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By using asymptotic methods of the theory of differential equations and the method of Newton’s diagrams,
we investigate the problem of construction of an asymptotic solution of the two-point boundary-value
problem for a linear singularly perturbed system of differential equations in the case of a singular boundary
bundle of matrices that does not contain a regular kernel.

З використанням асимптотичних методiв у теорiї диференцiальних рiвнянь i методу дiаграм Нью-
тона дослiджено питання побудови асимптотичного розв’язку двоточкової крайової задачi для
лiнiйної сингулярно збуреної системи диференцiальних рiвнянь у випадку сингулярної граничної
в’язки матриць, яка не мiстить регулярного ядра.

1. Постановка задачi. Розглянемо двоточкову крайову задачу

\varepsilon hB(t; \varepsilon )
dx

dt
= A(t; \varepsilon )x+ f(t; \varepsilon ) exp

\left(  \varepsilon  - h

t\int 
0

\alpha (\tau )d\tau 

\right)  , (1)

Mx(0; \varepsilon ) +Nx(T ; \varepsilon ) = p(\varepsilon ), (2)

у якiй x(t; \varepsilon ) — шуканий n-вимiрний вектор, A(t; \varepsilon ), B(t; \varepsilon ) — квадратнi матрицi n-
го порядку, елементи яких є дiйсними або комплекснозначними функцiями, M, N —
квадратнi матрицi n-го порядку зi сталими елементами, f(t; \varepsilon ) —задана n-вимiрна вектор-
функцiя, компонентами якої є дiйснi або комплекснозначнi функцiї, \alpha (t) — скалярна
функцiя, p(\varepsilon ) — заданий n-вимiрний вектор, t \in [0;T ], h \in N, \varepsilon \in (0; \varepsilon 0], \varepsilon 0 \ll 1.
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Задачу (1), (2) дослiджуватимемо за виконання таких умов:
1\circ . Матрицi A(t; \varepsilon ), B(t; \varepsilon ) i вектор f(t; \varepsilon ) допускають на вiдрiзку [0;T ] рiвномiрнi

асимптотичнi розвинення за степенями малого параметра \varepsilon :

A(t; \varepsilon ) \sim 
\sum 
k\geq 0

\varepsilon kAk(t), B(t; \varepsilon ) \sim 
\sum 
k\geq 0

\varepsilon kBk(t), f(t; \varepsilon ) \sim 
\sum 
k\geq 0

\varepsilon kfk(t).

2\circ . Елементи матриць Ak(t) =
\bigm\| \bigm\| \bigm\| a(k)ij (t)

\bigm\| \bigm\| \bigm\| n
1
, Bk(t) =

\bigm\| \bigm\| \bigm\| b(k)ij (t)
\bigm\| \bigm\| \bigm\| n
1
, k = 0, 1, . . . , i компонен-

ти векторiв fk(t) =
\Bigl( 
f
(k)
1 (t); f

(k)
2 (t); . . . ; f

(k)
n (t)

\Bigr) T
, k = 0, 1, . . . , нескiнченно диференцiйовнi

на вiдрiзку [0;T ] :

a
(k)
ij (t) \in C\infty [0;T ]; b

(k)
ij (t) \in C\infty [0;T ], f

(k)
i (t) \in C\infty [0;T ], i, j = 1, n, k = 0, 1, . . . .

3\circ . Гранична в’язка матриць

L(t;\lambda ) = A0(t) - \lambda B0(t) (3)

системи (1) є сингулярною для всiх t \in [0;T ] i зберiгає сталу кронекерову структуру
на вiдрiзку [0;T ], причому в’язка матриць (3) має по одному мiнiмальному iндексу для
стовпцiв i рядкiв: p \geq 0 для стовпцiв i q = n - p - 1 для рядкiв.

4\circ . Вектор p(\varepsilon ) можна зобразити у виглядi асимптотичного ряду p(\varepsilon ) \sim 
\sum 

k\geq 0
\varepsilon kpk.

5\circ .
\Bigl( 
B1(t) \~\varphi (t); \~\psi (t))

\Bigr) 
\not = 0 \forall t \in [0;T ], де \~\varphi (t), \~\psi (t) —елементи нуль-простору матриць

B0(t) i B\ast 
0(t) вiдповiдно.

На сьогоднi досить добре розвинута теорiя побудови асимптотики загального розв’язку
системи (1). Як вiдомо, перший результат отримав у 1908 р. Birkgoff [1], увiвши асимпто-
тичнi формули, якi зображають лiнiйно незалежнi розв’язки скалярного диференцiального
рiвняння n-го порядку у випадку простих коренiв вiдповiдного характеристичного рiвнян-
ня. У 1917 р. Тамаркiн [2] узагальнив цей результат на систему вигляду (1), у якiй при
похiднiй знаходиться одинична матриця, тобто B(t; \varepsilon ) = E.

Асимптотичнi формули, отриманi цими вченими, виявилися настiльки ефективними,
що з’явився iнтерес щодо їхнього узагальнення й для випадку кратного спектра головної
матрицi A0(t). Однак ця задача виявилася дуже складною i довгий час залишалася не
розв’язаною.

У 1936 р. Hukuhara [3], а пiзнiше, незалежно вiд нього, Фещенко [4, 5] довели теореми
про асимптотичне розщеплення системи вигляду (1) при B(t; \varepsilon ) = E i h = 1, головна
матриця якої має на заданому вiдрiзку кiлька iзольованих одна вiд одної груп власних
значень, на вiдповiдну кiлькiсть пiдсистемменшої розмiрностi, головнi матрицi якихмають
лише власнi значення цих груп.Цi теореми дозволяють звести задачу побудови асимптотич-
них розв’язкiв системи (1) за наявностi у матрицi A0 кiлькох iзольованих власних значень
до системи з одним власним значенням головного оператора. Проте проблема побудови
асимптотики загального розв’язку цих систем у випадку, коли головна матриця має кратне
власне значення, залишалася не розв’язаною.

У 1956 р. Turritin [6] для розв’язання проблеми кратного спектра головного оператора
запропонував застосовувати так зване зрiзаюче перетворення, за допомогою якого при
певних умовах систему з кратним спектром головного оператора можна звести до системи,
головна матриця якої має простий спектр. Такий самий метод пропонує i Wasow у [7].
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I лише в 1960-х рр. Шкiль розробив метод побудови асимптотичних розвинень лiнiйно
незалежних розв’язкiв однорiдної системи вигляду

\varepsilon h
dx

dt
= A(t, \varepsilon )x

у випадку, коли головна матриця A0(t) має кратне власне значення, якому вiдповiдають
кратнi елементарнi дiльники [8 – 10]. Виявилося, що, на вiдмiну вiд випадку простого
спектра головного оператора, у випадку кратного спектра вiдповiднi розвинення необхiд-
но будувати за дробовими степенями малого параметра. Зокрема, за певних обмежень
на збурювальну матрицю A1(t) всi n шуканих розв’язкiв можна побудувати у виглядi
розвинень за степенями \varepsilon 

1
p , де p — кратнiсть власного значення матрицi A0(t).

У зв’язку з цим виникла проблема визначення дробових показникiв степенiв мало-
го параметра, за якими потрiбно будувати вiдповiднi розвинення, залежно вiд структури
збурювальних матриць Ak(t), k = 1, 2, . . . . Цю проблему в 1980-х рр. розв’язала Жукова
[11], розглянувши її у найбiльш загальнiй постановцi i використовуючи операторнi методи,
вивела вiдповiдне рiвняння розгалуження i застосувала до нього метод дiаграм Ньютона.

У 1990-х рр. результати, отриманi в працях Шкiля i Жукової, узагальнив Яковець на
лiнiйну сингулярно збурену систему (1). Цi результати опублiковано у 2000 р. у спiльнiй мо-
нографiї Самойленка, Шкiля та Яковця [12]. У нiй виведено бiльш компактнi та зручнi для
практичного використання формули, якi виражають коефiцiєнти рiвняння розгалуження, а
також дослiджено систему (1) у випадках, коли матриця B(t; \varepsilon ) тотожно вироджується або
вироджується при \varepsilon \rightarrow 0. Важливе значення цiєї монографiї полягає також у тому, що в нiй
систему (1) дослiджено не лише у випадку, коли гранична в’язка матриць (3) системи (1)
є регулярною, але й коли вiдповiдна в’язка матриць (3) є сингулярною.

Результати, отриманi в [12], мають вагоме значення для дослiдження диференцiально-
алгебраїчних систем рiвнянь, оскiльки такi системи можуть бути зведенi до системи ви-
гляду (1) з тотожно виродженою матрицею при старшiй похiднiй. Значнi результати при
дослiдженнi диференцiально-алгебраїчних систем одержано в роботах [13 – 18].

Результати, здобутi в [12], далиможливiсть для систем вигляду (1) розглядатипочаткову
та крайову задачi. Крайову задачу вигляду (1), (2) дослiджено в [19 – 21] у випадку, коли
в’язка матриць (3) є регулярною. У [19] розглянуто випадок, коли вiдповiдна гранична
в’язка матриць (3) має лише простi скiнченнi та нескiнченнi елементарнi дiльники, а в
[20, 21] — коли гранична в’язка матриць має кратнi елементарнi дiльники. Зокрема, в [20]
розглянуто випадок, коли гранична в’язка матриць має один скiнченний елементарний
дiльник кратностi n  - 1 i один простий нескiнченний елементарний дiльник, а в [21] —
коли гранична в’язка матриць має по одному кратному скiнченному та нескiнченному
елементарному дiльнику кратностi p i q = n  - p вiдповiдно. Також у [22] розглянуто
крайову задачу для системи другого порядку.

У цiй статтi крайову задачу (1), (2) розглядаємо у випадку, коли гранична в’язка мат-
риць (3) є сингулярною i не мiстить регулярного “ядра”, при цьому має по одному мiнiмаль-
ному iндексу для стовпцiв i рядкiв. Крайову задачу у сингулярному випадку розглянуто
вперше.

2. Побудова формального розв’язку лiнiйної однорiдної системи. Використовуючи ре-
зультати з [12], запишемо формальний розв’язок системи (1). Для цього спочатку знайдемо
формальний розв’язок однорiдної системи
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\varepsilon hB(t; \varepsilon )
dx

dt
= A(t; \varepsilon )x, (4)

яка вiдповiдає системi (1).
Згiдно з [12, c. 212] умова 5\circ забезпечує те, що при досить малих значеннях пара-

метра \varepsilon > 0 матриця B(t; \varepsilon ) є неособливою, а тому фундаментальна система розв’язкiв
системи (4) складається з n лiнiйно незалежних частинних розв’язкiв.

Також при виконаннi умови 5\circ згiдно з [12] многочлен

L01(\lambda 0(t)) =  - 
n\sum 

k=0

\lambda n - k
0

\widehat Mk,1,

де

\widehat Mk,1 =
\Bigl( 
P 1
k,0(GK;G \~B) \~\varphi (t); \~\psi (t)

\Bigr) 
 - 
\Bigl( 
P 1
k,1(GK;G \~B) \~\varphi (t); \~\psi (t)

\Bigr) 
, k = 0, 1, . . . , n, (5)

є многочленом n-го степеня. Отже, з рiвняння

L01(\lambda 0(t)) = 0 (6)

можна знайти n значень функцiї \lambda 0(t), враховуючи їхню кратнiсть. Тому припустимо, що
крiм умов 1\circ – 5\circ виконується умова

6\circ . Рiвняння (6) має один корiнь \lambda 0(t) кратностi n, який задовольняє умову\Bigl( \Bigl( 
\Gamma 1(t;\lambda 0(t))H(\lambda 0(t))\Gamma 1(t;\lambda 0(t)) - \Gamma 2(t;\lambda 0(t)))\varphi (t;\lambda 0(t))

\Bigr) 
;\psi (t;\lambda 0(t))

\Bigr) 
\not = 0 \forall t \in [0;T ],

де \varphi (t;\lambda 0(t)), \psi (t;\lambda 0(t)) —елементи нуль-простору матриць L(t;\lambda 0(t)) = A0(t) - \lambda 0(t)B0(t)
i L\ast (t;\lambda 0(t)) = (A0(t) - \lambda 0(t)B0(t))

\ast вiдповiдно, а H(\lambda 0(t)) — матриця, напiвобернена до
матрицi L(t;\lambda 0(t)).

У рiвностi (5) P k
ij(GK;G \~B) — вираз, який вiдрiзняється вiд виразу \~P k

ij(GK;G \~B) лише
вiдсутнiстю у всiх його доданках першого множника G(t), де G(t) — матриця, напiв-
обернена до матрицi B0(t). Водночас \~P k

ij(GK;G \~B) — сума всiх можливих добуткiв i

множникiв вигляду GKri , GKr2 , . . . , GKri та j множникiв вигляду G \~Bs1 , G
\~Bs2 , . . . , G

\~Bsj ,
сума iндексiв яких r1 + r2 + . . . + ri + s1 + s2 + . . . + sj = k, rl \in N\{ 0\} , l = 1, i, sl \in N,
l = 1, j.

В умовi 6\circ i формулi (5) \Gamma k(t;\lambda 0(t)), ks(t), \~Bs(t) —оператори, визначенi за формулами

\Gamma k(t;\lambda 0(t)) = Ak(t) - \lambda 0(t)Bk(t) - Bk - h(t)
d

dt
, k = 1, 2, . . . , (7)

Ks(t) = As(t) - Bs - h(t)
d

dt
, s = 0, 1, . . . 11, (8)

\~Bs(t) = Bs(t), s = 1, 2, . . . . (9)

Вважатимемо також, що в’язка матриць L(t, \lambda 0(t)) має канонiчний вигляд

L(t;\lambda 0(t)) = diag
\bigl\{ 
L1(t;\lambda 0(t)), L2(t;\lambda 0(t))

\bigr\} 
,
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де

L1(t;\lambda 0(t)) =

\left(     
\lambda 0(t) 1 \cdot \cdot \cdot 0 0
0 \lambda 0(t) \cdot \cdot \cdot 0 0
...

... . . . ...
...

0 0 \cdot \cdot \cdot \lambda 0(t) 1

\right)     ,

L2(t;\lambda 0(t)) =

\left(       
 - \lambda 0(t) 0 \cdot \cdot \cdot 0

1  - \lambda 0(t) \cdot \cdot \cdot 0
...

... . . . ...
0 0 \cdot \cdot \cdot  - \lambda 0(t)
0 0 \cdot \cdot \cdot 1

\right)       .
(10)

Зауваження 1. Якщов’язкаматриць L(t;\lambda 0(t)) немає структурногопредставлення (10),
то тодi згiдно з [12] систему (1) можна звести до системи, гранична в’язка якої має таке
представлення. Для цього потрiбно систему (1) помножити злiва на матрицю P (t) i в отри-
манiй системi зробити замiну x = Q(t)y, де P (t) i Q(t) — перетворювальнi матрицi, якi
зводять в’язку матриць (3) до найпростiшого вигляду (10).

Якщо в’язка матриць (3) має канонiчний вигляд (10), то тодi матриця H(\lambda 0(t)) має
структуру

H(\lambda 0(t)) = diag
\bigl\{ 
L+
1 (t;\lambda 0(t));L

+
2 (t;\lambda 0(t))

\bigr\} 
,

де

L+
1 (t;\lambda 0(t)) =

\left(       
0 0 \cdot \cdot \cdot 0 0
1 0 \cdot \cdot \cdot 0 0

\lambda 0(t) 1 \cdot \cdot \cdot 0 0
...

... . . . ...
...

\lambda p - 1
0 (t) \lambda p - 2

0 (t) \cdot \cdot \cdot \lambda 0(t) 1

\right)       ,

L+
2 (t;\lambda 0(t)) =

\left(       
0 1 \lambda 0(t) \cdot \cdot \cdot \lambda q - 1

0 (t)

0 0 1 \cdot \cdot \cdot \lambda q - 2
0 (t)

...
...

... . . . ...
0 0 0 \cdot \cdot \cdot \lambda 0(t)
0 0 0 \cdot \cdot \cdot 1

\right)       .
Тодi згiдно з [12], використовуючи метод дiаграм Ньютона, при виконаннi умов 1\circ – 6\circ 

можна побудувати n формальних розв’язкiв першої групи, якi утворюють фундаментальну
систему розв’язкiв системи (4), у виглядi

x(j)(t; \varepsilon ) = v(j)(t; \varepsilon ) exp

\left(  \varepsilon h t\int 
t0

\Bigl( 
\lambda 0(\tau ) + \lambda (j)(\tau ; \varepsilon )

\Bigr) 
d\tau 

\right)  , j = 1, n, (11)

де v(j)(t; \varepsilon ), j = 1, n,— n-вимiрнi вектор-функцiї, а \lambda (j)(t; \varepsilon ), j = 1, n,—скалярнi функцiї,
якi зображаються у виглядi

v(j)(t; \varepsilon ) = \varphi (t;\lambda 0(t)) +
+\infty \sum 
s=1

\varepsilon 
s
n v(j)s (t);\lambda (t; \varepsilon ) =

+\infty \sum 
s=1

\varepsilon 
s
n\lambda (j)s (t). (12)
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Коефiцiєнти розвинень (12) згiдно з [12, с. 211] визначаємо за формулами

\lambda 
(j)
1 (t) = n

\sqrt{} \bigm| \bigm| \bigm| \bigm| L02(\lambda 0(t)

Ln,1(\lambda 0(t))

\bigm| \bigm| \bigm| \bigm| exp\biggl( in
\biggl( 
arg

\biggl( 
 - L02(\lambda 0(t))

Ln,1(\lambda 0(t))

\biggr) \biggr) 
+ 2\pi (j  - 1)

\biggr) 
, j = 1, n, (13)

\lambda 
(j)
k (t) =  - 

g
(j)
k (t)

n
\Bigl[ 
\lambda 
(j)
1 (t)

\Bigr] n - 1
Ln,1(\lambda 0(t))

, j = 1, n, (14)

де

g
(j)
k =

[ 2n+k - 1
n ]\sum 

s=2

2n+k - 1 - ns\sum 
i=1

Li,s

\Bigl[ 
P 2n+k - 1 - ns
i (\lambda )

\Bigr] 
+

n+k - 1\sum 
i=n+1

Li,1

\Bigl[ 
Pn+k - 1
i (\lambda )

\Bigr] 
+ Ln,1

\Bigl[ 
\^Pn+k - i
n (\lambda )

\Bigr] 
(15)

— вiдомий вираз, в якому \^Pn+k - i
n (\lambda ) — частина виразу Pn+k - 1

n (\lambda ), яка не мiстить \lambda (j)k (t),
j = 1, n, k = 1, 2, . . . ;

v
(j)
k (t) =

[ kn ]\sum 
s=0

k - ns\sum 
i=0

H(\lambda 0(t))\~Li,s

\Bigl[ 
P k - ns
i (\lambda )

\Bigr] 
\varphi (t;\lambda 0(t)), j = 1, n, k = 1, 2, . . . . (16)

У формулах (13) – (16)

L0,s(\lambda 0(t)) =

s\sum 
j=1

( - 1)j
\bigl( 
P s
j (H\Gamma )\varphi (t;\lambda 0(t));\psi (t;\lambda 0(t)

\bigr) 
, s = 1, 2, . . . ,

Lk,s[\lambda 
k] =

[ sh ]\sum 
i - 0

s - hi\sum 
j=0

( - 1)jDi[\lambda k]
\Bigl( 
P s - hi
i+k,j(HB;H\Gamma )\varphi (t;\lambda 0(t));\psi (t;\lambda 0(t))

\Bigr) 
, k, s \geq 1,

\~L0s =
s\sum 

j=1

( - 1)j \~P s
j (H\Gamma ), s \geq 1,

\~Lks[\lambda 
k] =

[ sh ]\sum 
i=0

s - ih\sum 
j=0

( - 1)jDi[\lambda k]P s - hi
i+k,j(HB;H\Gamma ), k \geq 1, s \geq 0,

де \~P s
j (H\Gamma ) — сума всiх можливих добуткiв j множникiв H\Gamma s1 , H\Gamma s2 , . . . ,H\Gamma sj таких, що

s1 + s2 + . . . + sj = s, sj \in N, а вирази P s
j (H\Gamma ) вiдрiзняються вiд виразiв \~P s

j (H\Gamma ) лише
вiдсутнiстю в усiх доданках першого множника H(\lambda 0(t)).

Зауваження 2. Зазначимо, що згiдно з [12, c. 201] Lk,1(\lambda 0(t)) = 0, k = 1, n - 1,
Ln,1(\lambda 0(t)) \not = 0.

Перейдемо тепер до побудови частинного розв’язку неоднорiдної системи (1).
3. Побудова частинного формального розв’язку неоднорiдної системи. Частинний роз-

в’язок системи (1) згiдно з [12] шукатимемо у виглядi

x(t; \varepsilon ) = \varepsilon  - mw(t; \varepsilon ), (17)
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де m —натуральне число, яке потрiбно визначити, а w(t; \varepsilon ) — n-вимiрна вектор-функцiя,
яка зображається у виглядi формального ряду

w(t; \varepsilon ) =
+\infty \sum 
k=0

\varepsilon kwk(t) exp

\left(  \varepsilon  - h

t\int 
0

\alpha (\tau )d\tau 

\right)  . (18)

Якщо виконуються умова
7\circ . L0s(\alpha (t)) \equiv 0 при s < m \leq h; L0m(\alpha (t)) \not = 0 \forall t \in [0;T ],

то згiдно з [12, c. 234 – 235] коефiцiєнти wk(t), k = 0, 1, . . . , розвинень (18) визначаються
за формулами

wk(t) =

k\sum 
s=0

[ k - s
h

]\sum 
i=0

k - s - hi\sum 
j=0

( - 1)j
diCs(t)

dti
\~P k - s - hi
i,j (HB;H\Gamma )\varphi (\alpha (t))

+
k - m - 1\sum 
j=0

k - m - j\sum 
i=1

( - 1)i+1H(\alpha (t))P k - m - j
i (H\Gamma )fj(t) - H(\alpha (t))fk - m(t), k = 0, 1, . . . ,

(19)

C0(t) =  - (f0(t);\psi (\alpha (t))

L0m(\alpha (t))
,

Ck(t) =  - 1

L0m(\alpha (t))

\left[   m+k\sum 
s=m+1

[ sh ]\sum 
i=0

diCm+k - s(t)

dti
\partial iL0,s - hi(\alpha (t))

\partial \alpha i
+ dk(t)

\right]   , k \geq 1,

dk(t) =

k - 1\sum 
j=0

k - j\sum 
i=1

( - 1)i+1
\Bigl( 
P k - j
i (\Gamma H)fj(t);\psi (\alpha (t)) - (fk(t);\psi (\alpha (t))

\Bigr) 
, k = 0, 1, . . . , (20)

де \varphi (\alpha (t)), \psi (\alpha (t)) — власнi вектори в’язок матриць L(t;\alpha (t)) i L\ast (t; d(t)) вiдповiдно,
H(\alpha (t)) — матриця, напiвобернена до матрицi L(t;\alpha (t)).

4. Побудова формального розв’язку крайової задачi. Перейдемо тепер до побудови
формального розв’язку крайової задачi (1), (2).

При виконаннi умов 1\circ – 7\circ формальний розв’язок неоднорiдної системи (1) зобразимо
у виглядi

x(t; \varepsilon ) = \varepsilon  - m
n\sum 

j=1

cj(\varepsilon )v
(j)(t; \varepsilon ) exp

\left(  \varepsilon  - h

t\int 
t0

\Bigl( 
\lambda 0(\tau ) + \lambda (j)(\tau ; \varepsilon )

\Bigr) 
d\tau 

\right)  
+ \varepsilon  - m\omega (t; \varepsilon ) exp

\left(  \varepsilon  - h

t\int 
0

\alpha (\tau )d\tau 

\right)  , (21)

де cj(\varepsilon ) — вирази, якi можна зобразити у виглядi формальних рядiв

cj(\varepsilon ) =
+\infty \sum 
s=0

\varepsilon 
s
n c(j)s , (22)

де c(j)s — невiдомi сталi, якi потрiбно визначити.
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Припустимо, що крiм умов 1\circ – 7\circ виконується умова

8\circ . Re

\Biggl( 
\lambda 0(t) +

nh - 1\sum 
k=1

\varepsilon 
k
n\lambda 

(j)
k (t)

\Biggr) 
< 0, j = 1, l \forall t \in [0;T ],

Re

\Biggl( 
\lambda 0(t) +

nh - 1\sum 
k=1

\varepsilon 
k
n\lambda 

(j)
k (t)

\Biggr) 
> 0, j = l + 1, n, Re(\alpha (t)) < 0 \forall t \in [0;T ].

Тодi рiвнiсть (21) наведемо у виглядi

x(t; \varepsilon ) = \varepsilon  - m
l\sum 

j=1

cj(\varepsilon )v
(j)(t; \varepsilon ) exp

\left(  \varepsilon  - h

t\int 
0

\Bigl( 
\lambda 0(\tau ) + \lambda (j)(\tau ; \varepsilon )

\Bigr) 
d\tau 

\right)  
+ \varepsilon  - m

n\sum 
j=l+1

cj(\varepsilon )v
(j)(t; \varepsilon ) exp

\left(  \varepsilon  - h

t\int 
T

\Bigl( 
\lambda 0(\tau ) + \lambda (j)(\tau ; \varepsilon )

\Bigr) 
d\tau 

\right)  
+ \varepsilon  - m\omega (t; \varepsilon ) exp

\left(  \varepsilon  - h

t\int 
0

\alpha (\tau )d\tau 

\right)  . (23)

У формулi (22) коефiцiєнти c
(j)
k , j = 1, n, k = 0, 1, . . . , визначатимемо таким чином,

щоб вектор (23) задовольняв крайову умову (2). Для цього пiдставимо (23) у (2). У результатi
отримаємо

M

l\sum 
j=1

\varepsilon  - mcj(\varepsilon )v
(j)(0; \varepsilon )

+M

n\sum 
j=l+1

\varepsilon  - mcj(\varepsilon )v
(j)(0; \varepsilon ) exp

\left(  \varepsilon  - h

0\int 
T

\Bigl( 
\lambda 0(\tau ) + \lambda (j)(\tau ; \varepsilon )

\Bigr) 
d\tau 

\right)  
+N

n\sum 
j=l+1

\varepsilon  - mcj(\varepsilon )v
(j)(T ; \varepsilon ) + \varepsilon  - mM\omega (0; \varepsilon ) + \varepsilon  - mN\omega (T ; \varepsilon ) exp

\left(  \varepsilon  - h

T\int 
0

\alpha (\tau )d\tau 

\right)  
+N

l\sum 
j=1

\varepsilon  - mcj(\varepsilon )v
(j)(T ; \varepsilon ) exp

\left(  \varepsilon  - h

T\int 
0

\Bigl( 
\lambda 0(\tau ) + \lambda (j)(\tau ; \varepsilon )

\Bigr) 
d\tau 

\right)  = p(\varepsilon ). (24)

Оскiльки Re

\biggl( 
\lambda 0(t) +

\sum nh - 1

k=1
\varepsilon 

k
n\lambda 

(j)
k (t)

\biggr) 
< 0, j = 1, l \forall t \in [0;T ], то множники

exp

\left(  \varepsilon  - h

T\int 
0

\Bigl( 
\lambda 0(\tau ) + \lambda (j)(\tau ; \varepsilon )

\Bigr) 
d\tau 

\right)  , j = 1, l,
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будуть експоненцiально малими згiдно з [23], тому у формулi (24) ними можна знехтувати.
Аналогiчно, оскiльки Re

\biggl( 
\lambda 0(t) +

\sum nh - 1

k=1
\varepsilon 

k
n\lambda 

(j)
k (t)

\biggr) 
> 0, j = l + 1, n, Re(\alpha (t)) < 0 \forall t \in 

[0;T ], то тодi множники

exp

\left(   - \varepsilon  - h

T\int 
0

(\lambda 0(\tau ) + \lambda (j)(\tau ; \varepsilon )d\tau 

\right)  , j = l + 1, n, i exp

\left(  \varepsilon  - h

T\int 
0

\alpha (\tau )d\tau 

\right)  
є експоненцiально малими, тому в рiвностi (24) ними також можна знехтувати.

Отже, внаслiдок отримуємо

M
l\sum 

j=1

\varepsilon  - mcj(\varepsilon )v
(j)(0; \varepsilon ) + \varepsilon  - mMw(0; \varepsilon ) +N

h\sum 
j=l+1

\varepsilon  - mcj(\varepsilon )v
(j)(T ; \varepsilon ) = p(\varepsilon )

або
l\sum 

j=1

Mcj(\varepsilon )v
(j)(0; \varepsilon ) +

n\sum 
j=l+1

Ncj(\varepsilon )v
(j)(T ; \varepsilon ) = \varepsilon mp(\varepsilon ) - M\omega (0; \varepsilon ).

Перетворимо останню рiвнiсть:

+\infty \sum 
k=0

\varepsilon 
k
n

\left(  l\sum 
j=1

k\sum 
i=0

c
(j)
i Mv

(j)
k - i(0)

\right)  +
+\infty \sum 
k=0

\varepsilon 
k
n

\left(  n\sum 
j=l+1

k\sum 
i=o

c
(j)
i Nv

(j)
k - i(T )

\right)  
=

+\infty \sum 
k=m

\varepsilon k - mpk - m  - 
+\infty \sum 
k=0

\varepsilon kMwk(0).

Позначивши \varepsilon 1
n = \mu , одержимо

+\infty \sum 
k=0

\mu k

\left(  l\sum 
j=1

k\sum 
i=0

c
(j)
i Mv

(j)
k - i(0)

\right)  +

+\infty \sum 
k=0

\mu k

\left(  n\sum 
j=l+1

k\sum 
i=0

c
(j)
i Nv

(j)
k - i(T )

\right)  
=

+\infty \sum 
k=m

\mu n(k - m)pk - m  - 
+\infty \sum 
k=0

\mu knMwk(0).

Прирiвнюючи в останнiй рiвностi коефiцiєнти при однакових степенях параметра \mu ,
дiстаємо

l\sum 
j=1

c
(j)
0 Mv

(j)
0 (0) +

n\sum 
j=l+1

c
(j)
0 Nv

(j)
0 (T ) =  - Mw0(0); (25)

k\sum 
j=0

l\sum 
j=1

c
(j)
i Mv

(j)
k - i(0) +

k\sum 
i=0

n\sum 
j=l+1

c
(j)
i Nv

(j)
k - i(T ) = p k - m

n
 - Mw k

n
(0), k = 1, 2, . . . . (26)

Покажемо, що з систем (25), (26) рекурентним чином можна визначити коефiцiєнти
c
(j)
k , k = 0, 1, . . . , j = 1, n.
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Представимо систему (25) у векторно-матричному виглядi

W0C0 =  - M\omega 0(0), (27)

де Wk =
\Bigl[ 
Mv

(1)
k (0), . . . ,Mv

(l)
k (0), Nv

(l+1)
k (T ), . . . , Nv

(k)
k (T )

\Bigr] 
— квадратна матриця n-го по-

рядку, а Ck =
\Bigl( 
C

(1)
k ;C

(2)
k ; , . . . ;C

(n)
k

\Bigr) T
— n-вимiрний вектор, k = 0, 1, . . . .

Припустимо, що виконується умова
9\circ . detW0 \not = 0.
Тодi з рiвняння (27) отримуємо

C0 =  - W - 1
0 Mw0(0). (28)

З рiвняння (26) видiлимо доданки, якi мiстять коефiцiєнти C(j)
k , j = 1, n :

l\sum 
j=1

Mv
(j)
0 (0)c

(j)
k +

n\sum 
j=l+1

Nv
(j)
0 (T )c

(j)
k

= p k - m
n

 - Mw k
n
(0) - 

k - 1\sum 
i=o

l\sum 
j=1

c
(j)
i Mv

(j)
k - i(0) - 

k - 1\sum 
i=0

n\sum 
j=l+1

c
(j)
i Nv

(j)
k - i(T ), k = 1, 2, . . . ,

або

W0Ck =  - 
k - 1\sum 
i=0

Wk - iCi + p k - m
n

 - Mw k
n
(0), k = 1, 2, . . . .

Враховуючи умову 9\circ , з останньої рiвностi отримаємо

Ck =W - 1
0

\Biggl( 
p k - m

n
 - Mw k

n
(0) - 

k - 1\sum 
i=0

Wk - iCi

\Biggr) 
, k = 1, 2, . . . . (29)

Отже, довели таку теорему.
Теорема 1. Якщо виконуються умови 1\circ – 9\circ , то крайова задача (1), (2) має формальний

розв’язок, який зображується у виглядi

x(t; \varepsilon ) = \varepsilon  - m
+\infty \sum 
s=0

\varepsilon 
s
n

\left(  l\sum 
j=1

s\sum 
i=0

c(j)s v
(j)
s - i(t)

\right)  exp

\left(  \varepsilon  - h

t\int 
0

\Biggl( 
\lambda 0(\tau ) +

+\infty \sum 
s=1

\varepsilon 
s
n\lambda (j)s (\tau )

\Biggr) 
d\tau 

\right)  
+ \varepsilon  - m

+\infty \sum 
s=0

\varepsilon 
s
n

\left(  h\sum 
j=l+1

s\sum 
i=0

c
(j)
i v

(j)
s - i(t)

\right)  exp

\left(  \varepsilon  - h

t\int 
T

\Biggl( 
\lambda 0(\tau ) +

+\infty \sum 
s=1

\varepsilon 
s
n\lambda (j)s (\tau )

\Biggr) 
d\tau 

\right)  
+ \varepsilon  - m

+\infty \sum 
s=0

\varepsilon sws(t) exp

\left(  \varepsilon  - h

t\int 
0

\alpha (\tau )d\tau 

\right)  ,
де коефiцiєнти v(j)k (t), \lambda 

(j)
k (t), \omega k(t), c

(j)
k , k = 0, 1, . . . , j = 1, n, визначено за формулами (6),

(13), (14), (16), (19), (28), (29).
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5. Асимптотичнi властивостi побудованого формального розв’язку крайової задачi. З
використанням методiв робiт [12, 19, 24] доведемо, що при виконаннi умов 1\circ – 9\circ побу-
дований формальний розв’язок є асимптотичним розвиненням точного розв’язку x(t; \varepsilon )
крайової задачi (1), (2) при \varepsilon  - \rightarrow 0. Для цього побудуємо r -наближення побудованого
формального розв’язку

xr(t; \varepsilon ) = \varepsilon  - m
r\sum 

s=0

\varepsilon 
s
n

\left(  l\sum 
j=1

s\sum 
i=0

c(j)s v
(j)
s - i(t)

\right)  exp

\left(  \varepsilon  - h

t\int 
0

\Biggl( 
\lambda 0(\tau ) +

r\sum 
s=1

\varepsilon 
s
n\lambda (j)s (\tau )

\Biggr) 
d\tau 

\right)  
+ \varepsilon  - m

r\sum 
s=0

\varepsilon 
s
n

\left(  h\sum 
j=l+1

s\sum 
i=0

c
(j)
i v

(j)
s - i(t)

\right)  exp

\left(  \varepsilon  - h

t\int 
T

\Biggl( 
\lambda 0(\tau ) +

r\sum 
s=1

\varepsilon 
s
n\lambda (j)s (\tau )

\Biggr) 
d\tau 

\right)  
+ \varepsilon  - m

r\sum 
s=0

\varepsilon sws(t) exp

\left(  \varepsilon  - h

t\int 
0

\alpha (\tau )d\tau 

\right)  . (30)

За побудовою вектор (30) задовольняє систему (1) i крайову умову (2) з точнiстю
O
\bigl( 
\varepsilon 

r+1
n

 - m
\bigr) 
.

Позначимо через yr(t; \varepsilon ) = x\ast (t; \varepsilon ) - xr(t; \varepsilon ) нев’язку— рiзницюмiж точним розв’язком
x\ast (t; \varepsilon ) задачi (1), (2) i r -наближеним формальним розв’язком xr(t; \varepsilon ) цiєї задачi.

Оскiльки вектор (30) задовольняє систему (1) i крайову умову (2) з точнiстю O
\bigl( 
\varepsilon 

r+1
n

 - m
\bigr) 
,

то виконуються рiвностi

\varepsilon hB(t; \varepsilon )
dxr(t; \varepsilon )

dt
 - A(t; \varepsilon )xr(t; \varepsilon ) - f(t; \varepsilon ) exp

\left(  \varepsilon  - h

t\int 
0

\alpha (\tau )d\tau 

\right)  = \varepsilon 
r+1
n

 - ma(t; \varepsilon ),

Mxr(0; \varepsilon ) +Nxr(T ; \varepsilon ) - p(\varepsilon ) = \varepsilon 
r+1
n

 - mb(\varepsilon ),

де a(t; \varepsilon ) — n-вимiрна вектор-функцiя, рiвномiрно обмежена на вiдрiзку [0;T ] при \varepsilon  - \rightarrow 0,
а b(\varepsilon ) — обмежений n-вимiрний вектор.

Тодi нев’язка yr(t; \varepsilon ) є розв’язком крайової задачi

\varepsilon hB(t; \varepsilon )
dyr(t; \varepsilon )

dt
= A(t; \varepsilon )yr(t; \varepsilon ) - \varepsilon 

r+1
n

 - ma(t; \varepsilon ), (31)

Myr(0; \varepsilon ) +Nyr(T ; \varepsilon ) =  - \varepsilon 
r+1
n

 - mb(\varepsilon ). (32)

Оцiнимо за нормою нев’язку yr(t; \varepsilon ). Для цього проведемо додатковi мiркування.
З попереднiх викладок detB(t; \varepsilon ) = \varepsilon 

\bigl( 
B1(t) \~\varphi (t), \~\psi (t)

\bigr) 
+O(\varepsilon 2). Тому обернена матриця

B - 1(t; \varepsilon ) має особливiсть типу полюса при \varepsilon = 0 i її можна подати у виглядi

B - 1(t; \varepsilon ) = \varepsilon  - 1Q(t; \varepsilon ),

де Q(t; \varepsilon ) — деяка квадратна матриця n-го порядку, рiвномiрно обмежена на вiдрiзку
[0;T ].

Помноживши систему (31) злiва на матрицю \varepsilon  - h - 1Q(t; \varepsilon ), отримаємо
dyr(t; \varepsilon )

dt
= \varepsilon  - h - 1 \~A(t; \varepsilon )yr(t; \varepsilon ) - \varepsilon 

r+1
n

 - m - h - 1\~a(t; \varepsilon ), (33)

де \~A(t; \varepsilon ) = Q(t; \varepsilon )A(t; \varepsilon ), \~a(t; \varepsilon ) = Q(t; \varepsilon )a(t; \varepsilon ).
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Поряд з крайовою задачею (33), (32) розглянемо вiдповiдну однорiдну задачу

dz

dt
= \varepsilon  - h - 1 \~A(t; \varepsilon )z, (34)

Mz(0; \varepsilon ) +Nz(T ; \varepsilon ) = 0. (35)

Фундаментальна матриця однорiдної системи (34) має вигляд

Z(t; \varepsilon ) =
\Bigl( 
Vr(t; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\Lambda r(t; \varepsilon ),

де Vr(t; \varepsilon ) =
\Bigl[ 
v
(1)
r (t; \varepsilon ), . . . , v

(l)
r (t; \varepsilon ), v

(l+1)
r (t; \varepsilon ), . . . , v

(n)
r (t; \varepsilon )

\Bigr] 
— квадратна матриця n-го

порядку, стовпцями якої є вектори v(j)r (t; \varepsilon ), j = 1, n, а

\Lambda r(t; \varepsilon ) = \Lambda (1)
r (0; t; \varepsilon ) + \Lambda (2)

r (T ; t; \varepsilon ),

\Lambda (1)
r (0; t; \varepsilon ) = diag

\left\{   exp

\left(  \varepsilon  - h

t\int 
0

\lambda (1)r (\tau ; \varepsilon )d\tau 

\right)  , . . . , exp
\left(  \varepsilon  - h

t\int 
0

\lambda (l)r (\tau ; \varepsilon )d\tau 

\right)  , 0, . . . , 0
\right\}   ,

\Lambda (2)
r (T ; t; \varepsilon ) = diag

\left\{   0, . . . , 0, exp

\left(  \varepsilon  - h

t\int 
T

\lambda (l+1)
r (\tau ; \varepsilon )d\tau 

\right)  , . . . , exp
\left(  \varepsilon  - h

t\int 
T

\lambda (l+1)
r (\tau ; \varepsilon )d\tau 

\right)  \right\}   .
Згiдно з [24] частинний розв’язок неоднорiдної системи (33) має вигляд

\~yr(t; \varepsilon ) =  - \varepsilon 
r+1
n

 - m - h - 1
\Bigl( 
Vr(t; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 

\times 
t\int 

0

\Lambda (1)
r (\tau ; t; \varepsilon )

\Bigl( 
V  - 1
r (\tau ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\~a(\tau ; \varepsilon )d\tau  - \varepsilon 

r+1
n

 - m - h - 1

\times 
\Bigl( 
Vr(t; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) t\int 

T

\Lambda (2)
r (\tau ; t; \varepsilon )

\Bigl( 
V  - 1
r (\tau ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\~a(\tau ; \varepsilon )d\tau .

(36)

Тодi загальний розв’язок неоднорiдної системи (33) набуває вигляду

yr(t; \varepsilon ) =
\Bigl( 
Vr(t; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\Lambda r(t; \varepsilon )c(\varepsilon ) + \~yr(t; \varepsilon ). (37)

Вектор c(\varepsilon ) визначимо з крайової умови (32). Для цього пiдставимо вектор (37) у
крайову умову (32). Тодi отримаємо

M
\Bigl( 
Vr(0; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\Lambda r(0; \varepsilon )c(\varepsilon )

 - \varepsilon 
r+1
n

 - m - h - 1M
\Bigl( 
Vr(0; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 

\times 
0\int 

T

\Lambda (2)
r (\tau ; 0; \varepsilon )

\Bigl( 
V  - 1
r (\tau ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\~a(\tau ; \varepsilon )d\tau 
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+N
\Bigl( 
Vr(T ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\Lambda r(T ; \varepsilon )c(\varepsilon )

 - \varepsilon 
r+1
n

 - m - h - 1N
\Bigl( 
Vr(T ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 

\times 
T\int 
0

\Lambda (1)
r (\tau ;T ; \varepsilon )

\Bigl( 
V  - 1
r (\tau ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\~a(\tau ; \varepsilon )d\tau =  - \varepsilon 

r+1
n

 - mb(\varepsilon ). (38)

Перетворимо доданки рiвняння (38), якi мiстять вектор c(\varepsilon ). Оскiльки згiдно з умо-

вою 8\circ функцiї exp
\biggl( 
\varepsilon  - h

\int T

0
\lambda (i)r (\tau ; \varepsilon )d\tau 

\biggr) 
, i = 1, l, i exp

\biggl( 
\varepsilon  - h

\int 0

T
\lambda (j)r (\tau ; \varepsilon )d\tau 

\biggr) 
, j = l + 1, n,

прямують до нуля швидше, нiж \varepsilon rh при \varepsilon  - \rightarrow 0, то\Bigl[ 
Nv(1)r (T ; \varepsilon ), . . . , Nv(l)r (T ; \varepsilon ), 0, . . . , 0

\Bigr] 
\Lambda (1)
r (0;T ; \varepsilon )

+
\Bigl[ 
0, . . . , 0,Mv(l+1)

r (0; \varepsilon ), . . . ,Mv(n)r (0; \varepsilon )
\Bigr] 
\Lambda (2)
r (T ; 0; \varepsilon ) = O(\varepsilon (r+1)h).

Тодi рiвняння (38) набуде вигляду\Bigl( 
W (\varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
c(\varepsilon )

=  - \varepsilon 
r+1
n

 - mb(\varepsilon ) + \varepsilon 
r+1
n

 - m - h - 1M
\Bigl( 
Vr(0; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 

\times 
0\int 

T

\Lambda (2)
r (\tau ; 0; \varepsilon )

\Bigl( 
V  - 1
r (\tau ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\~a(\tau ; \varepsilon )d\tau + \varepsilon 

r+1
n

 - m - h - 1N

\times 
\Bigl( 
Vr(T ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) T\int 

0

\Lambda (1)
r (\tau ;T ; \varepsilon )

\Bigl( 
V  - 1
r (\tau ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\~a(\tau ; \varepsilon )d\tau ,

(39)
де

W (\varepsilon ) =
r\sum 

s=0

\varepsilon sWs,

Ws =
\Bigl[ 
Mv

(1)
s (0), . . . ,Mv

(l)
s (0), Nv

(l+1)
s (T ), . . . , Nv

(n)
s (T )

\Bigr] 
—квадратна матриця n-го поряд-

ку, стовпцями якої є вектори Mv
(1)
s (0), . . . ,Mv

(l)
s (0), Nv

(l+1)
s (T ), . . . , Nv

(n)
s (T ).

Матриця W (\varepsilon ) + O
\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) 
є невиродженою при досить малих \varepsilon > 0 завдяки неви-

родженостi матрицi W0 згiдно з умовою 9\circ i неперервностi елементiв матрицi W (\varepsilon ).

Оскiльки матриця W (\varepsilon ) +O
\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) 
є невиродженою, то до неї iснує обернена мат-

риця W - 1(\varepsilon ) +O
\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) 
. Тодi з рiвняння (39) визначимо вектор c(\varepsilon ) :

c(\varepsilon ) =  - \varepsilon 
r+1
n

 - m
\Bigl( 
W - 1(\varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
b(\varepsilon ) + \varepsilon 

r+1
n

 - m - h - 1M
\Bigl( 
W - 1(\varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 

\times 
\Bigl( 
Vr(0; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 0\int 

T

\Lambda (2)
r (\tau ; 0; \varepsilon )

\Bigl( 
V  - 1
r (\tau ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\~a(\tau ; \varepsilon )d\tau 
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+ \varepsilon 
r+1
n

 - m - h - 1
\Bigl( 
W - 1(\varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
N
\Bigl( 
Vr(T ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 

\times 
T\int 
0

\Lambda (1)
r (\tau ;T ; \varepsilon )

\Bigl( 
V  - 1
r (\tau ; \varepsilon ) +O

\bigl( 
\varepsilon 

r+1
n

 - h - 1
\bigr) \Bigr) 
\~a(\tau ; \varepsilon )d\tau . (40)

Отже, розв’язок yr(t; \varepsilon ) крайової задачi (32), (33) визначається за формулою (37), у якiй
вектори \~yr(t; \varepsilon ) i c(\varepsilon ) визначаються за формулами (36) i (40) вiдповiдно.

Перейдемо тепер до оцiнки вектора yr(t; \varepsilon ) за нормою. Оскiльки матриця W (\varepsilon ) є
невиродженою i обмеженою при досить малих \varepsilon > 0, то обернена матриця W - 1(\varepsilon ) є
також обмеженою при досить малих \varepsilon > 0 :\bigm\| \bigm\| W - 1(\varepsilon )

\bigm\| \bigm\| \leq c1, (41)

де c1 — деяка стала, яка не залежить вiд \varepsilon .
Вiдповiдно до умови напiвстiйкостi 8\circ , неважко переконатися, що Re

\bigl( 
\lambda 
(j)
r (t; \varepsilon )

\bigr) 
< 0,

j = 1, l, а Re
\bigl( 
\lambda 
(j)
r (t; \varepsilon )

\bigr) 
> 0, j = l + 1, n \forall t \in [0;T ]. Звiдси випливає обмеженiсть матриць

\| \Lambda r(t; \varepsilon )\| \leq c2;
\bigm\| \bigm\| \bigm\| \Lambda (2)

r (\tau ; 0; \varepsilon )
\bigm\| \bigm\| \bigm\| \leq c3, \tau \leq T ;

\bigm\| \bigm\| \bigm\| \Lambda (1)
r (\tau ;T ; \varepsilon )

\bigm\| \bigm\| \bigm\| \leq c4, \tau \leq T ; (42)\bigm\| \bigm\| \bigm\| \Lambda (1)
r (\tau ; t; \varepsilon )

\bigm\| \bigm\| \bigm\| \leq c5, \tau \leq t;
\bigm\| \bigm\| \bigm\| \Lambda (2)

r (\tau ; t; \varepsilon )
\bigm\| \bigm\| \bigm\| \leq c6, \tau \leq t, (43)

де ci, i = 2, 6, — деякi сталi, якi не залежать вiд \varepsilon .
Враховуючи оцiнки (41) – (43) i обмеженiсть усiх матричних i векторних функцiй, якi

мiстяться у формулах (36), (37), (40), маємо

\| yr(t; \varepsilon )\| \leq C\varepsilon 
r+1
n

 - m - h - 1

або \bigm\| \bigm\| x\ast (t; \varepsilon ) - xr(t; \varepsilon )
\bigm\| \bigm\| \leq C\varepsilon 

r+1
n

 - m - h - 1, (44)

де C — стала, яка не залежить вiд параметра \varepsilon .
Справджується така теорема.
Теорема 2. Якщо виконуються умови 1\circ – 9\circ , то побудований формальний розв’язок

x(t; \varepsilon ) крайової задачi (1), (2) є асимптотичним розвиненням точного розв’язку x\ast (t; \varepsilon ) цiєї
задачi при \varepsilon \rightarrow 0, причому правильна формула (44), у якiй xr(t; \varepsilon ) — r -наближення побудо-
ваного формального розв’язку x(t; \varepsilon ) крайової задачi (1), (2).

Зауваження 3. Для того щоб згiдно з асимптотичною формулою (44) побудований фор-
мальний розв’язок xr(t; \varepsilon ) крайової задачi (1), (2) досить добре наближався до точного
розв’язку x\ast (t; \varepsilon ) цiєї задачi при \varepsilon \rightarrow 0, потрiбно, щоб r > n(m+ h+ 1) - 1.

Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв. Усi необхiднi данi мiстяться в статтi. Всi автори зробили рiвномiрний внесок у
цю роботу. Автори заявляють про вiдсутнiсть спецiального фiнансування цiєї роботи.
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