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We investigate properties of the family of functions of a complex variable arising from the search of the
expansion coefficients in the trigonometric system of functions of the solution of the Helmholtz equation
in the cylindrical coordinate system in the form of homogeneous polynomials in two biorthogonal systems
of functions. We construct associated functions biorthogonal to these functions on closed curves of a
complex plane and establish sufficient conditions for the expansion of analytic functions into series in
the considered system of functions. The application of biorthogonal systems of functions for construction
of solutions of some boundary-value problems for the Helmholtz equation in the cylindrical coordinate
system is given.

Дослiджено властивостi сiм’ї функцiй комплексної змiнної, якi виникають при знаходженнi кое-
фiцiєнтiв розвинення за тригонометричною системою функцiй розв’язку рiвняння Гельмгольца у
цилiндричнiй системi координат у виглядi однорiдних полiномiв за двома бiортогональними систе-
мами функцiй. Побудовано асоцiйованi функцiї, бiортогональнi з цими функцiями на замкнених
кривих комплексної площини, та встановлено достатнi умови розвинення аналiтичних функцiй у
ряди за розглядуваною системою функцiй. Наведено застосування бiортогональних систем функцiй
для побудови розв’язкiв деяких крайових задач для рiвняння Гельмгольца у цилiндричнiй системi
координат.

Вступ. При розв’язуваннi багатьох задач, у тому числi прикладного характеру, викори-
стовують розвинення функцiй у ряди за певними системами функцiй. Значного розвит-
ку набули методи розв’язання диференцiальних рiвнянь, що ґрунтуються на розвиненнях
функцiй у ряди за системами ортогональних полiномiв та iнших ортогональних функцiй
однiєї чи декiлькох змiнних. Бiльш загальними, нiж ортогональнi, є бiортогональнi системи
функцiй.

Бiортогональнi системи функцiй комплексної змiнної та методи розвинення аналiтич-
них функцiй у ряди за цими системами розглянуто в роботах [1 – 10]. Знаходження кое-
фiцiєнтiв рядiв ґрунтується на властивостi бiортогональностi, i вони виражаються через
похiднi функцiй, якi розвиваються у цi ряди.

У [11] отримано розв’язки бiгармонiйного рiвняння та рiвняння Гельмгольца у декар-
тових координатах у виглядi однорiдних полiномiв за двома бiортогональними системами
функцiй i встановлено достатнi умови розвинення аналiтичних функцiй у ряди за ними.
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Розв’язки рiвняння Гельмгольца у площинi, пiвплощинi та смузi одержано у виглядi рядiв
за системами однорiдних полiномiв.

У [12] методом контурних iнтегралiв знайдено коефiцiєнти розвинення за системою
тригонометричних функцiй розв’язку рiвняння Гельмгольца у цилiндричнiй системi коор-
динат у виглядi однорiдних полiномiв за двома бiортогональними системами функцiй.

У цiй статтi дослiджено властивостi зазначених бiортогональних систем функцiй, вста-
новлено достатнi умови розвинення аналiтичних функцiй у ряди за ними та наведено їхнє
застосування до побудови розв’язкiв деяких крайових задач для рiвняння Гельмгольца у
цилiндричнiй системi координат. Результати роботи узагальнюють вiдповiднi результати
з [6].

2. Властивостi бiортогональних функцiй. У роботi [12] уведено систему \{ b\mu n(z)\} \infty n=0

цiлих функцiй комплексної змiнної z :

b\mu n(z) =

\biggl( \biggl[ 
n+ 1

2

\biggr] 
+ \mu 

\biggr) 
!

\infty \sum 
l=0

( - 1)l

22ll!
\bigl( 
l +
\bigl[ 
n+1
2

\bigr] 
+ \mu 

\bigr) 
!
zn+2l, (1)

де n, \mu = 0, 1, 2, . . . , [x] — цiла частина x.
Iз спiввiдношень (1) отримаємо вирази функцiй b\mu n(z) для парних i непарних значень n

вiдповiдно:

b\mu 2n(z) = (n+ \mu )!
\infty \sum 
l=0

( - 1)l

22ll!(l + n+ \mu )!
z2(n+l)

= ( - 1)n22nn!(n+ \mu )!
\infty \sum 
j=n

( - 1)jCn
j

22jj!(j + \mu )!
z2j ,

(2)

b\mu 2n+1(z) = ( - 1)n22nn!(n+ \mu + 1)!
\infty \sum 
j=n

( - 1)jCn
j

22jj!(j + \mu + 1)!
z2j+1.

Дослiдимо властивостi цих функцiй.
Твердження 1. Для функцiй b\mu n(z) виконуються оцiнки

| b\mu n(z)| \leq e| z| | z| n, n = 0, 1, 2, . . . . (3)

Доведення. Використовуючи зображення функцiй Бесселя першого роду [13, с. 12]

J\lambda (z) =
\Bigl( z
2

\Bigr) \lambda \infty \sum 
l=0

( - 1)l

22ll!\Gamma (l + \lambda + 1)
z2l,

де \Gamma (\cdot ) — гамма-функцiя, i спiввiдношення (2), отримуємо

b\mu 2n(z) = 2n+\mu (n+ \mu )!zn - \mu Jn+\mu (z),

b\mu 2n+1(z) = 2n+\mu +1(n+ \mu + 1)!zn - \mu Jn+\mu +1(z).

Звiдси згiдно з вiдомою оцiнкою [13, с. 14] | J\mu (z)| \leq 
\bigm| \bigm| \bigm| z
2

\bigm| \bigm| \bigm| \mu e| y| 

\Gamma (\mu + 1)
, y = Im z, маємо

| b\mu 2n(z)| \leq 2n+\mu (n+ \mu )!| z| n - \mu | z| n+\mu e| y| 

2n+\mu (n+ \mu )!
\leq e| z| | z| 2n.
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Аналогiчно \bigm| \bigm| b\mu 2n+1(z)
\bigm| \bigm| \leq e| z| | z| 2n+1.

Об’єднуючи отриманi нерiвностi, одержуємо оцiнки (3).

Нехай \delta nm =

\Biggl\{ 
0, m \not = n,

1, m = n,
— символ Кронекера.

Твердження 2. Система степенiв \{ zn\} \infty n=0 однозначно виражається через функцiї b\mu n(z),
тобто справджуються спiввiдношення

z2n = 22nn!(n+ \mu )!

\infty \sum 
r=n

Cn
r

22rr!(r + \mu )!
b\mu 2r(z),

z2n+1 = 22nn!(n+ \mu + 1)!
\infty \sum 
r=n

Cn
r

22rr!(r + \mu + 1)!
b\mu 2r+1(z),

(4)

причому ряди в (4) збiгаються рiвномiрно у крузi | z| \leq R, R <\infty .
Доведення. Згiдно зi спiввiдношенням (2), змiнюючи порядок пiдсумовування та вра-

ховуючи вiдому комбiнаторну тотожнiсть
m\sum 

j=n

( - 1)jCn
j C

j
m = ( - 1)m\delta nm, (5)

отримаємо
\infty \sum 
r=n

Cn
r

22rr!(r + \mu + 1)!
b\mu 2r+1(z) =

\infty \sum 
r=n

( - 1)rCn
r

\infty \sum 
k=r

( - 1)kCr
k

22kk!(k + \mu + 1)!
z2k+1

=
\infty \sum 
k=n

( - 1)k

22kk!(k + \mu + 1)!
z2k+1

k\sum 
r=n

( - 1)rCn
r C

r
k

=
z2n+1

22nn!(n+ \mu + 1)!
,

що доводить останнє спiввiдношення з (4). Iншi спiввiдношення встановлюємо аналогiчно.
Далi, завдяки (3) для | z| \leq R знаходимо\bigm| \bigm| \bigm| \bigm| \bigm| 

\infty \sum 
r=n

Cn
r b

\mu 
2r+1(z)

22rr!(r + \mu + 1)!

\bigm| \bigm| \bigm| \bigm| \bigm| \leq eR

n!22n

\infty \sum 
r=n

R2r+1

(r + 1)!
,

що доводить рiвномiрну збiжнiсть ряду з (4).
Розглянемо функцiї \omega \mu 

m(z), асоцiйованi [10, с. 160] з функцiями b\mu n(z) :

\omega \mu 
m(z) =

1\biggl( \biggl[ 
m+ 1

2

\biggr] 
+ \mu 

\biggr) 
!

[m2 ]\sum 
k=0

\biggl( \biggl[ 
m+ 1

2

\biggr] 
 - k + \mu 

\biggr) 
!

22kk!

1

zm - 2k+1
, (6)
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де m = 0, 1, 2, . . . . Iз спiввiдношень (6) отримуємо вирази функцiй \omega \mu 
m(z) для парних i

непарних значень iндексiв m :

\omega \mu 
2m(z) =

1

(m+ \mu )!

m\sum 
k=0

(m - k + \mu )!

22kk!

1

z2(m - k)+1

=
1

(m+ \mu )!

m\sum 
s=0

(s+ \mu )!

22(m - s)(m - s)!

1

z2s+1

=
1

22mm!(m+ \mu )!

m\sum 
s=0

22ss!(s+ \mu )!Cs
m

1

z2s+1
,

(7)

\omega \mu 
2m+1(z) =

1

22mm!(m+ \mu + 1)!

m\sum 
s=0

22ss!(s+ \mu + 1)!Cs
m

1

z2s+2
.

Зауважимо, що функцiї \omega \mu 
m(z) аналiтичнi в \BbbC \setminus \{ 0\} .

Твердження 3. Для функцiй \omega \mu 
m(z) виконуються оцiнки

| \omega \mu 
m(t)| \leq 1

| t| m+1

[m2 ]\sum 
k=0

| t| 2k

k!
, 0 < | t| <\infty . (8)

Доведення. Враховуючи спiввiдношення (7), знаходимо

| \omega \mu 
2m(t)| \leq 1

(m+ \mu )!

m\sum 
k=0

(m - k + \mu )!

22kk!

1

| t| 2(m - k)+1
\leq 1

| t| 2m+1

m\sum 
k=0

| t| 2k

k!
.

Аналогiчно \bigm| \bigm| \omega \mu 
2m+1(t)

\bigm| \bigm| \leq 1

| t| 2m+2

m\sum 
k=0

| t| 2k

k!
.

З отриманих нерiвностей випливає оцiнка (8).
Теорема 1. Системифункцiй \{ b\mu n(z)\} \infty n=0, \{ \omega 

\mu 
m(z)\} \infty m=0 бiортогональнi на довiльному зам-

кненому контурi \Gamma , що охоплює нульову точку, тобто

1

2\pi i

\int 
\Gamma 

b\mu n(z)\omega 
\mu 
m(z)dz = \delta nm, n,m \in \BbbN . (9)

Доведення. На пiдставi спiввiдношень (2), (7) i вiдомого iнтеграла
1

2\pi i

\int 
\gamma 

dz

(z  - a)n
= \delta 1n,

де \gamma — довiльний замкнений контур, що охоплює точку a i однократно пробiгається у
додатному напрямку, одержимо

1

2\pi i

\int 
\Gamma 

b\mu 2n(z)\omega 
\mu 
2m(z)dz =

( - 1)n22(n - m)n!(n+ \mu )!

m!(m+ \mu )!
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\times 
\infty \sum 
k=n

( - 1)kCn
k

22kk!(k + \mu )!

m\sum 
j=0

22jj!(j + \mu )!Cj
m

1

2\pi i

\int 
\Gamma 

dz

z2(j - k)+1

=
( - 1)n22(n - m)n!(n+ \mu )!

m!(m+ \mu )!

m\sum 
j=n

( - 1)jCn
j C

j
m.

Аналогiчно

1

2\pi i

\int 
\Gamma 

b\mu 2n+1(z)\omega 
\mu 
2m+1(z)dz =

( - 1)n22(n - m)n!(n+ \mu + 1)!

m!(m+ \mu + 1)!

m\sum 
j=n

( - 1)jCn
j C

j
m.

Враховуючи комбiнаторну тотожнiсть (5), приходимо до спiввiдношення (9).
Рiвностi

1

2\pi i

\int 
\Gamma 

b\mu 2n(z)\omega 
\mu 
2m+1(z)dz = 0,

1

2\pi i

\int 
\Gamma 

b\mu 2n+1(z)\omega 
\mu 
2m(z)dz = 0

очевиднi, тому що вiдсутнi доданки з z - 1.
Теорема 2. Справджується розвинення

1

t - z
=

\infty \sum 
m=0

b\mu m(z)\omega \mu 
m(t), | t| > | z| , (10)

причому ряд у (10) рiвномiрно збiгається для | z| \leq r, | t| \geq \rho , де 0 < r < \rho <\infty .
Доведення. Пiдставивши у праву частину спiввiдношення (10) вирази для функцiй

b\mu m(z) та асоцiйованих з ними функцiй \omega \mu 
m(t), отримаємо

\infty \sum 
m=0

b\mu m(z)\omega \mu 
m(t) =

\infty \sum 
m=0

b\mu 2m(z)\omega \mu 
2m(t) +

\infty \sum 
m=0

b\mu 2m+1(z)\omega 
\mu 
2m+1(t)

=

\infty \sum 
m=0

( - 1)m
\infty \sum 

j=m

( - 1)jCm
j

22jj!(j + \mu )!
z2j

m\sum 
s=0

22ss!(s+ \mu )!Cs
m

1

t2s+1

+
\infty \sum 

m=0

( - 1)m
\infty \sum 

j=m

( - 1)jCm
j

22jj!(j + \mu + 1)!
z2j+1

m\sum 
s=0

22ss!(s+ \mu + 1)!Cs
m

1

t2s+2
.

Змiнивши у сумах порядок пiдсумовування, матимемо
\infty \sum 

m=0

b\mu m(z)\omega \mu 
m(t) =

\infty \sum 
j=0

( - 1)j

22jj!(j + \mu )!
z2j

j\sum 
m=0

( - 1)mCm
j

\times 
m\sum 
s=0

22ss!(s+ \mu )!Cs
m

1

t2s+1
+

\infty \sum 
j=0

( - 1)j

22jj!(j + \mu + 1)!
z2j+1

\times 
j\sum 

m=0

( - 1)mCm
j

m\sum 
s=0

22ss!(s+ \mu + 1)!Cs
m

1

t2s+2
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=
\infty \sum 
j=0

( - 1)j

22jj!(j + \mu )!
z2j

j\sum 
s=0

22ss!(s+ \mu )!
1

t2s+1

j\sum 
m=s

( - 1)mCm
j C

s
m

+
\infty \sum 
j=0

( - 1)j

22jj!(j + \mu + 1)!
z2j+1

j\sum 
s=0

22ss!(s+ \mu + 1)!
1

t2s+2

j\sum 
m=s

( - 1)mCm
j C

s
m.

Використавши комбiнаторну тотожнiсть (5), остаточно знаходимо
\infty \sum 

m=0

b\mu m(z)\omega \mu 
m(t) =

\infty \sum 
j=0

z2j

t2j+1
+

\infty \sum 
j=0

z2j+1

t2j+2
=

\infty \sum 
j=0

zj

tj+1
=

1

t
\cdot 1

1 - z

t

=
1

t - z
.

Врахувавши оцiнки (3) i (8), одержимо для | z| \leq r, | t| \geq \rho , \rho > r :\bigm| \bigm| \bigm| \bigm| \bigm| 
\infty \sum 

m=0

b\mu m(z)\omega \mu 
m(t)

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\infty \sum 

m=0

| b\mu 2m(z)| | \omega \mu 
2m(t)| +

\infty \sum 
m=0

\bigm| \bigm| b\mu 2m+1(z)
\bigm| \bigm| \bigm| \bigm| \omega \mu 

2m+1(t)
\bigm| \bigm| 

\leq e| z| 

\Biggl( \infty \sum 
m=0

| z| 2m 1

| t| 2m+1

m\sum 
k=0

| t| 2k

k!
+

\infty \sum 
m=0

| z| 2m+1 1

| t| 2m+2

m\sum 
k=0

| t| 2k

k!

\Biggr) 

= e| z| 

\Biggl( 
1

| t| 

\infty \sum 
m=0

\bigm| \bigm| \bigm| z
t

\bigm| \bigm| \bigm| 2m m\sum 
k=0

| t| 2k

k!
+

| z| 
| t| 2

\infty \sum 
m=0

\bigm| \bigm| \bigm| z
t

\bigm| \bigm| \bigm| 2m m\sum 
k=0

| t| 2k

k!

\Biggr) 

= e| z| 
\biggl( 

1

| t| 
+

| z| 
| t| 2

\biggr) \infty \sum 
m=0

\bigm| \bigm| \bigm| z
t

\bigm| \bigm| \bigm| 2m m\sum 
k=0

| t| 2k

k!

=
e| z| (| t| + | z| )

| t| 2
\infty \sum 
k=0

| t| 2k

k!

\infty \sum 
m=k

\bigm| \bigm| \bigm| z
t

\bigm| \bigm| \bigm| 2m

=
e| z| (| t| + | z| )

| t| 2
\infty \sum 
k=0

| t| 2k

k!

\infty \sum 
j=0

\bigm| \bigm| \bigm| z
t

\bigm| \bigm| \bigm| 2j+2k

=
e| z| (| t| + | z| )

| t| 2
\infty \sum 
k=0

| z| 2k

k!

\infty \sum 
j=0

\bigm| \bigm| \bigm| z
t

\bigm| \bigm| \bigm| 2j

=
e| z| +| z| 2(| t| + | z| )

| t| 2
\cdot 1

1 - 
\bigm| \bigm| \bigm| z
t

\bigm| \bigm| \bigm| 2 =
e| z| (1+| z| )

| t|  - | z| 
\leq er(1+r)

\rho  - r
,

що доводить рiвномiрну збiжнiсть ряду (10).
Теорема 3. Система \{ b\mu n(z)\} \infty n=0 функцiй є базисом Шаудера у просторi Ar однозначних

аналiтичних у крузi | z| < r (r > 0) функцiй комплексної змiнної.
Доведення. Система \{ b\mu n(z)\} \infty n=0 є базисом в Ar [10, с. 161], оскiльки виконуються такi

умови:
а) функцiї \omega \mu 

m(z) аналiтичнi в областi | z| > \rho > 0;
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б) коефiцiєнти у виразах (7) асоцiйованих функцiй \omega \mu 
m(z) задовольняють умови

lim
s\rightarrow \infty 

\bigl[ 
22ss!(s+ \mu )!Cs

m

\bigr] 1
2s = \rho \prime m < r,

lim
s\rightarrow \infty 

\bigl[ 
22ss!(s+ \mu + 1)!Cs

m

\bigr] 1
2s+1 = \rho \prime \prime m < r,

оскiльки Cs
m = 0, якщо s > m, i, вiдповiдно, \rho \prime m = 0, \rho \prime \prime m = 0.

в) справджується розвинення (10) i за теоремою 2 вiдповiдний ряд збiгається рiвномiр-
но для всiх z i t таких, що | z| \leq r, | t| \geq \rho , де 0 < r < \rho <\infty .

3. Розвинення функцiй за системою
\bigl\{ 
\bfitb \bfitmu \bfitn (\bfitz )

\bigr\} \infty 
\bfitn =\bfzero 

.
Твердження 4. Нехай f(z) — сума ряду за функцiями b\mu n(z), рiвномiрно збiжного у крузi

| z| \leq R, R <\infty :

f(z) =

\infty \sum 
n=0

a\mu nb
\mu 
n(z). (11)

Тодi коефiцiєнти a\mu n визначаються за формулами

a\mu m =
1\biggl( \biggl[ 

m+ 1

2

\biggr] 
+ \mu 

\biggr) 
!

[m2 ]\sum 
k=0

\biggl( \biggl[ 
m+ 1

2

\biggr] 
 - k + \mu 

\biggr) 
!

22kk!

f (m - 2k)(0)

(m - 2k)!
, (12)

де m = 0, 1, 2, . . . .

Доведення. Помножимо лiву та праву частини рiвностi (11) на функцiю \omega \mu 
m(z) i про-

iнтегруємо отримане спiввiдношення вздовж контура K = \{ z : | z| = r\} , 0 < r < R. Тодi,
завдяки (9) i (6), отримаємо

a\mu m =
1

2\pi i

\int 
K

f(z)\omega \mu 
m(z)dz

=
1\biggl( \biggl[ 

m+ 1

2

\biggr] 
+ \mu 

\biggr) 
!

[m2 ]\sum 
k=0

\biggl( \biggl[ 
m+ 1

2

\biggr] 
 - k + \mu 

\biggr) 
!

22kk!

1

2\pi i

\int 
K

f(z)

zm - 2k+1
dz

=
1\biggl( \biggl[ 

m+ 1

2

\biggr] 
+ \mu 

\biggr) 
!

[m2 ]\sum 
k=0

\biggl( \biggl[ 
m+ 1

2

\biggr] 
 - k + \mu 

\biggr) 
!

22kk!

f (m - 2k)(0)

(m - 2k)!
,

де m = 0, 1, 2, . . . .

Iз спiввiдношень (12) знаходимо вирази для коефiцiєнтiв a\mu m окремо для парних i
непарних значень iндексiв m :

a\mu 2m =
1

(m+ \mu )!

m\sum 
k=0

(m - k + \mu )!

22kk!

f (2m - 2k)(0)

(2m - 2k)!
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=
1

(m+ \mu )!

m\sum 
j=0

(j + \mu )!

22(m - j)(m - j)!

f (2j)(0)

(2j)!

=
\mu !

22mm!(m+ \mu )!

m\sum 
j=0

22jCj
mC

\mu 
j+\mu 

Cj
2j

f (2j)(0),

(13)

a\mu 2m+1 =
\mu !

22mm!(m+ \mu + 1)!

m\sum 
j=0

22jCj
mC

\mu 
j+\mu +1

Cj
2j+1

f (2j+1)(0).

Теорема 4. Нехай функцiя f(z) аналiтична у крузi | z| < R, R \leq \infty . Тодi коефiцiєнти a\mu n
задовольняють нерiвнiсть

| a\mu n| \leq 
M(r, f)e

r2

4

rn
, 0 < r < R, (14)

де M(r, f) = max| z| \leq r | f(z)| , i для кожного 0 < r < R ряд (11) збiгається до f(z) рiвномiрно
у крузi | z| \leq r.

Доведення. Враховуючи нерiвностi\bigm| \bigm| f (n)(0)\bigm| \bigm| 
n!

\leq M(r, f)

rn
,

отримуємо оцiнки для коефiцiєнтiв a\mu 2m :

| a\mu 2m| \leq 1

(m+ \mu )!

m\sum 
k=0

(m - k + \mu )!

22kk!

\bigm| \bigm| f (2m - 2k)(0)
\bigm| \bigm| 

(2m - 2k)!

\leq M(r, f)
m\sum 
k=0

1

22kk!

1

r2(m - k)
\leq M(r, f)

r2m

\infty \sum 
k=0

\Bigl( r
2

\Bigr) 2k
k!

=
M(r, f)e

r2

4

r2m
.

Аналогiчно знаходимо

\bigm| \bigm| a\mu 2m+1

\bigm| \bigm| \leq M(r, f)e
r2

4

r2m+1
.

Об’єднуючи оцiнки для коефiцiєнтiв a\mu 2m, a
\mu 
2m+1, одержуємо нерiвнiсть (14).

Далi, нехай | z| \leq r < R i r < \rho < R. Завдяки (14) i (3) маємо

| f(z)| \leq 
\infty \sum 
n=0

| a\mu n| | b\mu n(z)| \leq M(\rho , f)e
\rho 2

4
+| z| 

\infty \sum 
n=0

\biggl( 
| z| 
\rho 

\biggr) n

\leq M(\rho , f)e
\rho 2

4
+r

\infty \sum 
n=0

\biggl( 
r

\rho 

\biggr) n
=
M(\rho , f)\rho 

\rho  - r
e

\rho 2

4
+r,

що доводить рiвномiрну збiжнiсть ряду (11) у крузi | z| \leq r < R.
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Приклад 1. Розвинемо функцiю f(z) = cos z у ряд за системою \{ b\mu n(z)\} \infty n=0.
Оскiльки f (2j)(0) = ( - 1)j , f (2j+1)(0) = 0, то згiдно з формулами (13) маємо

a\mu 2m =
\mu !

22mm!(m+ \mu )!

m\sum 
j=0

( - 1)j22jCj
mC

\mu 
j+\mu 

Cj
2j

.

Використовуючи тотожнiсть

\mu !

22mm!(m+ \mu )!

m\sum 
j=0

( - 1)j22jCj
mC

\mu 
j+\mu 

Cj
2j

=
( - 1)\mu +1Cm+\mu 

2m - 1

22m - 1(2m)!C
2(\mu +1)
2m - 1

,

одержуємо

cos z =
\infty \sum 

m=0

( - 1)\mu +1Cm+\mu 
2m - 1

22m - 1(2m)!C
2(\mu +1)
2m - 1

b\mu 2m(z).

Аналогiчно можна показати, що

sin z =
\infty \sum 

m=0

( - 1)\mu +1Cm+\mu +1
2m

22m(2m+ 1)!C
2(\mu +1)
2m

b\mu 2m+1(z).

4. Побудова розв’язкiв крайових задач для рiвняння Гельмгольца у цилiндричних коор-
динатах. Розглянемо диференцiальне рiвняння з частинними похiдними

\partial 2U0

\partial x2
+
\partial 2U0

\partial \rho 2
+

1

\rho 

\partial U0

\partial \rho 
+ U0 = 0, (15)

де x \in R, \rho > 0. Його розв’язок можна записати у виглядi [12]

U0(x, \rho ) =
\infty \sum 
n=0

a2nu
0
2n(x, \rho ), (16)

де

u0n(x, \rho ) =

[n2 ]\sum 
k=0

( - 1)kn!

22k(k!)2(n - 2k)!
xn - 2kb02k(\rho ), (17)

а функцiї b02k(\rho ) визначенi спiввiдношенням (2).
Для x = 0 i \rho = 0 функцiям u0n(x, y) вiдповiдають вирази

u02n(0, \rho ) =
( - 1)n(2n)!

22n(n!)2
b02n(\rho ), u02n+1(0, \rho ) = 0,

u02n(x, 0) = x2n, u02n+1(x, 0) = x2n+1.

Задача 1. Знайти розв’язок рiвняння (15) у пiвпросторi x > 0, який задовольняє у площинi
x = 0 умову

U0(x, \rho )
\bigm| \bigm| 
x=0

= f1(\rho ), (18)

де функцiю f1(\rho ) задано збiжним рядом f1(\rho ) =
\sum \infty 

n=0
A2nb

0
2n(\rho ).
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Пiдставляючи розв’язок (16) в умову (18), отримуємо
\infty \sum 
n=0

a2nu
0
2n(0, \rho ) =

\infty \sum 
n=0

a2n
( - 1)n(2n)!

22n(n!)2
b02n(\rho ) =

\infty \sum 
n=0

A2nb
0
2n(\rho ).

Звiдси a2n =
( - 1)n22n(n!)2A2n

(2n)!
. Тому

U0(x, \rho ) =

\infty \sum 
n=0

( - 1)n22n(n!)2A2n

(2n)!
u02n(x, \rho ). (19)

Приклад 2. Нехай f1(\rho ) = 1. Використовуючи (4), одержуємо

1 =
\infty \sum 
r=0

1

22r(r!)2
b02r(\rho ), (20)

звiдки A2r =
1

22r(r!)2
, A2r+1 = 0. Тодi, враховуючи спiввiдношення (19), (17), (20) i змiню-

ючи порядок пiдсумовування, знаходимо

U0(x, \rho ) =

\infty \sum 
n=0

( - 1)n
n\sum 

k=0

( - 1)k

22k(k!)2(2n - 2k)!
x2(n - k)b02k(\rho )

=
\infty \sum 
k=0

( - 1)k

22k(k!)2
b02k(\rho )

\infty \sum 
n=k

( - 1)n

(2n - 2k)!
x2(n - k)

=

\infty \sum 
k=0

( - 1)k

22k(k!)2
b02k(\rho )

\infty \sum 
j=0

( - 1)j+k

(2j)!
x2j

=
\infty \sum 
k=0

1

22k(k!)2
b02k(\rho )

\infty \sum 
j=0

( - 1)j

(2j)!
x2j = cosx.

Отже, виконано умову U0(x, \rho )
\bigm| \bigm| 
x=0

= 1.
Розглянемо диференцiальне рiвняння з частинними похiдними

\partial 2U1

\partial x2
+
\partial 2U1

\partial \rho 2
+

1

\rho 

\partial U1

\partial \rho 
+

\biggl( 
1 - 1

\rho 2

\biggr) 
U1 = 0, (21)

де x \in R, \rho > 0. Його розв’язок можна записати у виглядi [12]

U1(x, \rho ) =
\infty \sum 
n=0

dnu
1
n(x, \rho ), (22)

де

u1n(x, \rho ) =

[n - 1
2 ]\sum 

k=0

( - 1)kn!

22kk!(k + 1)!(n - 2k  - 1)!
xn - 2k - 1b02k+1(\rho ), (23)

а функцiї b02k+1(\rho ) визначено спiввiдношенням (2).
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Для x = 0 i \rho = 0 функцiям u1n(x, y) вiдповiдають вирази

u12n(0, \rho ) = 0, u12n+1(0, \rho ) =
( - 1)n(2n+ 1)!

22nn!(n+ 1)!
b02n+1(\rho ),

u12n(x, 0) = u12n+1(x, 0) = 0.

Задача 2. Знайти розв’язок рiвняння (21) у пiвпросторi x > 0 такий, що у площинi x = 0
має вигляд

U1(x, \rho )
\bigm| \bigm| 
x=0

= f2(\rho ) =
\infty \sum 
n=0

D2n+1b
0
2n+1(\rho ). (24)

Пiдставляючи розв’язок (22) в умову (24), отримуємо
\infty \sum 
n=0

d2n+1u
1
2n+1(0, \rho ) =

\infty \sum 
n=0

D2n+1b
0
2n+1(\rho ),

або
\infty \sum 
n=0

( - 1)n(2n+ 1)!

22nn!(n+ 1)!
d2n+1b

0
2n+1(\rho ) =

\infty \sum 
n=0

D2n+1b
0
2n+1(\rho ).

Звiдси d2n+1 =
( - 1)n22nn!(n+ 1)!

(2n+ 1)!
D2n+1. Тому

U1(x, \rho ) =
\infty \sum 
n=0

( - 1)n22nn!(n+ 1)!

(2n+ 1)!
D2n+1u

1
2n+1(\rho ). (25)

Приклад 3. Нехай f2(\rho ) = \rho . Використовуючи (4), знаходимо

\rho =
\infty \sum 
r=0

1

22rr!(r + 1)!
b02r+1(\rho ), (26)

звiдки D2r = 0, D2r+1 =
1

22rr!(r + 1)!
. Тодi на пiдставi спiввiдношення (25) з урахуванням

(23), (26) маємо

U1(x, y) =
\infty \sum 
n=0

( - 1)n
n\sum 

k=0

( - 1)kx2(n - k)

22kk!(k + 1)!(2n - 2k)!
b02k+1(\rho )

=

\infty \sum 
k=0

( - 1)k

22kk!(k + 1)!
b02k+1(\rho )

\infty \sum 
n=k

( - 1)nx2(n - k)

(2n - 2k)!

=
\infty \sum 
k=0

( - 1)k

22kk!(k + 1)!
b02k+1(\rho )

\infty \sum 
j=0

( - 1)j+k

(2j)!
x2j = \rho cosx.

Отже, виконано умову U1(x, \rho )
\bigm| \bigm| 
x=0

= \rho .
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5. Висновки. Системифункцiй
\bigl\{ 
Pn(z) = z - 1\omega \mu 

n

\bigl( 
z - 1
\bigr) \bigr\} \infty 

n=0
,
\bigl\{ 
\psi m(z) = z - 1b\mu m

\bigl( 
z - 1
\bigr) \bigr\} \infty 

m=0
—

бiортогональнi на замкненому контурi, що охоплює нульову точку, при цьому полiноми
\{ Pn(z)\} \infty n=0 — базис простору Ar.

Систему функцiй b\mu n(z) використовують при побудовi розв’язкiв крайових задач для
рiвняння Гельмгольца у цилiндричнiй системi координат. Розв’язки рiвняння Гельмгольца
на площинах x = const виражаються через функцiї b\mu n(z), що внаслiдок iснування вiд-
повiдної бiортогональної системи функцiй дозволяє задовольнити заданi граничнi умови
на цих площинах. На поверхнях \rho = const функцiї b\mu n(z) можна виразити через степенi
змiнної x i вiдповiднi граничнi функцiї розвиваються у степеневi ряди.

Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв. Усi необхiднi данi мiстяться в статтi. Всi автори зробили рiвномiрний внесок у
цю роботу. Автори заявляють про вiдсутнiсть спецiального фiнансування цiєї роботи.
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