, x) таке, що

\forall n \geq n0 f(un(t, x)) \subset O \varepsilon 
2
(f(u(t, x))). (22)

Тодi з опуклостi f(u(t, x)), (20), (21) виводимо, що l(t, x) \in O\varepsilon (f(u(t, x))), що завдяки
довiльностi \varepsilon > 0 означає виконання (5).

Теорему 1 доведено.
Наслiдок 1. З теореми 1 випливає, що iснує розв’язок (1) на [0,+\infty ) у тому сенсi, що вiн

задовольняє означення 1 для довiльного T > 0.
Для заданих u0 \in X, t > 0 розглянемо множину

G(t, u0) =
\bigl\{ 
u(t) | u(\cdot ) — розв’язок (1) на [0,+\infty ), u(\cdot ) \in Lp

\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR +;L
p(\Omega ))

\bigr\} 
. (23)

Завдяки теоремi 1 G(t, u0) \not = \varnothing . Легко показати, що (23) визначає багатозначну напiвгрупу
(m-напiвпотiк) [4], тобто для довiльних u0 \in X, t, s \geq 0

G(0, u0) = u0, G(t+ s, u0) = G(t, G(s, u0)).
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Означення 2 [4]. Компактна множина \Theta \subset X називається глобальним атрактором
m-напiвпотоку G, якщо

\Theta = G(t,\Theta ) \forall t \geq 0,

\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(G(t, B),\Theta ) \rightarrow 0, t \rightarrow \infty , для довiльної обмеженої B \subset X,

де
\mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(A,B) = \mathrm{s}\mathrm{u}\mathrm{p}

x\in A
\mathrm{i}\mathrm{n}\mathrm{f}
y\in B

\| x - y\| .

Глобальний атрактор \Theta називається стiйким, якщо

\forall \varepsilon > 0 \exists \delta > 0, \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(\eta ,\Theta ) < \delta \Rightarrow \forall t \geq 0 \mathrm{d}\mathrm{i}\mathrm{s}\mathrm{t}(G(t, \eta ),\Theta ) < \varepsilon .

Теорема 2. M-напiвпотiк (23), породжений розв’язками задачi (1), має стiйкий глобаль-
ний атрактор \Theta . Крiм того, якщо h \in L\infty (\Omega ), то множина \Theta є обмеженою в L\infty (\Omega ).

Доведення. Нехай u — розв’язок (1) на [0,+\infty ) у сенсi означення 1, u \in Lp
\mathrm{l}\mathrm{o}\mathrm{c}

\bigl( 
\BbbR +;

Lp(\Omega )
\bigr) 
. Тодi u — слабкий розв’язок (4) i для функцiї l(t, x) \in f(u(t, x)) майже скрiзь

завдяки умовам (3) маємо

l \in Lq
\mathrm{l}\mathrm{o}\mathrm{c}(\BbbR +;L

q(\Omega )),
1

p
+

1

q
= 1.

Далi,

\forall T > 0 u \in L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) 
\cap Lp(0, T ;Lp(\Omega )),

\partial u

\partial t
\in L2

\bigl( 
0, T ;H - 1(\Omega )

\bigr) 
+ Lq(0, T ;Lq(\Omega )),

отже, з [22] одержуємо, що u : [0, T ] \mapsto \rightarrow L2(\Omega ) є абсолютно неперервним вiдображенням,
зокрема для майже всiх t задовольняє (9) – (11).

З (10) маємо, що G дисипативний, тобто

\forall r > 0 \forall u0 \in X, \| u0\| \leq r

G(t, u0) \subset B0 :=

\Biggl\{ 
\| u\| \leq 

\sqrt{} 
C1

\delta 1
+ 1

\Biggr\} 
\forall t \geq T =

2

\delta 
\mathrm{l}\mathrm{n} r.

Для пiдтвердження iснування стiйкого глобального атрактора дисипативного m-напiвпо-
току G потрiбно перевiрити такi властивостi [9]:

для довiльних \eta n \rightarrow \eta , \tau n \rightarrow \tau \geq 0, \xi n \in G(\tau n, \eta n),

за пiдпослiдовнiстю \xi n \rightarrow \xi \in G(\tau , \eta ),
(24)

для довiльної обмеженої послiдовностi \{ \eta n\} , довiльних \tau > 0, \xi n \in G(\tau , \eta n)

послiдовнiсть \{ \xi n\} є передкомпактною.
(25)

Перевiрка цих властивостей ґрунтується на такiй лемi.
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Лема 2. Нехай \{ un\} —послiдовнiсть розв’язкiв (1) на (0, T ), un \in Lp(QT ), \{ \tau n\} \subset [0, T ],
\tau n \rightarrow \tau \geq 0.

1. Якщо un(0) \rightarrow u0 слабко в X, то iснує розв’язок (1) на (0, T ), u(0) = u0, такий, що за
пiдпослiдовнiстю un(\tau n) \rightarrow u(\tau ) слабко в X. Якщо при цьому \tau > 0, то un(\tau n) \rightarrow u(\tau ) в X.

2. Якщо un(0) \rightarrow u0 в X, то un(\tau n) \rightarrow u(\tau ) в X.
Доведення леми 2. Нехай un — розв’язок (4) з функцiєю ln(t, x) \in f(un(t, x)) на QT i

початковим заданим un(0), un(0) \rightarrow u0, слабко в X.
Тодi \{ un(0)\} обмежена в X, un задовольняє (9) – (11). Отже, \{ un\} обмежена в L\infty (0, T ;

X)
\bigcap 
L2
\bigl( 
0, T ;H1

0 (\Omega )
\bigr) \bigcap 

Lp(QT ), \{ ln\} обмежена в Lq(QT ) i для un можемо одержати збiж-
ностi (15) – (19), де завдяки (20) – (22) для граничної функцiї u отримаємо, що вона є
розв’язком (1), u(0) = u0.

При цьому завдяки (17)

un(\tau n) \rightarrow u(\tau ) в H - s(\Omega ),

що разом з оцiнкою
\| un(\tau n)\| \leq \| un(0)\| e - \delta 1\tau n +

C1

\delta 1

i вкладенням H - s(\Omega ) \subset L2(\Omega ) гарантує, що

un(\tau n) \rightarrow u(\tau ) слабко в X. (26)

Тепер розглянемо функцiї Jn : [0, T ] \rightarrow \BbbR , J : [0, T ] \rightarrow \BbbR ,

Jn(t) = \| un(t)\| 2  - C1t, J(t) = \| u(t)\| 2  - C1t.

Тодi Jn, J неперервнi, монотонно не зростають (оцiнка (11)) i збiгаються м. с. (власти-
вiсть (18)). Завдяки модифiкованiй теоремi Дiнi [9] маємо

\forall \delta \in (0, T ) Jn \rightarrow J в \BbbC ([\delta , T ]), i для \delta = 0, якщо Jn(0) \rightarrow J(0). (27)

З (27) виводимо, що для \tau n \rightarrow \tau > 0

Jn(\tau n) = \| un(\tau n)\| 2  - C1\tau n \rightarrow \| u(\tau )\| 2  - C1\tau ,

що разом з (26) означає виконання п. 1 леми 2. Пункт 2 леми 2 доводимо з використанням
другої частини (27).

Лему 2 доведено.
Лема 2 гарантує виконання (24), (25), а отже, iснування стiйкого глобального атракто-

ра \Theta . Бiльш того, можемо стверджувати [4], що

\Theta = \omega (B0) =
\bigcap 
T>0

\bigcup 
t\geq T

G(t, B0) =
\bigl\{ 
\xi | \xi = \mathrm{l}\mathrm{i}\mathrm{m} \xi n, \xi n \in G(tn, B0), tn \rightarrow \infty 

\bigr\} 
. (28)

Для того щоб довести обмеженiсть \Theta , використаємо (28). Нехай h \in L\infty (\Omega ) i \xi n \in G(t, B0),
tn \rightarrow \infty . Тодi \xi n = un(tn), un —розв’язок (1) на (0,+\infty ), un \in Lp

\mathrm{l}\mathrm{o}\mathrm{c}

\bigl( 
\BbbR +;L

p(\Omega )
\bigr) 
, un(0) \in B0.

Домножимо рiвняння з (4) для un на (un  - M)+ =

\Biggl\{ 
un  - M, un > M,

0, iнакше,
де
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M =
2

\alpha 2

\Biggl( 
C +

\biggl( 
2

p\alpha 2

\biggr) 1
p - 1

\| h\| 
p

p - 1
\infty 

\Biggr) 1
p

.

Тодi
1

2

d

dt
\| (un  - M)+\| 2 + \| \nabla (un  - M)+\| 2

=

\int 
\Omega 

(ln(t, x) + h(x))(un  - M)+ dx.

Згiдно з (3) для un(t, x) > M

(ln(t, x) + h(x))(un  - M)+ = (ln(t, x) + h(x))un(t, x)
un(t, x) - M

un(t, x)

= ln(t, x)un(t, x)

\biggl( 
1 - M

un(t, x)

\biggr) 

+ h(x)un(t, x)

\biggl( 
1 - M

un(t, x)

\biggr) 
\leq C  - \alpha 2| un(t, x)| p + \| h\| \infty | un(t, x)| 

\leq C  - \alpha 2| un(t, x)| p +
\alpha 2

2
| un(t, x)| p

+

\biggl( 
2

p\alpha 2

\biggr) 1
p - 1

\| h\| 
p

p - 1
\infty \leq 0

завдяки вибору M.
Отже, з (4) i нерiвностi Пуанкаре маємо

\exists \lambda > 0 \forall t \geq 0 \| (un  - M)+(t)\| 2 \leq \| (un(0) - M)+\| 2e - \lambda t. (29)

З (29) при t = tn одержуємо, що якщо \xi n \rightarrow \xi , то \xi (x) \geq  - M м.с. Повторюючи цi
мiркування для

(un +M) - =

\left\{   un +M, un +M < 0,

0 у протилежному випадку,

одержуємо \xi (x) \geq  - M м.с.
Звiдси з урахуванням (28) одержуємо обмеженiсть \Theta у L\infty (\Omega ).
Теорему 2 доведено.

Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв. Усi необхiднi данi мiстяться в статтi. Всi автори зробили рiвномiрний внесок
у цю роботу. Роботу виконано за пiдтримки Нацiонального фонду дослiджень України,
проєкт № 2023.03/0074 “Нескiнченновимiрнi еволюцiйнi рiвняння iз багатозначною та
стохастичною динамiкою”.
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24. J. M. Ball, Strongly continuous semigroups, weak solutions, and the variation of constants formula, Proc. Amer.

Math. Soc., 63, 370 – 373 (1977).

Одержано 10.07.24

ISSN 1562-3076. Нелiнiйнi коливання, 2024, т. 27, № 3


