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We establish interpolation analogues of Lebesgue-type inequalities on the sets C\psi \beta L1 of 2\pi -periodic

functions f which are convolutions of the generating kernel \Psi \beta (t) =
\sum \infty 

k=1
\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}

\biggl( 
kt - \beta \pi 

2

\biggr) 
, \psi (k) \geq 

0,
\sum \infty 

k=1
\psi (k) < \infty , \beta \in \BbbR , with functions \varphi from L1. In the noted inequalities, for each x \in 

\BbbR , the moduli of deviations | f(x)  - \~Sn - 1(f ;x)| of interpolation Lagrange polynomials \~Sn - 1(f ; \cdot ) are
estimated via the best approximations of functions \varphi by trigonometric polynomials in L1 -metrics. If
the sequences \psi (k) decrease to zero faster than any power function, then in many important cases, the
obtained inequalities are asymptotically exact. In these cases, we also establish the asymptotic equalities
for exact upper bounds of pointwise approximations by interpolation trigonometric polynomials on the
classes of convolutions of the generating kernel \Psi \beta with functions \varphi that belong to the unit ball from the
space L1.

Встановлено iнтерполяцiйнi аналоги нерiвностей типу Лебега на множинах C\psi \beta L1 2\pi -перiодичних

функцiй f, якi задано згортками твiрного ядра \Psi \beta (t) =
\sum \infty 

k=1
\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}

\biggl( 
kt  - \beta \pi 

2

\biggr) 
, \psi (k) \geq 0,\sum \infty 

k=1
\psi (k) < \infty , \beta \in \BbbR , з функцiями \varphi iз L1. У зазначених нерiвностях при кожному x \in \BbbR 

модулi вiдхилень | f(x)  - \~Sn - 1(f ;x)| iнтерполяцiйних полiномiв Лагранжа \~Sn - 1(f ; \cdot ) оцiнюють за
допомогою найкращих наближень функцiй \varphi тригонометричними полiномами в L1 -метриках.
Коли послiдовностi \psi (k) спадають до нуля швидше за довiльну степеневу функцiю, тодi отриманi
нерiвностi в низцi важливих випадкiв є асимптотично точними. У таких випадках установлено
також асимптотичнi рiвностi для точних верхнiх меж поточкових наближень iнтерполяцiйними
тригонометричними полiномами на класах згорток твiрного ядра \Psi \beta iз функцiями \varphi , що належать
одиничнiй кулi з простору L1.

Вступ. Нехай Lp, 1 \leq p < \infty , — простiр 2\pi -перiодичних сумовних у p-му степенi на
[0, 2\pi ) функцiй f з нормою

\| f\| Lp = \| f\| p :=

\left(  2\pi \int 
0

| f(t)| pdt

\right)  
1
p

;
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L\infty — простiр вимiрних i суттєво обмежених 2\pi -перiодичних функцiй f з нормою

\| f\| L\infty = \| f\| \infty := \mathrm{e}\mathrm{s}\mathrm{s} \mathrm{s}\mathrm{u}\mathrm{p}
t

| f(t)| ;

C — простiр неперервних 2\pi -перiодичних функцiй f з нормою

\| f\| C = \mathrm{m}\mathrm{a}\mathrm{x}
t

| f(t)| .

Нехай \psi (k) — довiльна фiксована послiдовнiсть невiд’ємних дiйсних чисел i \beta —
фiксоване дiйсне число. Позначимо через C\psi \beta Lp множину 2\pi -перiодичних функцiй, якi
при всiх x \in \BbbR зображуються у виглядi згортки

f(x) =
a0
2

+
1

\pi 

\pi \int 
 - \pi 

\Psi \beta (x - t)\varphi (t)dt, a0 \in \BbbR , \varphi \in Lp, \varphi \bot 1, (1)

з твiрним ядром \Psi \beta вигляду

\Psi \beta (t) =
\infty \sum 
k=1

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}

\biggl( 
kt - \beta \pi 

2

\biggr) 
, \psi (k) \geq 0, (2)

таким, що
\infty \sum 
k=1

\psi (k) <\infty . (3)

Якщо функцiї f i \varphi пов’язанi рiвнiстю (1), то функцiю f у цьому спiввiдношеннi
називають (\psi , \beta )-похiдною функцiї f i позначають через f\psi \beta . З iншого боку, функцiю f

у рiвностi (1) називають (\psi , \beta )-iнтегралом функцiї \varphi i позначають через \scrJ \psi 
\beta \varphi . Поняття

(\psi , \beta )-похiдної ((\psi , \beta )-iнтеграла), якi означалися в дещо iнших термiнах (за допомогою
мультиплiкаторiв i зсувiв аргументу), введено О. I. Степанцем (див., наприклад, [1 – 3]).
Незважаючи на вiдмiннiсть пiдходiв до означення (\psi , \beta )-iнтегралiв i (\psi , \beta )-похiдних у цiй
статтi, порiвняно, наприклад, iз [3], зазначимо, що за виконання (2) i (3) (\psi , \beta )-iнтеграли
\scrJ \psi 
\beta \varphi для будь-якої \varphi \in L1 можуть вiдрiзнятися мiж собою залежно вiд вибору означення

лише на множинi мiри нуль; аналогiчно за виконання (2) i (3) i додаткової умови \psi (k) > 0

(\psi , \beta )-похiднi f\psi \beta для будь-якоїфункцiї f вигляду (1)можуть вiдрiзнятися лишенамножинi
нульової мiри.

Пiдмножину функцiй f iз C\psi \beta Lp таких, що f\psi \beta \in Bp, де Bp —одинична куля у просторi
Lp, тобто

Bp := \{ \varphi : \| \varphi \| p \leq 1\} ,

будемо позначати через C\psi \beta ,p. Зрозумiло, що умова (3) гарантує неперервнiсть твiрного ядра
\Psi \beta (t) вигляду (2), а отже, й iстиннiсть вкладення C\psi \beta Lp \subset C

\bigl( 
C\psi \beta ,p \subset C

\bigr) 
.

Якщо \psi (k) = k - r, r > 0, то ядра \Psi \beta (t) є вiдомими ядрами Вейля –Надя Br,\beta (t) вигляду

Br,\beta (t) =
\infty \sum 
k=1

k - r \mathrm{c}\mathrm{o}\mathrm{s}

\biggl( 
kt - \beta \pi 

2

\biggr) 
, r > 0, \beta \in \BbbR . (4)
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При цьому (\psi , \beta )-похiднi f\psi \beta майже скрiзь збiгаються з (r, \beta )-похiдними f r\beta у сенсi
Вейля –Надя, а вiдповiднi класи C\psi \beta ,p позначають через W r

\beta ,p (див. [3], § 6 – 8, розд. 3).
Коли r \in \BbbN , r = \beta , тодi класи W r

\beta ,p є вiдомими класами W r
p 2\pi -перiодичних функцiй f,

що мають абсолютно неперервнi похiднi f (k) до (r  - 1)-го порядку включно i для яких
f (r) \in Bp. У зазначеному випадку f r\beta майже скрiзь збiгаються з f (r).

У випадку, коли \psi (k) = e - \alpha k
r
, \alpha > 0, r > 0, ядра \Psi \beta (t) вигляду (2) є узагальненими

ядрами Пуассона, тобто \Psi \beta (t) = P\alpha ,r,\beta (t), де

P\alpha ,r,\beta (t) =

\infty \sum 
k=1

e - \alpha k
r
\mathrm{c}\mathrm{o}\mathrm{s}

\biggl( 
kt - \beta \pi 

2

\biggr) 
, \alpha > 0, r > 0, \beta \in \BbbR . (5)

Породженi такими ядрами множини C\psi \beta Lp i C\psi \beta ,p позначатимемо вiдповiдно через C\alpha ,r\beta Lp

i C\alpha ,r\beta ,p i називатимемо множинами узагальнених iнтегралiв Пуассона, а (\psi , \beta )-похiднi f\psi \beta i
(\psi , \beta )-iнтеграли \scrJ \psi 

\beta \varphi позначатимемо через f\alpha ,r\beta i \scrJ \alpha ,r
\beta \varphi вiдповiдно.

Для довiльних r > 0 множини C\alpha ,r\beta Lp i C\alpha ,r\beta ,p є пiдмножинами множини 2\pi -перiодич-
них нескiнченно диференцiйовних дiйснозначних функцiй D\infty , множина всiх нескiнченно
диференцiйовних 2\pi -перiодичних функцiй, тобто C\alpha ,r\beta ,p \subset C\alpha ,r\beta Lp \subset D\infty (див., наприклад,
[3, 4]). При r = 1 множини C\alpha ,r\beta Lp(C

\alpha ,r
\beta ,p ) є множинами iнтегралiв Пуассона гармонiчних

функцiй i складаються з 2\pi -перiодичних аналiтичних функцiй, що допускають регулярне
продовження у смугу | \mathrm{I}\mathrm{m} z| < \alpha комплексної площини (див., наприклад, [3, c. 141]). При
r > 1 множини C\alpha ,r\beta Lp(C

\alpha ,r
\beta ,p ) є множинами 2\pi -перiодичних цiлих функцiй (див., напри-

клад, [3, c. 142]). Як показано у роботi [5], множини C\alpha ,r\beta Lp тiсно пов’язанi з вiдомими
класами Жевре.

Ми дослiджуємо апроксимативнi властивостi множин C\psi \beta L1 i C\psi \beta ,1 у випадку, коли у
ролi агрегатiв наближення виступають класичнi iнтерполяцiйнi тригонометричнi полiноми
Лагранжа, заданi непарним числом рiвномiрно розподiлених вузлiв iнтерполяцiї.

Для будь-якої функцiї f(x) iз C через \widetilde Sn - 1(f ;x), n \in \BbbN , будемо позначати тригоно-
метричний полiном порядку n  - 1, що iнтерполює f(x) у вузлах x(n - 1)

k =
2k\pi 

2n - 1
, k \in \BbbZ ,

тобто такий, що
\~Sn - 1(f ;x

(n - 1)
k ) = f

\bigl( 
x
(n - 1)
k

\bigr) 
, k = 0, 1, . . . , 2n - 2. (6)

Полiном \widetilde Sn - 1(f ; \cdot ), однозначно заданий iнтерполяцiйними умовами (6), називають iн-
терполяцiйним полiномом Лагранжа, вiн може бути зображений у явному виглядi через
ядро Дiрiхле

Dn - 1(t) =
1

2
+
n - 1\sum 
k=1

\mathrm{c}\mathrm{o}\mathrm{s} kt =

\mathrm{s}\mathrm{i}\mathrm{n}

\biggl( 
n - 1

2

\biggr) 
t

2 \mathrm{s}\mathrm{i}\mathrm{n}
t

2
таким чином:

\~Sn - 1(f ;x) =
2

2n - 1

2n - 2\sum 
k=0

f
\bigl( 
x
(n - 1)
k

\bigr) 
Dn - 1

\bigl( 
x - x

(n - 1)
k

\bigr) 
. (7)

Нехай \scrT 2n - 1 —простiр усiх тригонометричнихполiномiв tn - 1 порядку n - 1 i En(f)Lp —
найкраще наближення функцiї f \in Lp, 1 \leq p \leq \infty , у Lp -метрицi тригонометричними
полiномами tn - 1 \in \scrT 2n - 1, тобто

ISSN 1562-3076. Нелiнiйнi коливання, 2024, т. 27, № 1



120 АНАТОЛIЙ СЕРДЮК, ТЕТЯНА СТЕПАНЮК

En(f)Lp = \mathrm{i}\mathrm{n}\mathrm{f}
tn - 1\in \scrT 2n - 1

\| f  - tn - 1\| p,

а En(f)C — найкраще рiвномiрне наближення функцiї f \in C тригонометричними полi-
номами tn - 1, тобто

En(f)C = \mathrm{i}\mathrm{n}\mathrm{f}
tn - 1\in \scrT 2n - 1

\| f  - tn - 1\| C .

Позначимо через \~\rho n(f ; \cdot ) вiдхилення вiд функцiї f \in C її iнтерполяцiйного полiнома
Лагранжа \~Sn - 1(f ; \cdot ) :

\~\rho n(f ;x) = f(x) - \~Sn - 1(f ;x). (8)

Для модулiв величин вигляду (8) має мiсце нерiвнiсть (див., наприклад, [6 – 8])\bigm| \bigm| \bigm| f(x) - \~Sn - 1(f ;x)
\bigm| \bigm| \bigm| \leq (1 + \=Ln(x))En(f)C , f \in C, x \in \BbbR , (9)

де
\=Ln(x) =

2

2n - 1

2n - 2\sum 
k=0

\bigm| \bigm| \bigm| Dn - 1

\bigl( 
x - x

(n - 1)
k

\bigr) \bigm| \bigm| \bigm| . (10)

Нерiвнiсть (9) є iнтерполяцiйним аналогом класичної нерiвностi Лебега для сум Фур’є.
У нiй функцiю \=Ln(x) вигляду (10) називають функцiєюЛебега iнтерполяцiйного оператора
\~Sn - 1 вигляду (7).

Асимптотичну поведiнку функцiї Лебега \=Ln(x) при n\rightarrow \infty описує формула

\=Ln(x) =
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \mathrm{l}\mathrm{n}n+\scrO (1), x \in \BbbR , (11)

де \scrO (1) — величина, рiвномiрно обмежена по x i по n (див., наприклад, [7, с. 66; 9]).
З урахуванням (11) нерiвнiсть (9) можна записати у виглядi

| \~\rho n(f ;x)| \leq 
\biggl( 
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \mathrm{l}\mathrm{n}n+\scrO (1)

\biggr) 
En(f)C , f \in C, x \in \BbbR . (12)

Незважаючи на простоту й загальнiсть, нерiвнiсть (12), як довiв С.М. Нiкольський [10],
є асимптотично точною на класах диференцiйовних функцiй W r

\infty , r \in \BbbN .
Однак для класiв нескiнченно диференцiйовних, аналiтичних або цiлих функцiй оцiнки

вiдхилень | \~\rho n(f ;x)| , що базуються на використаннi нерiвностей (9) (або (12)), перестають
бути асимптотично точними i навiть можуть бути не точними за порядком.

У цiй статтi для функцiй з множин C\psi \beta L1, \beta \in \BbbR , встановлено iнтерполяцiйнi аналоги
нерiвностей типу Лебега, в яких оцiнки зверху величин

\bigm| \bigm| \~\rho n(f ;x)\bigm| \bigm| , x \in \BbbR , можна виразити
через найкращi наближення En

\bigl( 
f\psi \beta 
\bigr) 
L1
. Тут також доведено асимптотичну непокращува-

нiсть отриманих нерiвностей на множинах C\psi \beta L1 у випадках, коли послiдовностi \psi (k)
пiдпорядкованi умовi

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

\sum \infty 

k=1
k\psi (k + n)\sum \infty 

k=n
\psi (k)

= 0. (13)

Як показано в [11], умову (13) задовольняє низка важливих послiдовностей \psi (k), якi
прямують до нуля при k \rightarrow \infty швидше за довiльну степеневу функцiю.
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Також у роботi знайдено розв’язок задачi Колмогорова –Нiкольського для iнтерполя-
цiйних полiномiв Лагранжа \~Sn - 1(f ;x) вигляду (7) на класах C\psi \beta ,1 за умови, що \psi задоволь-
няють умову (13), тобто встановлено асимптотичнi при n\rightarrow \infty рiвностi для величин

\~\scrE n(C\psi \beta ,1;x) = \mathrm{s}\mathrm{u}\mathrm{p}
f\in C\psi \beta ,1

| \~\rho n(f ;x)| , x \in \BbbR . (14)

Зазначимо, що точнi порядковi рiвностi для величин
\~\scrE n(C\psi \beta ,p)Ls = \mathrm{s}\mathrm{u}\mathrm{p}

f\in C\psi \beta ,p

\bigm\| \bigm\| \bigm\| f  - \~Sn - 1(f)
\bigm\| \bigm\| \bigm\| 
s

i
\~\scrE n(C\psi \beta ,p)C = \mathrm{s}\mathrm{u}\mathrm{p}

f\in C\psi \beta ,p

\bigm\| \bigm\| \bigm\| f  - \~Sn - 1(f)
\bigm\| \bigm\| \bigm\| 
C

при рiзних спiввiдношеннях мiж параметрами p i s, 0 < p, s < \infty , випливають iз робiт
[12, 13].

Вивченнюапроксимативних властивостей сум \widetilde Sn - 1(f), намножинах (\psi , \beta )-диференцi-
йовних функцiй, присвячено роботи [14 – 26].

Зокрема, у роботах [15, 19, 25, 26] встановлено асимптотичнi рiвностi для величин
\~\scrE n(C\psi \beta ,\infty ;x), коли C\psi \beta ,\infty є класами нескiнченно диференцiйовних, аналiтичних i цiлихфунк-
цiй. У роботах [14, 16 – 18, 27] знайдено аналогiчнi рiвностi для величин \~\scrE n(C\psi \beta ,1)L1 . Для
класiв аналiтичних i цiлих функцiй C\psi \beta ,p, 1 \leq p \leq \infty , асимптотичнi рiвностi для вели-
чин \~\scrE n(C\psi \beta ,p;x) встановлено в [20, 21]. На класах цiлих функцiй C\psi \beta ,1 точну асимптотику
величин \~\scrE n(C\psi \beta ,1)Lp при 1 \leq p \leq \infty встановлено в [24]. Крiм того, у роботах [22, 23]
знайдено точнi значення величин \~\scrE n(C\psi \beta ,2;x). Незважаючи на iнтенсивнiсть дослiджень у
зазначеному напрямi, в загальному питання про точну асимптотику величин \~\scrE n(C\psi \beta ,1;x)
при n \rightarrow \infty у випадку, коли послiдовностi \psi (k) спадають до нуля швидше за будь-яку
степеневу функцiю, але повiльнiше за будь-яку геометричну прогресiю, за виключенням
деяких конкретних випадкiв, дотепер залишалося вiдкритим.

Зазначимо також, що ця робота тiсно пов’язана iз результатами роботи авторiв [11], у
якiй за виконання умови (13) було знайдено асимптотично непокращуванi нерiвностi типу
Лебега для сумФур’є на множинах C\psi \beta L1, а також знайдено розв’язок задачi Колмогорова –
Нiкольського для сум Фур’є Sn - 1 на класах C\psi \beta ,1, тобто дослiджено точну асимптотику
величин

\scrE n(C\psi \beta ,1)C = \mathrm{s}\mathrm{u}\mathrm{p}
f\in C\psi \beta ,1

\| f  - Sn - 1(t)\| C

при n\rightarrow \infty . Проблемам, пов’язаним iз розв’язанням цiєї задачi, присвячено роботи [3, 11,
28 – 39].

2. Наближення iнтерполяцiйними полiномами Лагранжа на множинах згорток перiодич-
них функцiй.

Теорема 1. Нехай
\sum \infty 

k=1
k\psi (k) < \infty , \psi (k) \geq 0, k = 1, 2, . . . , \beta \in \BbbR i n \in \BbbN . Тодi для

всiх x \in \BbbR i довiльної функцiї f \in C\psi \beta L1 має мiсце нерiвнiсть

\bigm| \bigm| \~\rho n(f ;x)\bigm| \bigm| \leq 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\left(  \infty \sum 
k=0

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

\right)  En\bigl( f\psi \beta \bigr) L1
. (15)
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Крiм того, для довiльної функцiї f \in C\psi \beta L1 можна вказати функцiю \scrF (\cdot ) = \scrF (f ;n;x, \cdot )
таку, що En

\bigl( 
\scrF \psi 
\beta 

\bigr) 
L1

= En
\bigl( 
f\psi \beta 
\bigr) 
L1
, i для неї виконується рiвнiсть

\bigm| \bigm| \~\rho n(\scrF ;x)
\bigm| \bigm| = 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( \infty \sum 
k=n

\psi (k) +
\xi 

n

\infty \sum 
k=1

k\psi (k + n)

\Biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1
. (16)

Тут величина \xi = \xi (f ;n;\psi ;\beta ;x) є такою, що  - (1 + 2\pi ) \leq \xi \leq 1.

Доведення. У роботi [26] (лема 1) доведено, що для довiльної функцiї f \in C\psi \beta L1,

\psi (k) > 0,
\sum \infty 

k=1
k\psi (k) < \infty , \beta \in \BbbR , у кожнiй точцi x \in \BbbR має мiсце таке iнтегральне

зображення величини \~\rho n(f ;x) :

\~\rho n(f ;x) =
2

\pi 
\mathrm{s}\mathrm{i}\mathrm{n}

2n - 1

2
x

\pi \int 
 - \pi 

\delta n(t+ x)

\Biggl( \infty \sum 
k=n

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}(kt+ \gamma n) + rn(t)

\Biggr) 
dt, (17)

у якому \delta n(\tau ) = f\psi \beta (\tau ) - tn - 1(\tau ), tn - 1 —довiльний тригонометричний полiном iз множини
\scrT 2n - 1, а rn i \gamma n означенi рiвностями

rn(t) = rn(\psi ;\beta ;x; t) =

\infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu ) \mathrm{s}\mathrm{i}\mathrm{n}

\biggl( 
\nu t+

\biggl( 
k +

1

2

\biggr) 
(2n - 1)x+

\beta \pi 

2

\biggr) 
(18)

i
\gamma n = \gamma n(\beta ;x) =

(2n - 1)x+ \pi (\beta  - 1)

2
(19)

вiдповiдно.
Проаналiзувавши доведення згаданої леми роботи [26], легко переконатися, що вона

залишається вiрною i за умови \psi (k) \geq 0.
Покладаючи в (17) як tn - 1 полiном t\ast n - 1 найкращого наближення у просторi L1 функцiї

f\psi \beta , тобто такий, що

\| f\psi \beta  - t\ast n - 1\| 1 = En
\bigl( 
f\psi \beta 
\bigr) 
L1

= \mathrm{i}\mathrm{n}\mathrm{f}
tn - 1\in \scrT 2n - 1

\| f\psi \beta  - tn - 1\| 1, (20)

i застосовуючи нерiвнiсть Гельдера (див., наприклад, [7, с. 391])
\pi \int 

 - \pi 

| h(t)g(t)| dt \leq \| h\| p\| g\| p\prime , h \in Lp, 1 \leq p \leq \infty , g \in Lp\prime ,
1

p
+

1

p\prime 
= 1, (21)

при p = \infty , для довiльної функцiї f \in C\psi \beta L1 на пiдставi (17) – (21) отримуємо

\bigm| \bigm| \~\rho n(f ;x)\bigm| \bigm| \leq 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( \bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 

\infty \sum 
k=n

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}(kt+ \gamma n)

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

+ \| rn(t)\| \infty 

\Biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1

\leq 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\left(  \infty \sum 
k=n

\psi (k) +
\infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

\right)  En\bigl( f\psi \beta \bigr) L1
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=
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\left(  \infty \sum 
k=0

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

\right)  En\bigl( f\psi \beta \bigr) L1
, (22)

де rn i \gamma n означенi формулами (18) i (19) вiдповiдно.
Далi доведемо справедливiсть другої частини теореми 1. Користуючись iнтегральним

зображенням (17) i враховуючи ортогональнiсть функцiї rn(t) вигляду (18) до будь-якого
тригонометричного полiнома tn \in \scrT 2n - 1 для довiльної функцiї f \in C\psi \beta L1, у кожнiй точцi
x \in \BbbR можемо записати

\~\rho n(f ;x) = f(x) - \~Sn - 1(f ;x)

= 2 \mathrm{s}\mathrm{i}\mathrm{n}
2n - 1

2
x

\left(  1

\pi 

\pi \int 
 - \pi 

f\psi \beta (t+ x)
\infty \sum 
k=n

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}(kt+ \gamma n)dt+
1

\pi 

\pi \int 
 - \pi 

\delta n(t+ x)rn(t)dt

\right)  ,
(23)

де \delta n(\cdot ) = f\psi \beta (\cdot )  - tn - 1(\cdot ), tn - 1 — довiльний полiном iз \scrT 2n - 1, а rn(t) i \gamma n означенi
рiвностями (18) i (19) вiдповiдно.

Iз формул (18) – (21) випливає оцiнка\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\pi \int 

 - \pi 

\delta n(t+ x)rn(t)dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\pi \int 
 - \pi 

\Bigl( 
f\psi \beta (t+ x) - t\ast n - 1(t+ x)

\Bigr) 
rn(t)dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq \| rn\| \infty En

\bigl( 
f\psi \beta 
\bigr) 
L1

\leq 

\left(  \infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

\right)  En\bigl( f\psi \beta \bigr) L1
. (24)

А отже, згiдно з (24) можна записати
\pi \int 

 - \pi 

\delta n(t+ x)rn(t)dt = \xi 1

\left(  \infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

\right)  En\bigl( f\psi \beta \bigr) L1
, (25)

де \xi 1 = \xi 1(f ;n;\psi , \beta ;x) така, що  - 1 < \xi 1 \leq 1.
Для функцiї

gx(\cdot ) :=
1

\pi 

\pi \int 
 - \pi 

f\psi \beta (t+ \cdot )
\infty \sum 
k=1

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}(kt+ \gamma n)dt, (26)

яка, очевидно, належить до множини C\psi 2\gamma n/\pi L1, при будь-якому фiксованому x \in \BbbR вiдхи-
лення \rho (gx; \cdot ) її частинних сум Фур’є Sn - 1(gx, \cdot ) пiдпорядковане рiвностi

\rho (gx; \cdot ) = gx(\cdot ) - Sn - 1(gx, \cdot ) =
1

\pi 

\pi \int 
 - \pi 

f\psi \beta (t+ \cdot )
\infty \sum 
k=n

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}(kt+ \gamma n)dt, (27)

i, зокрема,

\rho (gx;x) = gx(x) - Sn - 1(gx, x) =
1

\pi 

\pi \int 
 - \pi 

f\psi \beta (t+ x)

\infty \sum 
k=n

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}(kt+ \gamma n)dt. (28)
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Вiдповiдно до теореми 2.1 з [11] для функцiї gx(\cdot ) iз множини C\psi 2\gamma n/\pi L1 при кожному
n \in \BbbN iснує функцiя G(\cdot ) = G(f, n;x; \cdot ) така, що

En
\bigl( 
G\psi 2\gamma n/\pi 

\bigr) 
L1

= En
\bigl( 
f\psi \beta 
\bigr) 
L1
, (29)

i для якої

\| \rho n(G, \cdot )\| C = \| G(\cdot ) - Sn - 1(G; \cdot )\| C

=

\Biggl( 
1

\pi 

\infty \sum 
k=n

\psi (k) +
\xi 2
n

\infty \sum 
k=1

k\psi (k + n)

\Biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1
, (30)

де величина \xi 2 = \xi 2(f ;n;\psi ;\beta ;x) така, що  - 2 \leq \xi 2 \leq 0.
Виберемо точку x0 таким чином, що виконується рiвнiсть

| \rho n(G;x0)| = \| \rho n(G; \cdot )\| C . (31)

Розглянемо функцiю \scrF (t), означену рiвнiстю

\scrF (t) := \scrJ \psi 
\beta G

\psi 
2\gamma n/\pi 

(t - x+ x0), (32)

яка, очевидно, належить множинi C\psi \beta L1, i покажемо, що вона є шуканою функцiєю. Для
функцiї \scrF (t) з урахуванням формул (29), (32) та iнварiантностi L1 -норми щодо зсуву
аргументу маємо

En
\bigl( 
\scrF \psi 
\beta 

\bigr) 
L1

= En
\bigl( 
G\psi 2\gamma n/\pi 

\bigr) 
L1

= En
\bigl( 
f\psi \beta 
\bigr) 
L1
. (33)

Отже, на основi (23), (25), (29), (30), (31) i (33) для довiльного заданого значення
аргументу x \in \BbbR маємо

\bigm| \bigm| \~\rho n(\scrF ;x)
\bigm| \bigm| = 2

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\left(  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 1\pi 

\pi \int 
 - \pi 

G\psi 2\gamma n/\pi (x0 + t)
\infty \sum 
k=n

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}(kt+ \gamma n)dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
+
\xi 1
\pi 

\left(  \infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

\right)  En\bigl( f\psi \beta \bigr) L1

\right)  

= 2

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\left(  | \rho n(G, x0)| +

\xi 1
\pi 

\left(  \infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

\right)  En\bigl( f\psi \beta \bigr) L1

\right)  

= 2

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\left(  \| \rho n(G, \cdot )\| C +

\xi 1
\pi 

\left(  \infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

\right)  En\bigl( f\psi \beta \bigr) L1

\right)  
= 2

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( \Biggl( 

1

\pi 

\infty \sum 
k=n

\psi (k) +
\xi 2
n

\infty \sum 
k=1

k\psi (k + n)

\Biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1

+
\xi 1
\pi 

\left(  \infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

\right)  En\bigl( f\psi \beta \bigr) L1

\right)  
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= 2

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\left(  1

\pi 

\infty \sum 
k=n

\psi (k) +
\xi 2
n

\infty \sum 
k=1

k\psi (k + n) +
\xi 1
\pi 

\infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

\right)  
\times En

\bigl( 
f\psi \beta 
\bigr) 
L1
, (34)

де  - 2 \leq \xi 2 \leq 0,  - 1 \leq \xi 1 \leq 1.
У подальшому нам буде корисним таке твердження.
Лема 1. Нехай

\sum \infty 

k=1
k\psi (k) <\infty , \psi (k) \geq 0, n \in \BbbN . Тодi

1

n

\infty \sum 
k=1

k\psi (k + n) \geq 
\infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu ). (35)

Доведення. Нерiвнiсть (35) випливає з наступного ланцюжка перетворень:

1

n

\infty \sum 
k=1

k\psi (k + n) =
1

n

\infty \sum 
k=0

(2k+1)n - k+2n - 2\sum 
\nu =(2k+1)n - k

(\nu  - n)\psi (\nu )

=
1

n

\infty \sum 
k=0

2n - 2\sum 
\nu =0

(2kn - k + \nu )\psi ((2k + 1)n - k + \nu )

\geq 1

n

\infty \sum 
k=0

2n - 2\sum 
\nu =0

(2n - 1)k\psi ((2k + 1)n - k + \nu )

=
2n - 1

n

\infty \sum 
k=1

k

2n - 2\sum 
\nu =0

\psi ((2k + 1)n - k + \nu )

=
2n - 1

n

\infty \sum 
k=1

k

(2k+1)n - k+2n - 2\sum 
\nu =(2k+1)n - k

\psi (\nu )

=
2n - 1

n

\infty \sum 
k=1

k

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

=

\biggl( 
2 - 1

n

\biggr) \infty \sum 
k=1

\sum 
\nu =(2k+1)n - k

\psi (\nu ) \geq 
\infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu ).

Лему 1 доведено.
Згiдно з (35)

\xi 1
\pi 

\infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu ) +
\xi 2
n

\infty \sum 
k=1

k\psi (k + n) =
\xi 

\pi n

\infty \sum 
k=1

k\psi (k + n), (36)

де \xi = \xi (f ;n;\psi ;\beta ;x) така, що  - (1 + 2\pi ) \leq \xi \leq 1. З (34) i (36) випливає (16).
Теорему 1 доведено.
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Зауважимо, що з урахуванням формули (35) i нерiвностi (15) випливає нерiвнiсть

\bigm| \bigm| \~\rho n(f ;x)\bigm| \bigm| \leq 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( 
1

n

\infty \sum 
k=n

k\psi (k)

\Biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1
. (37)

Дiйсно, (37) випливає з (15) i того, що на основi (35)

\infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu ) \leq 1

n

\infty \sum 
k=1

k\psi (k + n) =
1

n

\infty \sum 
k=0

k\psi (k + n)

=
1

n

\infty \sum 
k=n

(k  - n)\psi (k) =
1

n

\infty \sum 
k=n

k\psi (k) - 
\infty \sum 
k=n

\psi (k),

а отже,
\infty \sum 
k=0

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu ) \leq 1

n

\infty \sum 
k=n

k\psi (k). (38)

Нерiвнiсть (37), будучи бiльш грубою оцiнкою у порiвняннi з (15), у деяких випадках
є бiльш зручною для використання, залишаючись асимптотично непокращуваною при
n\rightarrow \infty .

Iнодi буває корисним формулювати нерiвностi типу Лебега в термiнах (\psi , \beta )-iнтегралiв
\scrJ \psi 
\beta \varphi вiд довiльної сумовної функцiї \varphi . Теорему 1 у цьому випадку можна сформулювати

таким чином.
Теорема 1 \prime . Нехай

\sum \infty 

k=1
k\psi (k) < \infty , \psi (k) \geq 0, k = 1, 2, . . . , \beta \in \BbbR i n \in \BbbN . Тодi для

всiх x \in \BbbR i довiльної функцiї \varphi \in L1 має мiсце нерiвнiсть

\bigm| \bigm| \~\rho n(\scrJ \psi 
\beta \varphi ;x)

\bigm| \bigm| \leq 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\left(  \infty \sum 
k=0

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu )

\right)  En(\varphi )L1 . (39)

Крiм того, для довiльної функцiї \varphi \in L1 можна вказати функцiю \Phi (\cdot ) = \Phi (\varphi ;n;\psi ;\beta ) iз
L0
1 таку, що En(\varphi )L1 = En(\Phi )L1 , i для якої виконується рiвнiсть

\bigm| \bigm| \~\rho n(\Phi ;x)\bigm| \bigm| = 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( \infty \sum 
k=n

\psi (k) +
\xi 

n

\infty \sum 
k=1

k\psi (k + n)

\Biggr) 
En(\varphi )L1 , (40)

де величина \xi = \xi (\varphi ;n;\psi ;\beta ;x) є такою, що  - (1 + 2\pi ) \leq \xi \leq 1.

Теорема 2. Нехай
\sum \infty 

k=1
k\psi (k) < \infty , \psi (k) \geq 0, k = 1, 2, . . . , \beta \in \BbbR i n \in \BbbN . Тодi для

всiх x \in \BbbR виконується рiвнiсть

\~\scrE n(C\psi \beta ,1;x) =
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( \infty \sum 
k=n

\psi (k) +
\Theta 

n

\infty \sum 
k=1

k\psi (k + n)

\Biggr) 
, (41)

де величина \Theta = \Theta (n;\psi ;\beta ;x) є такою, що  - (1 + \pi ) \leq \Theta \leq 1.
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Доведення теореми 2. Будемо вiдштовхуватися вiд iнтегрального зображення (17), у
якому f \in C\psi \beta ,1. Розглянувши точнi верхнi межi модулiв обох частин рiвностi (17) при
tn - 1 \equiv 0 по класу C\psi \beta ,1 i врахувавши iнварiантнiсть множини

B0
1 =

\left\{   \varphi \in L1 : \| \varphi \| 1 \leq 1,

\pi \int 
 - \pi 

\varphi (t)dt = 0

\right\}   
стосовно зсуву аргументу, будемо мати

\~\scrE n(C\psi \beta ,1;x) = \mathrm{s}\mathrm{u}\mathrm{p}
f\in C\psi \beta ,1

\bigm| \bigm| \~\rho n(f ;x)\bigm| \bigm| 

= 2

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\left(  \mathrm{s}\mathrm{u}\mathrm{p}
\varphi \in B0

1

1

\pi 

\pi \int 
 - \pi 

\varphi (t)

\infty \sum 
k=n

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}(kt+ \gamma n)dt+
\xi 3
\pi 
\| rn(\cdot )\| C

\right)  , (42)

де rn(t) i \gamma n означено рiвностями (18) i (19) вiдповiдно, а для величини \xi 3 = \xi 3(n;\psi ;\beta , x)
виконується нерiвнiсть | \xi 3| \leq 1.

Iз спiввiдношень двоїстостi (див., наприклад, [7], § 1.4.4) маємо

\mathrm{s}\mathrm{u}\mathrm{p}
\varphi \in B0

1

1

\pi 

\pi \int 
 - \pi 

\varphi (t)

\infty \sum 
k=n

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}(kt+ \gamma n)dt =
1

\pi 
\mathrm{i}\mathrm{n}\mathrm{f}
\lambda \in \BbbR 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty \sum 
k=n

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}(kt+ \gamma n) - \lambda 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

. (43)

З леми 2.1 роботи [11] випливає, що при \psi (k) \geq 0,
\sum \infty 

k=1
k\psi (k) <\infty , при всiх \beta \in \BbbR i

n \in \BbbN виконується формула

\mathrm{i}\mathrm{n}\mathrm{f}
\lambda \in \BbbR 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty \sum 
k=n

\psi (k) \mathrm{c}\mathrm{o}\mathrm{s}(kt+ \gamma n) - \lambda 

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

=
\infty \sum 
k=n

\psi (k) +
\Theta 1\pi 

n

\infty \sum 
k=1

k\psi (k + n), (44)

у якiй для величини \Theta 1 = \Theta 1(n, \beta , \psi , x) виконується двостороння оцiнка  - 1 \leq \Theta 1 \leq 0.
Враховуючи (18) i (35), маємо

| rn(t)| \leq 
\infty \sum 
k=1

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu ) \leq 1

n

\infty \sum 
k=1

k\psi (k + n).

Об’єднавши формули (42) – (44), отримуємо (41).
Теорему 2 доведено.
Очевидно, що за виконання умови (13) формули (16), (40) i (41) є асимптотичними

рiвностями.
3. Нерiвностi Лебега для iнтерполяцiйних полiномiв на класах згорток нескiнченно ди-

ференцiйовних, аналiтичних i цiлих функцiй. У цьому пунктi наведемо приклади функцiо-
нальних множин C\psi \beta L1, для яких оцiнки (15), (16) є асимптотично точними.

3.1. Наслiдки з теореми 1 для множин нескiнченно диференцiйовних функцiй. У цьому
пiдпунктi будемо розглядати випадок, коли послiдовностi \psi (k), що породжують множини
C\psi \beta L1, є звуженням на множину натуральних чисел деяких додатних неперервних опуклих
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донизу функцiй \psi (t) неперервного аргументу t \geq 1, якi прямують до нуля при t \rightarrow \infty .
Множину всiх таких функцiй \psi позначаємо через \frakM :

\frakM =
\Bigl\{ 
\psi \in C[1,\infty ) : \psi (t) > 0, \psi (t1  - 2\psi ((t1 + t2)/2) + \psi (t2) \geq 0

\forall t1, t2 \in [1,\infty ), \mathrm{l}\mathrm{i}\mathrm{m}
t\rightarrow \infty 

\psi (t) = 0
\Bigr\} 
. (45)

Наслiдуючи О. I. Степанця (див., наприклад, [3, с. 160]), кожнiй функцiї \psi \in \frakM поста-
вимо у вiдповiднiсть характеристику

\mu (t) = \mu (\psi ; t) =
t

\eta (t) - t
,

де \eta (t) = \eta (\psi ; t) = \psi  - 1

\biggl( 
1

2
\psi (t)

\biggr) 
, \psi  - 1 — обернена до \psi функцiя, i покладемо

\frakM +
\infty =

\bigl\{ 
\psi \in \frakM : \mu (t) \uparrow \infty , t\rightarrow \infty 

\bigr\} 
.

Через \frakM \alpha позначимо пiдмножину всiх функцiй \psi \in \frakM , для яких величина

\alpha (t) = \alpha (\psi ; t) :=
\psi (t)

t| \psi \prime (t)| 
, \psi \prime (t) := \psi \prime (t+ 0), (46)

спадає до нуля при t\rightarrow \infty :

\frakM \alpha =
\bigl\{ 
\psi \in \frakM : \alpha (\psi ; t) \downarrow 0, t\rightarrow \infty 

\bigr\} 
. (47)

Згiдно з теоремою 2 роботи [4] випливає, що твердження про iснування послiдовностi
\psi \in \frakM \alpha (або \psi \in \frakM +

\infty ) такої, що для функцiї f вiрне включення f \in C\psi \beta L1 при будь-якому
\beta \in \BbbR , еквiвалентне твердженнюпро включення f \in D\infty , де D\infty , як i ранiше, множина всiх
нескiнченно диференцiйовних 2\pi -перiодичних дiйснозначних функцiй. А отже, множини
C\psi \beta L1 при \psi \in \frakM \alpha (або \psi \in \frakM +

\infty ) є множинами нескiнченно диференцiйовних перiодичних
функцiй. У [40] доведено включення

\frakM +
\infty \subset \frakM \alpha \subset \frakM \infty =

\Bigl\{ 
\psi \in \frakM : \forall r > 0 \mathrm{l}\mathrm{i}\mathrm{m}

t\rightarrow \infty 
tr\psi (t) = 0

\Bigr\} 
, (48)

яке означає, що функцiї \psi iз \frakM \alpha спадають до нуля швидше, нiж довiльна степенева
функцiя.

Як показано в [3, с. 166], для довiльної функцiї \psi iз \frakM +
\infty має мiсце порядкова рiвнiсть

\eta (t) - t \asymp \lambda (t), t \geq 1, (49)

де \lambda (t) — характеристика вигляду

\lambda (t) = \lambda (\psi ; t) :=
\psi (t)

| \psi \prime (t)| 
. (50)

У цьому пiдпунктi нас буде цiкавити випадок, коли \psi \in \frakM \alpha , a характеристика \lambda (t)
монотонно зростає до нескiнченностi при t \rightarrow \infty . При цих обмеженнях функцiї \psi (t) спа-
дають до нуляшвидшедовiльної степеневої функцiї, але повiльнiше будь-якої геометричної
прогресiї.

ISSN 1562-3076. Нелiнiйнi коливання, 2024, т. 27, № 1



ОЦIНКИ НАБЛИЖЕНЬ IНТЕРПОЛЯЦIЙНИМИ ТРИГОНОМЕТРИЧНИМИ ПОЛIНОМАМИ НА КЛАСАХ ЗГОРТОК . . . 129

Теорема 3. Нехай \psi \in \frakM , характеристики \alpha (t) вигляду (46) i \lambda (t) вигляду (50) задо-
вольняють умови

\alpha (t) \downarrow 0, t\rightarrow \infty , (51)

\lambda (t) \uparrow \infty , t\rightarrow \infty . (52)

Тодi для довiльної функцiї f \in C\psi \beta L1, \beta \in \BbbR , у кожнiй точцi x \in \BbbR при всiх n \in \BbbN таких, що

\alpha (n) \leq 1

4
, (53)

має мiсце нерiвнiсть\bigm| \bigm| \~\rho n(f ;x)\bigm| \bigm| \leq 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \psi (n)\lambda (n)\biggl( 1 + 4\alpha (n) +
1

\lambda (n)

\biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1
. (54)

Крiм того, для довiльної функцiї f \in C\psi \beta L1 можна вказати функцiю \scrF (\cdot ) = \scrF (f ;n;x, \cdot )
таку, що En

\bigl( 
\scrF \psi 
\beta 

\bigr) 
L1

= En
\bigl( 
f\psi \beta 
\bigr) 
L1

i виконується рiвнiсть\bigm| \bigm| \~\rho n(\scrF ;x)
\bigm| \bigm| = 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \psi (n)\lambda (n)\biggl( 1 + \xi 3\alpha (n) +
\xi 4
\lambda (n)

\biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1
, (55)

де  - 4(1 + 2\pi ) \leq \xi 3 <
8

3
(1 + \pi ),  - (1 + 2\pi ) \leq \xi 4 \leq 2(1 + \pi ).

Доведення теореми 3. Умова (51) для \psi \in \frakM гарантує виконання всiх умов теореми 1.
Покажемо спочатку, що (54) випливає iз (37).

У роботi [11, с. 561] доведено, що за виконання умов (51) – (53) має мiсце оцiнка
1

n

\infty \sum 
k=n

k\psi (k) = \psi (n)\lambda (n)

\biggl( 
1 + \Theta 2\alpha (n) +

\Theta 3

\lambda (n)

\biggr) 
, (56)

де 0 \leq \Theta 2 \leq 4, 0 \leq \Theta 3 \leq 1. Iз (37), (56) випливає (54).
Щоб переконатись у справедливостi рiвностi (55), застосуємо формулу (16) i викори-

стаємо формули (85), (91) з [11], згiдно з якими для довiльної \psi \in \frakM , пiдпорядкованої
умовам (51), (52) при всiх n \in \BbbN , що задовольняють умову (53), мають мiсце оцiнки

\infty \sum 
k=n

\psi (k) = \psi (n)\lambda (n)

\biggl( 
1 + \Theta 4\alpha (n) +

\Theta 5

\lambda (n)

\biggr) 
, 0 \leq \Theta 4 \leq 

4

3
, 0 \leq \Theta 5 \leq 1, (57)

1

n

\infty \sum 
k=1

k\psi (k + n) = \psi (n)\lambda (n)

\biggl( 
\Theta 6\alpha (n) +

\Theta 7

\lambda (n)

\biggr) 
,  - 4

3
\leq \Theta 6 \leq 4,  - 1 \leq \Theta 7 \leq 1. (58)

З урахуванням (57) i (58), iз рiвностi (16) отримуємо\bigm| \bigm| \~\rho n(\scrF ;x)
\bigm| \bigm| = 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( \infty \sum 
k=n

\psi (k) +
\xi 

n

\infty \sum 
k=1

k\psi (k + n)

\Biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1

=
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \psi (n)\lambda (n)\biggl( 1 + (\Theta 4 + \xi \Theta 6)\alpha (n) + (\Theta 5 + \xi \Theta 7)
1

\lambda (n)

\biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1
.

(59)
Iз (59) випливає (55).

Теорему 3 доведено.
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Важливими множинами C\psi \beta L1, для яких функцiї \psi (\psi \in \frakM ) задовольняють усi умови
теореми 3, є множини узагальнених iнтегралiв Пуассона C\alpha ,r\beta L1, \alpha > 0, \beta \in \BbbR , r \in (0, 1).

У цьому випадку для \psi (t) = e - \alpha t
r при довiльних t \geq 1 маємо

\lambda (t) =
t1 - r

\alpha r
, \alpha (t) =

1

\alpha rtr
, (60)

а отже, \lambda (t) \uparrow \infty , \alpha (t) \downarrow 0, t \rightarrow \infty . З урахуванням (60) умова (53) може бути записана у

виглядi n \geq 
\biggl( 

4

\alpha r

\biggr) 1
r

.

Наслiдок 1. Нехай 0 < r < 1, \alpha > 0, \beta \in \BbbR . Тодi для довiльної функцiї f \in C\alpha ,r\beta L1,

\beta \in \BbbR , у кожнiй точцi x \in \BbbR при всiх n \in \BbbN таких, що n \geq 
\biggl( 

4

\alpha r

\biggr) 1
r

, виконується нерiвнiсть

\bigm| \bigm| \~\rho n(f ;x)\bigm| \bigm| \leq e - \alpha n
r
n1 - r

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \biggl( 2

\pi \alpha r
+\scrO (1)

\biggl( 
1

(\alpha r)2
1

nr
+

1

n1 - r

\biggr) \biggr) 
En(f

\alpha ,r
\beta )L1 . (61)

Крiм того, для довiльної функцiї f \in C\alpha ,r\beta L1 можна вказати функцiю \scrF (\cdot ) = \scrF (f ;n;

x, \cdot ) iз множини C\alpha ,r\beta L1 таку, що En(\scrF \alpha ,r
\beta )L1 = En(f

\alpha ,r
\beta )L1 i при n \geq n\ast (\alpha , r, 1) виконується

рiвнiсть\bigm| \bigm| \~\rho n(\scrF ;x)
\bigm| \bigm| = e - \alpha n

r
n1 - r

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \biggl( 2

\pi \alpha r
+\scrO (1)

\biggl( 
1

(\alpha r)2
1

nr
+

1

n1 - r

\biggr) \biggr) 
En(f

\alpha ,r
\beta )L1 . (62)

У (61), (62) величини \scrO (1) рiвномiрно обмеженi по всiх розглядуваних параметрах.
Зауважимо, що формули (61), (62) при дещо iнших обмеженнях на параметр n випли-

вають також iз теореми 2.3 роботи авторiв [35].
Можна навести цiлий ряд прикладiв функцiй \psi iз \frakM , для яких виконуються умови (51)

i (52). Зокрема,
\psi (t) = (t+ 2) - ln ln(t+2), t \geq 1, (63)

\psi (t) = e - ln2(t+1), t \geq 1, (64)

\psi (t) = e
 - t+2

ln(t+2) , t \geq 1. (65)
Для усiх перелiчених функцiй \psi теорема 3 дозволяє записати асимптотично непокра-

щуванi нерiвностi типу Лебега для iнтерполяцiйних полiномiв Лагранжа на множинах
C\psi \beta L1, \beta \in \BbbR .

3.2. Наслiдки з теореми 1 для множин аналiтичних i цiлих функцiй. У цьому пiдпунктi
будемо розглядати випадки, коли послiдовностi \psi (k) спадають до нуля приблизно як
геометричнi прогресiї або швидше за них. Як показано в [2, c. 32; 40, c. 1697], якщо при
деяких K i \alpha \psi (k) задовольняє умову

\psi (k) \leq Ke - \alpha k, k \in \BbbN , \alpha > 0, K > 0, (66)
то множини C\alpha ,r\beta L1 складаються з аналiтичних функцiй, якi регулярно продовжуються
у смугу | \mathrm{I}\mathrm{m} z| < \alpha . Типовим прикладом функцiї \psi (k), що задовольняє умову (66), може
слугувати функцiя

\psi (k) = e - \alpha k, \alpha > 0, (67)

яка породжує множину iнтегралiв Пуассона C\alpha ,1\beta L1.
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Оскiльки для функцiї вигляду (67) виконуються рiвностi
\infty \sum 
k=0

\infty \sum 
\nu =(2k+1)n - k

\psi (\nu ) =
\infty \sum 
k=0

\infty \sum 
\nu =(2k+1)n - k

e - \alpha \nu =
\infty \sum 
k=0

e - \alpha (2k+1)n - k

1 - e - \alpha 

=
e - \alpha n

1 - e - \alpha 

\infty \sum 
k=0

e - \alpha (2n - 1)k =
e - \alpha n

(1 - e - \alpha )(1 - e - \alpha (2n - 1))
, (68)

1

n

\infty \sum 
k=1

k\psi (k + n) =
1

n

\infty \sum 
k=1

ke - \alpha (k+n) =
e - \alpha n

n

\infty \sum 
k=1

ke - \alpha k =
e - \alpha (n+1)

n(1 - e - \alpha )2
, (69)

то з теореми 1 одержуємо таке твердження.
Теорема 4. Нехай \alpha > 0 i \beta \in \BbbR . Тодi для всiх x \in \BbbR , n \in \BbbN i довiльної функцiї f \in C\alpha ,1\beta 

має мiсце нерiвнiсть

\bigm| \bigm| \~\rho n(f ;x)\bigm| \bigm| \leq 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| e - \alpha n

(1 - e - \alpha )(1 - e - \alpha (2n - 1))
En(f

\alpha ,1
\beta )L1 . (70)

Крiм того, для довiльної функцiї f \in C\alpha ,1\beta L1 можна вказати функцiю \scrF (\cdot ) = \scrF (f ;n;x, \cdot )
iз множини C\alpha ,1\beta L1 таку, що En(\scrF \alpha ,1

\beta )L1 = En(f
\alpha ,1
\beta )L1 i для якої виконується рiвнiсть

\bigm| \bigm| \~\rho n(\scrF ;x)
\bigm| \bigm| = 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| e - \alpha n\biggl( 1

1 - e - \alpha 
+
\xi 

n

e - \alpha 

(1 - e - \alpha )2

\biggr) 
En(f

\alpha ,1
\beta )L1 , (71)

де для величини \xi = \xi (f, n, \alpha , \beta ;x) має мiсце оцiнка  - (1 + 2\pi ) \leq \xi \leq 1.

Важливим частинним випадкомфункцiй \psi , пiдпорядкованих умовi (66), є функцiї \psi (k),
що задовольняють умову Даламбера \scrD q, q \in [0, 1) :

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\psi (k + 1)

\psi (k)
= q, \psi (k) > 0. (72)

Якщо \psi (k) задовольняє умову (72) при деякому q \in [0, 1), то будемо записувати, що
\psi \in \scrD q.

Наслiдок 2. Нехай \psi \in \scrD q, q \in (0, 1), \beta \in \BbbR . Тодi для всiх x \in \BbbR i довiльної функцiї
f \in C\psi \beta L1 при всiх n таких, що

1

n
+ \varepsilon n <

1 - q

2
, (73)

де

\varepsilon n := \mathrm{s}\mathrm{u}\mathrm{p}
k\geq n

\bigm| \bigm| \bigm| \bigm| \psi (k + 1)

\psi (k)
 - q

\bigm| \bigm| \bigm| \bigm| , (74)

має мiсце нерiвнiсть

\bigm| \bigm| \~\rho n(f ;x)\bigm| \bigm| \leq \bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \psi (n)\biggl( 2

\pi (1 - q)
+\scrO (1)

\biggl( 
q

n(1 - q)2
+

\varepsilon n
(1 - q)2

\biggr) \biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1
. (75)
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Крiм того, для довiльної функцiї f \in C\psi \beta L1 можна вказати функцiю \scrF (\cdot ) = \scrF (f ;n;x, \cdot )
таку, що En

\bigl( 
\scrF \psi 
\beta 

\bigr) 
L1

= En
\bigl( 
f\psi \beta 
\bigr) 
L1

i для якої виконується рiвнiсть

\bigm| \bigm| \~\rho n(\scrF ;x)
\bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \psi (n)\biggl( 2

\pi (1 - q)
+\scrO (1)

\biggl( 
q

n(1 - q)2
+

\varepsilon n
(1 - q)2

\biggr) \biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1
. (76)

Доведення. У роботi [11, c. 557] показано, що коли \psi \in \scrD q, q \in (0, 1), тодi для всiх n,
що задовольняють умову (73), справджуються рiвностi

\infty \sum 
k=n

\psi (k) +
\scrO (1)

n

\infty \sum 
k=1

k\psi (k + n)

= \psi (n)

\biggl( 
1

1 - q
+\scrO (1)

\biggl( 
\varepsilon n

(1 - q)2
+

q

n(1 - q)2

\biggr) \biggr) 
. (77)

Використавши нерiвнiсть (35) i оцiнку (77), iз формул (15), (16) одержуємо оцiнки (75),
(76) вiдповiдно.

Наслiдок 2 доведено.
Важливими прикладами ядер \Psi \beta (t) вигляду (2), коефiцiєнти \psi (k) яких належать до

множини \scrD q, 0 < q < 1, є, зокрема:
– полiгармонiчнi ядра Пуассона

Pq,\beta (l, t) =
\infty \sum 
k=1

\psi l(k) \mathrm{c}\mathrm{o}\mathrm{s}

\biggl( 
kt - \beta \pi 

2

\biggr) 
, l \in \BbbN , \beta \in \BbbR , (78)

де

\psi l(k) = qk

\left(  1 +
l - 1\sum 
j=1

(1 - q2)j

j!2j

j - 1\prod 
\nu =0

(k + 2\nu )

\right)  , 0 < q < 1, (79)

– ядра аналiтичних функцiй

\scrP q,\beta (t) =
\infty \sum 
k=1

2

qk + q - k
\mathrm{c}\mathrm{o}\mathrm{s}

\biggl( 
kt - \beta \pi 

2

\biggr) 
, 0 < q < 1, \beta \in \BbbR , (80)

– ядра Неймана

Nq,\beta (t) =
\infty \sum 
k=1

qk

k
\mathrm{c}\mathrm{o}\mathrm{s}

\biggl( 
kt - \beta \pi 

2

\biggr) 
, 0 < q < 1, \beta \in \BbbR , (81)

та iн.
Якщо C\psi \beta L1 є множинами згорток з усiма наведеними ядрами, то наслiдок 2 дозволяє

записати для них асимптотично непокращуванi iнтерполяцiйнi нерiвностi типу Лебега.
Зазначимо, що формули (75), (76) вперше одержано в роботi [20]. У нiй же також отримано
асимптотично непокращуванi нерiвностi типу Лебега для iнтерполяцiйних полiномiв на
класах згорток C\psi \beta Lp, 1 \leq p \leq \infty , породжених ядрами (78), (81), а також усiма ядрами
\Psi \beta вигляду (2), де \psi \in \scrD q, q \in (0, 1). Теорема 1 дозволяє записати в явному виглядi
двостороннi оцiнки для величин \scrO (1) у формулах (75), (76).
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Розглянемо функцiю \psi (k) вигляду

\psi (k) =

\left\{   q
k
1 , якщо k = 2m - 1, m \in \BbbN ,

qk2 , якщо k = 2m, m \in \BbbN ,
(82)

де числа q1, q2 такi, що

1 > q1 > q2 > 0. (83)

Зрозумiло, що функцiї \psi вигляду (82) задовольняють умову (66) при \alpha > \mathrm{l}\mathrm{n}
1

q1
, K = 1,

але водночас, нi при яких q \in (0, 1) не задовольняють нi умови Даламбера (72), нi бiльш
загальної, нiж \scrD q, умови Кошi \scrC q :

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

k
\sqrt{} 
\psi (k) = q, q \in [0, 1). (84)

Водночас теорема 1 дозволяє записати асимптотично непокращуванi нерiвностi Лебега
для iнтерполяцiйних полiномiв на множинах C\psi \beta L1 для \psi вигляду (82). Для цього досить
переконатись у справедливостi граничного спiввiдношення (13).

Неважко пересвiдчитися, що для \psi вигляду (82)

\infty \sum 
k=n

\psi (k) =

\left\{         
qn2

1 - q22
+

qn+1
1

1 - q21
, якщо n = 2\ell , \ell \in \BbbN ,

qn1
1 - q21

+
qn+1
2

1 - q22
, якщо n = 2\ell  - 1, \ell \in \BbbN ,

(85)

1

n

\infty \sum 
k=1

k\psi (k + n) =

\left\{         
1

n

\biggl( 
2qn+2

2

(1 - q22)
2
+

2qn+3
1

(1 - q21)
2
+

qn+1
1

1 - q21

\biggr) 
, якщо n = 2\ell , \ell \in \BbbN ,

1

n

\biggl( 
2qn+2

1

(1 - q21)
2
+

2qn+3
2

(1 - q22)
2
+

qn+1
2

1 - q22

\biggr) 
, якщо n = 2\ell  - 1, \ell \in \BbbN .

(86)

Iз (46), (85) i (86) одержуємо

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

\sum \infty 

k=1
k\psi (k + n)\sum \infty 

k=n
\psi (k)

=

\left\{                           

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

\left(  qn+2
1

1 - q21
+

2qn+3
1

(1 - q21)
2

\right)  
qn+1
1

1 - q21

= 0, якщо n = 2\ell , \ell \in \BbbN ,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

2qn+2
1

(1 - q21)
2

qn1
1 - q21

= 0, якщо n = 2\ell  - 1, \ell \in \BbbN ,

(87)

Iз (87) випливає (13).
Розглянемо далi випадок, коли \psi (k) задовольняють умову \scrD 0 :

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\psi (k + 1)

\psi (k)
= 0. (88)
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У цьому випадку множини C\psi \beta L1 складаються iз функцiй, регулярних в усiй комплекснiй
площинi, тобто з цiлих функцiй (див., наприклад, [40, с. 1703]).

Для \psi \in \scrD 0 iз теореми 1 одержуємо таке твердження.
Наслiдок 3. Нехай \psi \in \scrD 0, \beta \in \BbbR i n \in \BbbN . Тодi при всiх x \in \BbbR для довiльної функцiї

f \in C\psi \beta L1 має мiсце нерiвнiсть

\bigm| \bigm| \~\rho n(f ;x)\bigm| \bigm| \leq 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( 
\psi (n) +

1

n

\infty \sum 
k=n+1

k\psi (k)

\Biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1
. (89)

Крiм того, для довiльної функцiї f \in C\psi \beta L1, \psi \in \scrD 0 можна вказати функцiю \scrF (\cdot ) =

\scrF (f ;n;x, \cdot ) таку, що En
\bigl( 
\scrF \psi 
\beta 

\bigr) 
L1

= En
\bigl( 
f\psi \beta 
\bigr) 
L1

i для якої виконується рiвнiсть

\bigm| \bigm| \~\rho n(\scrF ;x)
\bigm| \bigm| = 2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( 
\psi (n) +

\scrO (1)

n

\infty \sum 
k=n+1

k\psi (k)

\Biggr) 
En
\bigl( 
f\psi \beta 
\bigr) 
L1
. (90)

У формулi (90) величина \scrO (1) рiвномiрно обмежена за всiма параметрами.
Доведення. Нерiвнiсть (89) випливає безпосередньо з (37). Далi, оскiльки

\infty \sum 
k=1

\psi (k) +
\scrO (1)

n

\infty \sum 
k=1

k\psi (k + n) = \psi (n) +
\scrO (1)

n

\Biggl( 
n

\infty \sum 
k=n+1

\psi (k) +

\infty \sum 
k=1

k\psi (k + n)

\Biggr) 

= \psi (n) +
\scrO (1)

n

\Biggl( 
n

\infty \sum 
k=n+1

\psi (k) +

\infty \sum 
k=n+1

(k  - n)\psi (k)

\Biggr) 

= \psi (n) +
\scrO (1)

n

\infty \sum 
k=n+1

k\psi (k), (91)

то (90) є наслiдком iз (16). Той факт, що (90) є асимптотичною рiвнiстю при n \rightarrow \infty ,
випливає iз формули

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

n

\sum \infty 

k=n+1
k\psi (k)

\psi (n)
= 0, \psi \in \scrD 0, (92)

встановленої в [11, с. 553].
Зауважимо, що вперше асимптотично непокращуванi нерiвностi типу Лебега для iн-

терполяцiйних полiномiв Лагранжа на множинах C\psi \beta L1 за умови \psi \in \scrD 0 iз залишковими
членами, записаними в дещо iншiй формi (у порiвняннi з (89), (90)), одержано в [20].
Там також наведено зазначенi нерiвностi i на множинах узагальнених iнтегралiв Пуассона
C\psi \beta L1 при \alpha > 0, r > 1, \beta \in \BbbR . При цьому вказанi результати можна одержати як ча-
стинний випадок (p = 1) бiльш загальних iнтерполяцiйних нерiвностей типу Лебега, якi
формулюються для множин C\psi \beta Lp, 1 \leq p \leq \infty , \psi \in \scrD 0.

Зазначимо також, що можна навести приклади функцiй \psi (k), для яких
\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

k
\sqrt{} 
\psi (k) = 0, (93)

якi не задовольняють умову \scrD 0 i для яких виконується граничне спiввiдношення (13). З
огляду на (93), як випливає з [3, с. 141], множини C\psi \beta L1 є множинами цiлих функцiй i для
них на основi (13) теорема 1 дозволяє записати асимптотично точнi нерiвностi Лебега для
iнтерполяцiйних полiномiв Лагранжа, незважаючи на те, що \psi /\in \scrD 0.
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4. Розв’язок задачi Колмогорова –Нiкольського для iнтерполяцiйних полiномiв Лагран-
жа на класах згорток нескiнченно диференцiйовних, аналiтичних i цiлих функцiй. Наведемо
приклади важливих функцiональних компактiв C\psi \beta ,1, для яких формула (41) дозволяє за-
писати асимптотичнi рiвностi для \~\scrE n(C\psi \beta ,1;x)C при n\rightarrow \infty .

4.1. Наслiдки з теореми 2 для класiв нескiнченно диференцiйовних функцiй. У наступному
твердженнi наведено асимптотичну рiвнiсть для величин \~\scrE n(C\psi \beta ,1;x)C , \psi \in \frakM \alpha , при n\rightarrow \infty 
за умови \lambda (t) \uparrow \infty .

Теорема 5. Нехай \beta \in \BbbR , \psi \in \frakM \alpha i для характеристик \alpha (t) i \lambda (t), означених формула-
ми (46) i (50) вiдповiдно, виконано умови (51) i (52). Тодi при всiх n \in \BbbN , пiдпорядкованих
умовi (53), має мiсце оцiнка

\~\scrE n(C\psi \beta ,1;x) =
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \psi (n)\lambda (n)\biggl( 1 + \xi \ast 1\alpha (n) +
\xi \ast 2
\lambda (n)

\biggr) 
, (94)

де  - 4(1 + \pi ) \leq \xi \ast 1 \leq 4

3
(2 + \pi ),  - (1 + \pi ) \leq \xi \ast 2 \leq 2 + \pi .

Доведення теореми 5. За виконання умов теореми 5 \psi \in \frakM \alpha , тому, як випливає iз (48),
справджуються всi умови теореми 2, згiдно з якою має мiсце рiвнiсть (41).

Далi, як зазначалося при доведеннi теореми 2, за виконання умов (51), (52) при всiх
номерах n, що задовольняють нерiвнiсть (53), мають мiсце оцiнки (57), (58). Тому на основi
(41) для довiльних x \in \BbbR 

\~\scrE n(C\psi \beta ,1;x) =
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \biggl( \psi (n)\lambda (n)\biggl( 1 + \Theta 4\alpha (n) +
\Theta 5

\lambda (n)

\biggr) 

+\Theta \psi (n)\lambda (n)

\biggl( 
\Theta 6\alpha (n) +

\Theta 7

\lambda (n)

\biggr) \biggr) 

=
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \psi (n)\lambda (n)\biggl( 1 + (\Theta 4 +\Theta \Theta 6)\alpha (n) + (\Theta 5 +\Theta \Theta 7)
1

\lambda (n)

\biggr) 
. (95)

Оцiнка (94) випливає iз (95).
Теорему 5 доведено.
Наведемо наслiдок з теореми 5 у випадку, коли \psi (t) = e - \alpha t

r
, \alpha > 0, 0 < r < 1,

тобто коли класи C\psi \beta ,1 є класами узагальнених iнтегралiв Пуассона C\alpha ,r\beta ,1 . Як уже зазна-
чалося ранiше, в цьому випадку характеристики \alpha (t) i \lambda (t), t \geq 1, мають вигляд (60),

а нерiвнiсть (53) еквiвалентна нерiвностi n \geq 
\biggl( 

4

\alpha r

\biggr) 1
r

. Тому з теореми 5 одержуємо таке
твердження.

Наслiдок 4. Нехай 0 < r < 1, \alpha > 0, \beta \in \BbbR , n \in \BbbN . Тодi при всiх x \in \BbbR i номерах n

таких, що n \geq 
\biggl( 

4

\alpha r

\biggr) 1
r

, справедлива рiвномiрна по всiх розглядуваних параметрах оцiнка

\~\scrE n(C\alpha ,r\beta ,1 ;x) =
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| e - \alpha nrn1 - r\biggl( 1

\pi \alpha r
+\scrO (1)

\biggl( 
1

(\alpha r)2
1

nr
+

1

n1 - r

\biggr) \biggr) 
. (96)

Зазначимо, що асимптотичнi рiвностi для величин \~\scrE n(C\alpha ,r\beta ,p ;x), r \in (0, 1), при n \rightarrow \infty 
i довiльних 1 \leq p \leq \infty отримано в [19, 25, 35]. При цьому теорема 5 дозволяє записати в
явному виглядi двостороннi оцiнки для величини \scrO (1) у формулi (96).
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Наведемо ще декiлька прикладiв застосування теореми 5 для рiзних функцiй \psi iз \frakM ,
якi задовольняють умови (51), (52). А саме: розглянемо \psi вигляду (63) – (65).

Для зазначених функцiй \psi (t) характеристики \lambda (t) i \alpha (t) вiдображено в таблицi:

№ \psi (t) \alpha (t) \lambda (t)

1. (t+ 2) - ln ln(t+2) t+ 2

t

1

1 + \mathrm{l}\mathrm{n} \mathrm{l}\mathrm{n}(t+ 2)

t+ 2

1 + \mathrm{l}\mathrm{n} \mathrm{l}\mathrm{n}(t+ 2)

2. e - ln2(t+1) t+ 1

t

1

2 \mathrm{l}\mathrm{n}(t+ 1)

t+ 1

2 \mathrm{l}\mathrm{n}(t+ 1)

3. e
 - t+2

ln(t+2)
\mathrm{l}\mathrm{n}2(t+ 2)

t(\mathrm{l}\mathrm{n}(t+ 2) - 1)

\mathrm{l}\mathrm{n}2(t+ 2)

\mathrm{l}\mathrm{n}(t+ 2) - 1

Iз теореми 5 з урахуванням наведених у таблицi значень \alpha (t) i \lambda (t), отримуємо таке
твердження.

Наслiдок 5. Нехай \psi (k) = (k + 2) - ln ln(k+2), k = 1, 2, . . . , \beta \in \BbbR i n \in \BbbN . Тодi для всiх
x \in \BbbR при n\rightarrow \infty виконується асимптотична рiвнiсть

\~\scrE n(C\psi \beta ,1;x) =
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \psi (n) n

\mathrm{l}\mathrm{n} \mathrm{l}\mathrm{n}(n+ 2)

\biggl( 
1 +\scrO (1)

n

\mathrm{l}\mathrm{n} \mathrm{l}\mathrm{n}(n+ 2)

\biggr) 
. (97)

Наслiдок 6. Нехай \psi (k) = e - ln2(k+1), k = 1, 2, . . . , \beta \in \BbbR i n \in \BbbN . Тодi для всiх x \in \BbbR 
при n\rightarrow \infty справджується асимптотична рiвнiсть

\~\scrE n(C\psi \beta ,1;x) =
1

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \psi (n)n

\mathrm{l}\mathrm{n}(n+ 1)

\biggl( 
1 +\scrO (1)

1

\mathrm{l}\mathrm{n}(n+ 1)

\biggr) 
. (98)

Наслiдок 7. Нехай \psi (k) = e
 - k+2

ln(k+2) , k = 1, 2, . . . , \beta \in \BbbR i n \in \BbbN . Тодi для всiх x \in \BbbR при
n\rightarrow \infty виконується асимптотична рiвнiсть

\~\scrE n(C\psi \beta ,1;x) =
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \psi (n) \mathrm{l}\mathrm{n}(n+ 2)

\biggl( 
1 +\scrO (1)

1

\mathrm{l}\mathrm{n}(n+ 2)

\biggr) 
. (99)

У формулах (97) – (99) величини \scrO (1) рiвномiрно обмеженi по усiх розглядуваних па-
раметрах.

Наведемо наслiдки з теореми 2 у випадку, коли \psi (k) = e - \alpha k, \alpha > 0, тобто коли класи
C\psi \beta ,1 є класами iнтегралiв Пуассона C\alpha ,1\beta ,1 .

Наслiдок 8. Нехай \alpha > 0 i \beta \in \BbbR . Тодi при всiх x \in \BbbR i довiльних n \in \BbbN справджується
рiвнiсть

\~\scrE n(C\alpha ,1\beta ,1 ;x) =
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| e - \alpha n\biggl( 1

1 - e - \alpha 
+

\Theta 

n

e - \alpha 

(1 - e - \alpha )2

\biggr) 
, (100)

де для величини \Theta = \Theta (n;\alpha ;\beta ;x) виконуються нерiвностi  - (1 + \pi ) \leq \Theta \leq 1.
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Доведення. Покладемо у формулi (41) \psi (k) = e - \alpha k, \alpha > 0, i використаємо рiв-
нiсть (69). Будемо мати оцiнки

\~\scrE n(C\alpha ,1\beta ,1 ;x) =
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( \infty \sum 
k=n

e - \alpha k +
\Theta 

n

\infty \sum 
k=1

ke - \alpha (k+n)

\Biggr) 

=
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( 

e - \alpha n

1 - e - \alpha 
+

\Theta 

n

e - \alpha (n+1)

(1 - e - \alpha )2

\Biggr) 
. (101)

Зi (101) випливає (100).
Наслiдок 8 доведено.
Нехай далi \psi (k), що породжують класи C\psi \beta ,1, задовольняють умову \scrD q вигляду (72)

при q \in (0, 1). Тодi з теореми 2 одержуємо такий наслiдок.
Наслiдок 9. Нехай \psi \in \scrD q, q \in (0, 1), \beta \in \BbbR . Тодi для всiх x \in \BbbR при всiх n \in \BbbN таких,

що задовольняють нерiвнiсть (73), має мiсце оцiнка

\~\scrE n(C\psi \beta ,1;x) =
\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \psi (n)\biggl( 2

\pi (1 - q)
+\scrO (1)

\biggl( 
q

n(1 - q)2
+

\varepsilon n
n(1 - q)2

\biggr) \biggr) 
, (102)

в якiй \varepsilon n означено формулою (74), a \scrO (1) — рiвномiрно обмежена за всiма параметрами
величина.

Оцiнка (102) є наслiдком iз теореми 2 i рiвностi (77).
Як зазначено в пп. 3.2, прикладами ядер \Psi \beta (t) вигляду (2), коефiцiєнти \psi (k) яких

задовольняють умову \scrD q, q \in (0, 1), є полiгармонiчнi ядра Пуассона Pq,\beta (\ell , t) вигляду (78),
ядра аналiтичних функцiй \scrP q,\beta (t) вигляду (80), ядра Неймана Nq,\beta (t) вигляду (81) та iн. На
пiдставi формули (102) для класiв згорток C\psi \beta ,1, породжених усiма перелiченими ядрами,
можна записати асимптотичнi рiвностi величин \~\scrE n(C\psi \beta ,1;x), x \in \BbbR , при n \rightarrow \infty . Вперше
асимптотичнi рiвностi для величин вигляду (14) на таких класах одержано в роботi [20].

Приклад функцiї \psi (k) вигляду (82) показує, що теорема 2 дозволяє знаходити сильну
асимптотику величин \~\scrE n(C\psi \beta ,1;x), x \in \BbbR , при n \rightarrow \infty i для випадкiв, коли нi умова \scrD q

вигляду (72), нi умова Кошi \scrC q вигляду (84) не виконуються. В зазначеному випадку на
основi (41), (85) i (86) має мiсце асимптотична при n\rightarrow \infty рiвнiсть

\~\scrE n(C\psi \beta ,1;x) =
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \mathrm{m}\mathrm{a}\mathrm{x}\{ \psi (n), \psi (n+ 1)\} 

1 - 
\biggl( 

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

(\psi (k))
1
k

\biggr) 2
\left(      1 +

\scrO (1)

n

\Biggl( 
1 - 

\biggl( 
\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

(\psi (k))
1
k

\biggr) 2\Biggr) 
\right)      . (103)

Формула (103) є наслiдком iз рiвностi (41) i спiввiдношень (85) – (87). Нехай далi \psi (k)
задовольняє умову \scrD 0 вигляду (88). Для таких \psi виконуються формули (91), (92) i тому з
теореми 2 одержуємо такий наслiдок.

Наслiдок 10. Нехай \psi \in \scrD 0, \beta \in \BbbR i n \in \BbbN . Тодi при всiх x \in \BbbR справджується
асимптотична при n\rightarrow \infty рiвнiсть

\~\scrE n(C\psi \beta ,1;x) =
2

\pi 

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| 
\Biggl( 
\psi (n) +

\scrO (1)

n

\infty \sum 
k=n+1

k\psi (k)

\Biggr) 
, (104)

в якiй \scrO (1) — рiвномiрно обмежена за всiма параметрами величина.
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Зазначимо, що вперше асимптотичнi рiвностi для величини \~\scrE n(C\psi \beta ,1;x) при n \rightarrow \infty iз
бiльш тонкою оцiнкою залишкового члена одержано в [20]. Там також наведено асимпто-
тичнi рiвностi величин (14) на класах узагальнених iнтегралiв Пуассона C\alpha ,r\beta ,1 при \alpha > 0 i
r > 1.

Варто зауважити, що формула (41) iнодi дозволяє записувати асимптотичнi рiвностi для
величин \~\scrE n(C\psi \beta ,1;x) для функцiй \psi , якi задовольняють умову (93) i водночас не задоволь-
няють умови \scrD 0.

Спiвставлення отриманих у цьому пунктi результатiв для величин \~\scrE n(C\psi \beta ,1;x) —точних
верхнiх меж вiдхилень iнтерполяцiйних полiномiв на класах C\psi \beta ,1 iз отриманими в [11]
результатами щодо аналогiчних величин \scrE n(C\psi \beta ,1) для частинних сум Фур’є Sn - 1

\scrE n(C\psi \beta ,1) = \mathrm{s}\mathrm{u}\mathrm{p}
f\in C\psi \beta ,1

\bigm| \bigm| f(x) - Sn - 1(f ;x)
\bigm| \bigm| (105)

показує, що за умови (13) величини (14) i (105) пов’язанi граничним спiввiдношенням

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\~\scrE n(C\psi \beta ,1;x)

2

\bigm| \bigm| \bigm| \bigm| \mathrm{s}\mathrm{i}\mathrm{n} 2n - 1

2
x

\bigm| \bigm| \bigm| \bigm| \scrE n(C\psi \beta ,1) = 1.
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