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On the basis of the gradient holonomic method of investigation of integrability of nonlinear dynami-
cal systems on functional manifolds, we establish the exact Lax-type linearization of the nonlinear
Calogero-Degasperis dynamical system, its bi-Hamiltonicity and construct an infinite hierarchy of functi-
onal independent invariants. As a result, we obtain a compatible pair of the related Poisson structures.

На основi використання градiєнтно-голономного методу дослiдження iнтегровностi нелiнiйних ди-
намiчних систем на функцiональних многовидах встановлено точну лiнеаризацiю типу Лакса нелi-
нiйної динамiчної системи Калоджеро –Дегасперiса, її бiгамiльтоновiсть i побудовано нескiнченну
iєрархiю функцiональних незалежних iнварiантiв. Як наслiдок, отримано сумiсну пару пуассонових
структур.

Закони збереження та лiнеаризацiя. На нескiнченновимiрному гладкому 2\pi -перiодичному
многовидi M \subset C

(\infty )
2\pi (\bfR \bfone ;\bfR \bfone ) розглядаємо нелiнiйну динамiчну систему

ut = uxxx + 3u2uxx + 9uu2x + 3u4ux = K[u], (1)

де t \in \bfR — еволюцiйний параметр, K : M \rightarrow T (M) — гладке за Фреше полiномiальне
векторне поле.

Рiвняння (1) розглянуто в роботi Калоджеро [1] та вiдоме як рiвняння Калоджеро –
Дегасперiса [2]. У працях [3, 4] рiвняння (1) дослiджувалося Лi-груповими методами, було
встановлено iснування нескiнченної iєрархiї однорiдних, локальних, нелокальних i неодно-
рiдних симетрiй. На жаль, встановити гамiльтоновiсть i повну iнтегровнiсть потоку (1) не
вдалося. Варто згадати роботу [5], у котрiй дослiджено повну iнтегровнiсть нелiнiйної ди-
намiчної системи Бюргерса –Кортевега – де Фрiза за допомогою градiєнтно-голономного
алгоритму [5 – 7]. Ця система по формi аналогiчна потоку (1), що стимулює нас застосувати
до нього також цей алгоритм. Як покажемо далi, наше зауваження виявилося слушним,
тобто за допомогою градiєнтно-голономного алгоритму дослiдження iнтегровностi нелi-
нiйних динамiчних систем на функцiональних многовидах ми встановили бiгамiльтоно-
вiсть потоку (1) i його повну iнтегровнiсть.

А саме, використовуючи методи, розвинутi в [5 – 7], покажемо, що для динамiчної
системи (1) на функцiональному многовидi M iснує стандартне зображення типу Лакса,
а сама ця система є цiлком iнтегровним гамiльтоновим потоком зi скiнченною iєрархiєю
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iнволютивних законiв збереження. Використовуючи це зображення типу Лакса, можна
отримати на функцiональному многовидi в явному виглядi солiтоннi розв’язки динамiчної
системи (1). Розглянемо задачу iснування нескiнченної iєрархiї iнварiантiв для нелiнiйної
динамiчної системи (1), застосовуючи функцiонально-операторнi методи з [8 – 10]. З цiєю
метою опишемо асимптотичнi розв’язки лiнiйного рiвняння Нетер –Лакса

\varphi t +K \prime \ast \varphi = 0, (2)

де \varphi \in T \ast (M), штрих позначає похiдну Фреше нелiнiйного локального функцiонала K :
M \rightarrow T (M), а \ast — спряження щодо стандартної бiлiнiйної форми на T \ast (M) \times T (M) .
Оператор K \prime \ast : T \ast (M) \rightarrow T \ast (M) є диференцiальним i має згiдно з (1) вигляд

K \prime \ast =  - 6uuxx  - 3u2x  - 6uux\partial  - 3u4\partial + 3u2\partial 2  - \partial 3. (3)

Це означає, що лiнiйне диференцiальне рiвняння (2) може допускати асимптотичний
розв’язок \varphi \in T \ast (M) у виглядi

\varphi (x, t;\lambda ) = exp[\lambda 3t+ \partial  - 1\sigma ], (4)

де \lambda \in \bfC — комплексний параметр, а операцiю (невизначеного) iнтегрування у випадку
перiодичного многовиду M означено як

\partial  - 1(\cdot )dx =
1

2

\left[  x\int 
x0

(\cdot )dx - 
x0+2\pi \int 
x

(\cdot )dx

\right]  . (5)

Очевидно, що для довiльної фiксованої точки x0 \in \bfR операцiя (5) має необхiдну власти-
вiсть \partial \cdot \partial  - 1 = 1, \partial = \partial /\partial x i

\sigma (x, t;\lambda ) \simeq 
\infty \sum 

j= - 1

\sigma j [u]\lambda 
 - j = \lambda \sigma  - 1 + \sigma 0 + \lambda  - 1\sigma 1 + . . . (6)

— вiдповiдне асимптотичне розвинення при | \lambda | \rightarrow \infty . Пiдставляючи (6) у (4), з (2) знахо-
димо нескiнченну систему рекурентних спiввiдношень

\delta j, - 3  - 6uuxx\delta j,0  - 3u2x\delta j,0 + \partial  - 1\sigma j,t

 - 6uux\sigma j  - 3u4\sigma j + 3u2\sigma j,x  - \sigma j,xx

+ 3u2
\infty \sum 
k=0

\sigma j - k\sigma k  - 3
\infty \sum 
k=0

\sigma j - k\sigma k,x  - 
\infty \sum 
k=0

\infty \sum 
s=0

\sigma j - k - s\sigma k\sigma s = 0 (7)

для всiх j \cup \{  - 3\} \in \bfZ + .
Розв’язуючи послiдовно рекурентнi рiвняння (7), одержуємо

\sigma  - 1 = 1, \sigma 0 = u2, \sigma 1 =  - 2(u2)x, \sigma 2 = 2(uux)x,

\sigma 3 =  - 2(uuxx)x  - 4(u3ux)x  - 
2

3
(u6)x (8)

i т. д.
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З огляду на зображення (4) i вирази (8) отримуємо, що iснує лише один нетривiальний
закон збереження

\gamma =
1

2
\partial  - 1
2\pi (u) :=

1

2

2\pi \int 
0

u2dx. (9)

Запишемо розв’язок (4), який отримуємо з динамiчної системи (1), у виглядi

\varphi (x, t;\lambda ) = \psi exp(\lambda 3t+ \partial  - 1u2), (10)

де функцiя \psi (x, t;\lambda ) := exp[\partial  - 1(\sigma  - u2 + \lambda )], очевидно, є однозначною. Оскiльки \varphi :=
grad \gamma [u] \in T \ast (M), де \gamma є законом збереження динамiчної системи (1), то з (9) маємо, що
grad

\biggl( 
1

2

\int 
u2dx

\biggr) 
= u, тобто

\varphi (x, t;\lambda ) = u. (11)

Пiдставляючи (11) у рiвняння Нетер –Лакса (2), переконуємося, що має мiсце рiвнiсть

\varphi t +K \prime \ast \varphi = ut  - K[u] = 0.

Для подальшого аналiзу зображення (10) використаємо тепер пiдстановку типу Гопфа –
Коула

u =  - \partial 

\partial x
ln\psi =  - \psi  - 1\psi x. (12)

Пiдставимо вираз (12) у рiвняння (1); отримуємо

\psi t + \lambda 3\psi  - \psi xxx = 0, (13)

тобто лiнiйне гiперболiчне рiвняння третього порядку з постiйними коефiцiєнтами. Дина-
мiчна система (1) має розв’язок типу бiжучої хвилi, але не має регулярних солiтонiв i для
неї справджується тiльки один полiномiальний локально визначений закон збереження (9).
Покажемо, що проте для динамiчної системи (1) iснує нескiнченна iєрархiя iнварiантiв,
яким вiдповiдають нерегулярнi аналоги солiтонних розв’язкiв нетривiальної структури.
А саме, ми встановили таке твердження.

Твердження 1. Динамiчна система (1) є гамiльтоновою щодо пуассонової структури
[8, 9]

\vargamma (u) = B\prime \vargamma 0B
\prime \ast = 4u\partial u - \partial u - 1\partial u - 1\partial + 2[\partial , u - 1\partial u],

де B(u, \psi ) = u2  - 
\biggl( 
ln

\biggl( 
\psi 

u

\biggr) \biggr) 
x

, B
\prime 
u = 2u+ \partial x \cdot 

1

u
.

Доведення. Дiйсно, оскiльки оператор \vargamma : T \ast (M) \rightarrow T (M) є косимплектичним, то
досить перевiрити його нетеровiсть

\vargamma \prime K  - \vargamma K \prime \ast  - K \prime \vargamma = 0, (14)

що легко встановити простим обчисленням.
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Наслiдок 1. Динамiчна система (1) припускає еквiвалентний запис
du

dt
=  - \vargamma gradH,

де функцiя Гамiльтона H =
1

2

\int 2\pi 

0
u2dx.

Доведення наслiдку ґрунтується на простому фактi гамiльтоновостi динамiчної систе-
ми (13) i перетворення Гопфа –Коула (12).

Використовуючи iдею полiгамiльтоновостi динамiчної системи (13), легко встановлю-
ємо [6], що динамiчна система (1) є також узгоджено бiгамiльтоновою з таким гамiльтоно-
вим представленням

du

dt
=  - \eta grad \~H,

де iмплектичний нетерiв оператор \eta : T \ast (M) \rightarrow T (M) визначено виразом

\eta = (2u+ \partial u - 1)\partial 3(2u - u - 1\partial )

= 4u\partial 3u - 2u\partial 3u - 1\partial + 2\partial u - 1\partial 3u - \partial u - 1\partial 3u - 1\partial , (15)

а функцiя Гамiльтона \~H =

\int 
u exp( - \partial  - 1u2)dx .

Теж прямим обчисленням переконуємося, що оператор \eta : T \ast (M) \rightarrow T (M), визначений
виразом (15), задовольняє рiвняння нетеровостi вигляду (14).

Отже, тепер можемо сконструювати нескiнченну iєрархiю квазiлокальних iнварiантiв
\gamma j \in D(M), j \in \bfZ +, динамiчної системи (1), де, за визначенням,

grad \gamma j+1 := (\vargamma  - 1\eta )j grad \gamma j , j \in \bfZ +, \gamma j := \~H \in D(M).

Беручи до уваги рiвнiсть

\varphi = u = \psi (x, t;\lambda ) exp(\lambda x+ \lambda 3t+ \partial  - 1u2),

знаходимо, що
(u/\psi )x = (\lambda + u2)

u

\psi 
,

а це еквiвалентне лiнiйнiй спектральнiй задачi типу Лакса

\psi x =
\Bigl( ux
u

 - u2  - \lambda 
\Bigr) 
\psi . (16)

Одержанi лiнiйнi системи рiвнянь (13) i (16) є сумiсними та еквiвалентними динамiчнiй
системi (1).

Твердження 2. Динамiчна система (1) є повнiстю iнтегровним бiгамiльтоновим пото-
ком на функцiональному многовидi M, представлення типу Лакса якого задано системою
рiвнянь (13), (16).

Висновки. У цiй статтi на прикладi нелiнiйної динамiчної системи Калоджеро –Дегас-
перiса продемонстровано ефективнiсть градiєнтно-голономного алгоритму як критерiю
повної iнтегровностi нелiнiйних динамiчних системнафункцiональнихмноговидах. Зокре-
ма показано, що як побiчний результат ми також отримуємо вiдповiдне представлення типу
Лакса в явному виглядi, що в багатьох випадках є визначальним для аналiтичного дослi-
дження розв’язкiв заданої нелiнiйної динамiчної системи.
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