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We use a priory inequalities method in negative norms and prove well-posedness of the Dirichlet initial
boundary-value problem for the pseudoparabolic integro-differential equation with Volterra-type integral
terms. The existence of an optimal control of the corresponding systems for control operators acting in the
spaces of generalized functions is also proved.

З використанням методу апрiорних нерiвностей у негативних нормах доведено коректнiсть поста-
новки початково-крайової задачi Дiрiхле для iнтегро-диференцiального рiвняння псевдопараболiч-
ного типу з iнтегральними доданками типу Вольтерра. Також доведено iснування оптимального
керування вiдповiдними системами для операторiв керування, що дiють у просторах узагальнених
функцiй.

1. Вступ. У цiй роботi ми розглянемо початково-крайову задачу для лiнiйного псевдопара-
болiчного iнтегро-диференцiального рiвняння з iнтегральним оператором типу Вольтерра

a(x)ut  - 
n\sum 

i,j=1

(aij(x)utxj )xi + b(x)u

 - 
n\sum 

i,j=1

(bij(x)uxj )xi +

t\int 
0

n\sum 
i=1

(Ki(x, t, \tau )uxi)xi
d\tau = f(x, t) (1)

за умов типу Дiрiхле

u| x\in \partial \Omega = 0, u| t=0 = 0. (2)

Рiвняння такого типу зустрiчаються при розв’язаннi рiзноманiтних задач прикладної ма-
тематики. В однiй iз перших робiт пcевдопараболiчне рiвняння було отримано при дослi-
дженнi процесiв теплопереносу в гетерогенному середовищi як бiльш адекватна модель
процесiв [1], а питання, пов’язанi з дослiдженням псевдопараболiчних рiвнянь, з’явилися
вже у серединi ХХ сторiччя, коли, зокрема, у роботах [2, 3] було показано коректнiсть
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постановок початково-крайових задач для рiвняння типу
\Bigl( 
au - 

\sum n

i,j=1
(aijuxj )xi

\Bigr) 
t
+ bu - \sum n

i,j=1
(bijuxj )xi = f.

Псевдопараболiчнi диференцiальнi рiвняння зустрiчаються при моделюваннi рiзнома-
нiтних процесiв: випромiнювання iз затримкою у часi [4], двофазнi моделi потоку пори-
стого середовища з динамiчною капiлярнiстю або гiстерезисом [5], фазова модель поля
для потокiв ненасиченого пористого середовища [6], модель теплопровiдностi [7], моделi
для опису свiтла [8] та iн. Для псевдопараболiчного рiвняння було отримано результати
щодо iснування, єдиностi та неiснування класичних i узагальнених розв’язкiв, регуляр-
ностi та асимптотичної поведiнки розв’язкiв тощо (див., наприклад, [9] i наведену там
бiблiографiю).

Псевдопараболiчнi диференцiальнi рiвняння виникають також при дослiдженнi фiль-
трацiї рiдини та газу в пористих середовищах i середовищах “iз трiщинами”, теплопро-
вiдностi в неоднорiдних середовищах, мiграцiї iонiв у ґрунтi, розповсюдження хвиль у
дисперсному середовищi та в тонкому еластичному склi тощо [1].

Багато результатiв щодо коректностi постановок, оптимального керування та керовано-
стi процесами, що описуються рiвняннями псевдопараболiчного типу, отримано С. I. Ляш-
ком за допомогою методики апрiорних нерiвностей у негативних нормах. Це зокрема
роботи [10 – 12] (також див., наприклад, [13] i наведену там бiблiографiю).

Основнi положення теорiї апрiорних нерiвностей у негативних нормах i деякi її за-
стосування описано у класичнiй монографiї [1] i, частково, у роботах [14, 15]. Пiдхiд,
розроблений С. I. Ляшком i його учнями, виявився досить ефективним для дослiджен-
ня рiзноманiтних питань коректностi постановок, оптимального керування, керованостi
систем iз розподiленими параметрами. Ми не ставимо собi за мету навести тут повну бiб-
лiографiю, що стосується цих питань, обмежившись лише деякими роботами: [12, 16 – 24].

Як виявилося, вказаний пiдхiд може бути з успiхом застосований i до задач Дiрiхле для
iнтегро-диференцiальних рiвнянь iз iнтегральними складовими типу Вольтерра. У [25, 26]
дослiджено задачi з iнтегро-диференцiальним рiвнянням гiперболiчного типу, у [27] —
для рiвнянь елiптичного, а у [28, 29] — параболiчних типiв. Деякi спецiальнi типи рiвнянь
iз iнтегральними складовими типу Вольтерра розглянуто також у [30, 31]. У роботi [32]
було зiбрано результати у цiй галузi.

Зауважимо, що на вiдмiну вiд звичайного псевдопараболiчного рiвняння, у якому май-
бутнє процесу залежить тiльки вiд стану у цей момент, наявнiсть iнтегральної складової
типу Вольтерра дозволяє врахувати iсторiю процесу (див., наприклад, [33] i наведену там
бiблiографiю).

Останнiм часом у лiтературi з’явилося багато робiт, де розглядають iнтегро-диферен-
цiальнi рiвняння типу (1) або близькi до нього. Так, у роботi [34] автори вивчають адаптив-
ний метод найменших квадратiв i оцiнки апостерiорних похибок для задачi

ut  - \nabla \cdot (a(x)\nabla ut + b(x)\nabla u+ d(x)

t\int 
0

\nabla u(x, \tau ) d\tau ) + qu = f(x, t)

в областi \Omega \times (0, T ] з умовами типу Дiрiхле

u(x, t) = 0, x \in \partial \Omega , t \in (0, T ],

u(x, 0) = u0(x), x \in \Omega .
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У роботi [35] розглянуто одновимiрну задачу вигляду

ut =

\left(  a(x, t)uxt + b(x, t)ux +

t\int 
0

c(x, t, \tau )ux(x, \tau ) ds

\right)  
x

+ f(x, t)

для (x, t) \in [0, 1]\times J з початково-крайовими умовами

u(0, t) = u(1, t) = 0, t \in J,

u(x, 0) = u0(x), x \in [0, 1].

Автором запропоновано дискретний H1 змiшаний метод скiнченних елементiв Гальоркiна
для вказаного рiвняння в одновимiрному випадку. Отримано оцiнки похибки оптимального
порядку для невiдомої скалярної функцiї u та її градiєнту в L2 i H1 нормах.

У [36] отримано апрiорнi та апостерiорнi оцiнки похибки для H1 змiшаного методу
скiнченних елементiв Гальоркiна для задачi оптимального керування системами, якi описує
лiнiйне псевдогiперболiчне рiвняння

ytt  - div\nabla y  - div\nabla yt +

t\int 
0

div\nabla y(s) ds = f + u для x \in \Omega , t \in (0, T ]

з умовами
y(x, t) = 0, x \in \partial \Omega , t \in (0, T ],

y(x, 0) = y0(x), x \in \Omega ,

yt(x, 0) = y1(x), x \in \Omega .

У [37] запропоновано методику аналiзу iснування та єдиностi розв’язку змiшаної задачi
для нелiнiйного iнтегро-диференцiального рiвняння третього порядку псевдопараболiчно-
го типу з виродженим ядром

K(t, s) =

m\sum 
i=1

ai(t)ai(s)

на основi методу послiдовних наближень. Зокрема, розглянуто задачу

Ut(t, x) - Utxx(t, x) - \mu 

T\int 
0

K(t, s)Uxx(s, x) ds

= \nu (t)

T\int 
0

U(\theta , x) d\theta + f

\left(  x, T\int 
0

l\int 
0

H(\theta , y)U(\theta , y)dyd\theta 

\right)  
з початково-крайовими умовами

U(0, x) = \varphi (x),

U(t, 0) = U(t, l) = 0

i деякими обмеженнями на коефiцiєнти.
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У [38] вивчено початково-крайову задачу для нелiнiйного псевдопараболiчного рiвнян-
ня з iнтегральною складовою

ut  - \Delta u - \Delta ut +

t\int 
0

\lambda (t - \tau )\Delta u(\tau ) d\tau = | u| p - 1u

з початковими та граничними умовами Дiрiхле. За допомогою методу Гальоркiна i теорiї
потенцiалiв доведено iснування глобального розв’язку та деякi властивостi розривностi
розв’язкiв.

У роботах [39 – 41] автори, зокрема з використанням iдей i методiв теорiї псевдообер-
нених матриць i операторiв, розробленої О. А. Бойчуком i А. М. Самойленком у [42],
розглядали системи iнтегро-диференцiальних рiвнянь iз виродженими ядрами, зокрема,
дослiджували iснування розв’язкiв.

Розроблену в [42] технiку та поняття сильного узагальненого розв’язку операторного
рiвняння з [14] також застосовано у роботi [43] для дослiдження абстрактного рiвняння
Шредiнгера у гiльбертовому просторi.

Великий огляд, присвячений нелiнiйним диференцiальним i iнтегро-диференцiальним
рiвнянням псевдопараболiчного типу, подано у [9].

У цiй статтi ми доводимо апрiорнi нерiвностi для задачi (1), (2). Тим самим розши-
рюємо клас рiвнянь, до яких може бути застосовано цитований вище метод. На основi
цих нерiвностей обґрунтовуємо коректнiсть постановки початково-крайової задачi. Да-
лi наводимо теорему про iснування оптимального керування, де керування здiйснюється
рiзноманiтними типами операторiв через праву частину рiвняння (1). Вiдзначимо, що наве-
денi оператори керування дiють у просторах узагальнених функцiй, що може моделювати
iмпульсно-точкову дiю на систему.

2. Постановка задачi. Розглянемо цилiндричну область Q = \Omega \times (0, T ), де \Omega — обме-
жена область у \BbbR n iз гладкою межею \partial \Omega , та лiнiйне рiвняння з iнтегро-диференцiальним
оператором

\scrL u \equiv LDu+ LIu = f(x, t). (3)

Тут u(x, t) — шукана функцiя, що описує стан системи в областi Q, а диференцiальну та
iнтегральну частини оператора \scrL задано виразами

LDu \equiv (Au)t +Bu, (4)

LIu \equiv 
t\int 

0

n\sum 
i=1

(Ki(x, t, \tau ) uxi(x, \tau ))xid\tau , (5)

де

Au \equiv  - 
n\sum 

i,j=1

(aij(x) uxj )xi + a(x)u, (6)

Bu \equiv  - 
n\sum 

i,j=1

(bij(x) uxj )xi + b(x)u. (7)
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Далi будемо вважати, що \{ aij\} ni,j=1, \{ bij\} ni,j=1 \subset C1
\bigl( 
\Omega 
\bigr) 
, a, b \in C

\bigl( 
\Omega 
\bigr) 
, для всiх x \in \Omega мають

мiсце спiввiдношення

aij(x) = aji(x), bij(x) = bji(x), a(x) \geq 0, b(x) \geq 0, (8)

та коефiцiєнти aij(x) i bij(x) при довiльних \xi i \in \BbbR , i = 1, n, i x \in \Omega задовольняють умови
n\sum 

i,j=1

aij(x)\xi i\xi j \geq \alpha 
n\sum 

i=1

\xi 2i , (9)

n\sum 
i,j=1

bij(x)\xi i\xi j \geq 0 (10)

для деякої додатної сталої \alpha .
Уважатимемо також, що ядра Ki(x, t, \tau ) є неперервно диференцiйовними. Зокрема, для

деякої сталої M справджується нерiвнiсть | Ki(x, t, \tau )| < M для всiх x \in \Omega i t, \tau \in [0, T ].
Зауваження 1. Зазначимо, що умови на гладкiсть коефiцiєнтiв диференцiальної ча-

стини та (8) – (10) є класичними умовами з [1]. Насправдi, при переходi до узагальненої
(слабкої) постановки отриманi нами результати будуть правильнi й за бiльш слабких умов
на гладкiсть коефiцiєнтiв. Наприклад, замiсть неперервної диференцiйовностi ядер Ki

достатньо вимагати лише обмеженостi та iнтегровностi.
Областю визначення оператора \scrL вважатимемо простiр, що складається з множини

гладких, тобто нескiнченну кiлькiсть разiв диференцiйовних в областi Q функцiй, що
задовольняють однорiднi початковi та граничнi умови типу Дiрiхле

u| t=0 = 0, (11)

u| x\in \partial \Omega = 0. (12)

Множину гладких функцiй, що задовольняють умови (11), (12), будемо позначати че-
рез C\infty 

BR.
Розглянемо простiр W+

BR, що є поповненням C\infty 
BR за нормою

\| u\| W+
BR

=

\left(   \int 
Q

u2t +

n\sum 
i=1

u2xitdQ

\right)   
1/2

. (13)

Зауваження 2. Нескладно показати, що норма (13) є еквiвалентною до норми

\| u\| =

\left(   \int 
Q

u2t +

n\sum 
i,j=1

aijuxituxjtdQ

\right)   
1/2

.

Також розглянемо спряжений оператор, що має вигляд \scrL \ast v \equiv L\ast 
Dv + L\ast 

Iv,

L\ast 
Dv \equiv  - (Av)t +Bv, L\ast 

Iv \equiv 
T\int 
t

n\sum 
i=1

(Ki(x, \tau , t) vxi(x, \tau ))xid\tau . (14)
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Областю визначення оператора \scrL \ast вважаємо простiр, який складається з множини
гладких у областi Q функцiй, що задовольняють початковi та граничнi умови

v| t=T = 0, (15)

v| x\in \partial \Omega = 0. (16)

Множину такихфункцiй позначатимемо через C\infty 
BR+ , а черезW+

BR+ позначимопоповнення
множини C\infty 

BR+ за тiєю ж нормою (13).
Розглянемо негативнi простори W - 

BR, W - 
BR+ [44], побудованi за позитивними про-

сторами W+
BR, W+

BR+ вiдповiдно, вiдносно L2(Q). Зокрема, справедливi такi щiльнi та
неперервнi вкладення: W+

BR \subset L2(Q) \subset W - 
BR, W

+
BR+ \subset L2(Q) \subset W - 

BR+ .

Через H+
BR позначимо поповнення простору гладких функцiй у областi Q, що задо-

вольняють початковi та граничнi умови (11), (12) за нормою

\| u\| 2
H+

BR
=

\int 
Q

\Biggl( 
u2 +

n\sum 
i=1

u2xi

\Biggr) 
dQ. (17)

Простiр H+
BR+ —поповнення простору гладкихфункцiй у областi Q, що задовольняють

початковi та граничнi умови (15), (16) за тiєю ж самою нормою (17). Через H - 
BR, H - 

BR+

позначимо вiдповiднi негативнi простори.
Зауваження 3. Простори H+

BR, H
+
BR+ щiльно та неперервно вкладаються в L2(Q).

У подальшому нам знадобиться така лема.
Лема 1. Нехай f \in C1([0, T ]), f(T ) = 0 i для довiльних t, \tau \in [0, T ] справджується

нерiвнiсть | K(t, \tau )| \leq M. Тодi для довiльної сталої c > 0 має мiсце нерiвнiсть\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
T\int 
0

t\int 
0

K(t, \tau )ec\tau f \prime (\tau ) d\tau f(t)dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq MT

c

T\int 
0

ect(f \prime (t))2dt.

Доведення. Iнтегруючи частинами та використовуючи f(T ) = 0, маємо

T\int 
0

f(t)

t\int 
0

K(t, \tau )ec\tau f \prime (\tau ) d\tau dt =  - 
T\int 
0

\left[  f \prime (t)

t\int 
0

\left(  s\int 
0

K(s, \tau )ec\tau f \prime (\tau ) d\tau 

\right)  ds

\right]  dt = I.

Оцiнимо цей вираз у такий спосiб:

| I| \leq 
T\int 
0

\left[  | f \prime (t)| 
t\int 

0

\left(  s\int 
0

| K(s, \tau )ec\tau f \prime (\tau )| d\tau 

\right)  ds

\right]  dt \leq M

T\int 
0

\left[  | f \prime (t)| 
t\int 

0

\left(  s\int 
0

ec\tau | f \prime (\tau )| d\tau 

\right)  ds

\right]  dt.
За допомогою нерiвностi Кошi – Буняковського отримуємо

s\int 
0

ec\tau | f \prime (\tau )| d\tau \leq 

\left(  s\int 
0

ec\tau d\tau 

s\int 
0

ec\tau (f \prime (\tau ))2d\tau 

\right)  1/2 =
\left(  1

c
(ecs  - 1)

s\int 
0

ec\tau (f \prime (\tau ))2d\tau 

\right)  1/2,
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s\int 
0

ec\tau | f \prime (\tau )| d\tau \leq 

\left(  s\int 
0

ec\tau d\tau 

s\int 
0

ec\tau (f \prime (\tau ))2d\tau 

\right)  1/2 \leq 
\left(  ecs

c

T\int 
0

ec\tau (f \prime (\tau ))2d\tau 

\right)  1/2.
Використовуючи останню нерiвнiсть i застосовуючи нерiвнiсть Кошi – Буняковського ще
раз, маємо

| I| \leq M

T\int 
0

\left[   | f \prime (t)| 
t\int 

0

\left(  ecs

c

T\int 
0

ec\tau (f \prime (\tau ))2d\tau 

\right)  1/2ds
\right]   dt

\leq M

T\int 
0

\left[   | f \prime (t)| 

\left(  t\int 
0

ecs

c
ds

t\int 
0

T\int 
0

ec\tau (f \prime (\tau ))2d\tau ds

\right)  1/2
\right]   dt

= M

T\int 
0

\left[   | f \prime (t)| 

\left(  ect

c2

t\int 
0

T\int 
0

ec\tau (f \prime (\tau ))2d\tau ds

\right)  1/2
\right]   dt

\leq M

T\int 
0

\left[   | f \prime (t)| 

\left(  ect

c2
T

T\int 
0

ec\tau (f \prime (\tau ))2d\tau 

\right)  1/2
\right]   dt

\leq M

c

T\int 
0

\left[   ect/2| f \prime (t)| 

\left(  T

T\int 
0

ec\tau (f \prime (\tau ))2d\tau 

\right)  1/2
\right]   dt

\leq M

c

\left(  T\int 
0

ect(f \prime (t))2dt

T\int 
0

T

T\int 
0

ec\tau (f \prime (\tau ))2d\tau dt

\right)  1/2 = MT

c

T\int 
0

ect(f \prime (t))2dt,

що й треба було довести.
Аналогiчно можна довести й таке твердження.
Лема 2. Нехай f \in C1([0, T ]), f(0) = 0 i для довiльних t, \tau \in [0, T ] справджується

нерiвнiсть | K(t, \tau )| \leq M. Тодi для довiльної сталої c > 0 має мiсце нерiвнiсть\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
T\int 
0

T\int 
t

K(\tau , t)e - c\tau f \prime (\tau ) d\tau f(t)dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq MT

c

T\int 
0

e - ct(f \prime (t))2dt.

3. Апрiорнi нерiвностi. Для дослiдження iснування та єдиностi узагальненого розв’язку
доведемо деякi нерiвностi для операторiв \scrL , \scrL \ast . У наступних лемах уважатимемо, що C
може позначати рiзнi сталi, коли це не важливо.

Лема 3. Iснує така стала C > 0, що для довiльної функцiї u(x, t) \in W+
BR виконується

нерiвнiсть
C\| u\| W+

BR
\geq \| \scrL u\| W - 

BR+
.
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Доведення. Розглянемо гладку функцiю u(x, t) \in W+
BR, яка задовольняє умови (11),

(12). Для будь-якої функцiї v(x, t) \in C\infty 
BR+ розглянемо скалярний добуток (\scrL u, v)L2(Q).

У [1] показано, що для деякої сталої C виконується нерiвнiсть\bigm| \bigm| (LDu, v)L2(Q)

\bigm| \bigm| \leq C\| v\| W+

BR+
\| u\| W+

BR
.

Далi оцiнимо (LIu, v)L2(Q). Використовуючи формулу Гаусса –Остроградського, нерiв-
нiсть Кошi – Буняковського та беручи до уваги умови (11), (12), можна отримати

\bigm| \bigm| (LIu, v)L2(Q)

\bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

n\sum 
i=1

\int 
Q

t\int 
0

Ki(x, t, \tau )uxi(x, \tau )vxi(x, t) d\tau dQ

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq M

n\sum 
i=1

\int 
Q

| vxi(x, t)| 

\left(  t\int 
0

d\tau 

t\int 
0

u2xi
(x, \tau ) d\tau 

\right)  1/2dQ

\leq MT
n\sum 

i=1

\left(   \int 
Q

v2xi
(x, t) dQ

\int 
Q

u2xi
(x, t)dQ

\right)   
1/2

\leq MT

\left(   n\sum 
i=1

\int 
Q

v2xi
(x, t)dQ

\right)   
1/2\left(   n\sum 

i=1

\int 
Q

u2xi
(x, t)dQ

\right)   
1/2

\leq MTC2
p

\left(   \int 
Q

n\sum 
i=1

v2xit(x, t)dQ

\right)   
1/2\left(   \int 

Q

n\sum 
i=1

u2xit(x, t)dQ

\right)   
1/2

\leq MTC2
p\| v\| W+

BR+
\| u\| W+

BR
.

Тут Cp — стала з нерiвностi Пуанкаре \| u\| L2(Q) \leq Cp\| ut\| L2(Q). Загалом, маємо\bigm| \bigm| (\scrL u, v)L2(Q)

\bigm| \bigm| = | (LDu, v)L2(Q) + (LIu, v)L2(Q)| \leq | (LDu, v)L2(Q)| + | (LIu, v)L2(Q)| 

\leq C\| v\| W+

BR+
\| u\| W+

BR
+MTC2

p\| v\| W+

BR+
\| u\| W+

BR
\leq C1\| v\| W+

BR+
\| u\| W+

BR

для деякої сталої C1. Подiливши останню нерiвнiсть на \| v\| W+

BR+
, перейшовши до супрему-

му по v та спираючись на щiльнiсть множини C\infty 
BR+ у просторi W+

BR+ , отримаємо шукану
нерiвнiсть.

Аналогiчно можна довести й таке твердження.
Лема 4. Iснує така стала C > 0, що для довiльної функцiї v(x, t) \in W+

BR+ виконується
нерiвнiсть

C\| v\| W+

BR+
\geq \| \scrL \ast v\| W - 

BR
.
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Зауваження 4. Нерiвностi, якi доведено у лемах 3, 4, дозволяють розширити оператори
\scrL , \scrL \ast з їхнiх областей визначення на простори W+

BR, W
+
BR+ вiдповiдно за неперервнiстю.

Збережемо за розширеними операторами тi самi позначення. Тепер нерiвностi, вказанi у
лемах 3, 4, будуть справджуватися вже для всiх u \in W+

BR, v \in W+
BR+ .

Лема 5. Iснує така стала C > 0, що для довiльної функцiї u(x, t) \in W+
BR виконується

нерiвнiсть
\| \scrL u\| W - 

BR+
\geq C\| u\| H+

BR
.

Доведення. Спочатку розглянемо гладку функцiю u(x, t) \in C\infty 
BR. Нехай

v(x, t) =  - 
t\int 

T

e - c\tau u(x, \tau ) d\tau , (18)

де c —додатна стала. Тодi u(x, t) =  - ectvt(x, t) та очевидно, що v(x, t) \in W+
BR+ . Доведемо,

що (\scrL u, v)L2(Q) \geq C\| v\| 2
W+

BR+

.

Розглянемо спочатку (LDu, v)L2(Q). За допомогою iнтегрування частинами отримаємо\int 
Q

a(x)utv dQ =  - 
\int 
Q

a(x)vtu dQ =  - 
\int 
Q

a(x)vt( - ectvt) dQ =

\int 
Q

a(x)ectv2t dQ. (19)

Далi маємо\int 
Q

b(x)uv dQ =  - 
\int 
Q

b(x)ectvtvdQ =  - 1

2

\int 
Q

(b(x)ectv2)tdQ+
1

2

\int 
Q

cb(x)ectv2dQ

=
1

2

\int 
\Omega 

b(x)v2(x, 0)d\Omega +
1

2

\int 
Q

cb(x)ectv2dQ \geq 1

2

\int 
Q

cb(x)ectv2dQ. (20)

З умов (11) i (18) можна одержати, що
\int 
Q

\sum n

i,j=1
((aijuxj )xiv)tdQ = 0, а тодi, викори-

стовуючи формулу Гаусса –Остроградського та враховуючи умови (15), (16), отримаємо

 - 
\int 
Q

n\sum 
i,j=1

(aijuxj )xitvdQ =

\int 
Q

n\sum 
i,j=1

(aijuxj )xivtdQ

=

\int 
Q

n\sum 
i,j=1

aije
ctvxjtvxitdQ \geq \alpha 

\int 
Q

ect
n\sum 

i=1

v2xitdQ. (21)

Аналогiчно з формули Гаусса –Остроградського, враховуючи симетричнiсть коефiцi-
єнтiв bij та умови (15), (16), можна одержати

 - 
\int 
Q

v
n\sum 

i,j=1

(bijuxj )xidQ =

\int 
Q

n\sum 
i,j=1

bijuxjvxidQ =  - 
\int 
Q

ect
n\sum 

i,j=1

bijvxjtvxidQ
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=  - 1

2

\int 
Q

n\sum 
i,j=1

(bije
ctvxjvxi)tdQ+

1

2

\int 
Q

n\sum 
i,j=1

cbije
ctvxivxjdQ

\geq 1

2

\int 
Q

n\sum 
i,j=1

cbije
ctvxivxjdQ. (22)

З урахуванням (19) – (22) запишемо загальну оцiнку

(LDu, v)L2(Q) =

\int 
Q

a(x)utvdQ+

\int 
Q

b(x)uvdQ

 - 
\int 
Q

v
n\sum 

i,j=1

(aijuxj )xitdQ - 
\int 
Q

v
n\sum 

i,j=1

(bijuxj )xidQ

\geq 
\int 
Q

a(x)ectv2t dQ+
1

2

\int 
Q

cb(x)ectv2dQ

+ \alpha 

\int 
Q

ect
n\sum 

i=1

v2xitdQ+
1

2

\int 
Q

n\sum 
i,j=1

cbije
ctvxivxjdQ.

Враховуючи (10) i невiд’ємнiсть доданкiв
\int 
Q
a(x)ectv2t dQ,

\int 
Q
cb(x)ectv2dQ, маємо

(LDu, v)L2(Q) \geq \alpha 

\int 
Q

ect
n\sum 

i=1

v2xitdQ. (23)

Тепер розглянемо (LIu, v)L2(Q). З формули Гаусса –Остроградського з урахуванням
початково-крайових умов отримуємо

(LIu, v)L2(Q) =
n\sum 

i=1

\int 
Q

t\int 
0

(Ki(x, t, \tau ) uxi(x, \tau ))xid\tau v(x, t)dQ

=  - 
n\sum 

i=1

\int 
Q

t\int 
0

Ki(x, t, \tau ) uxi(x, \tau ) d\tau vxi(x, t)dQ

=

n\sum 
i=1

\int 
Q

t\int 
0

Ki(x, t, \tau )e
c\tau vxi\tau (x, \tau ) d\tau vxi(x, t)dQ.

Cкориставшись лемою 1, для кожного доданка в останнiй сумi одержимо

\bigm| \bigm| (LIu, v)L2(Q)

\bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
Q

t\int 
0

n\sum 
i=1

Ki(x, t, \tau )e
c\tau vxi\tau (x, \tau ) d\tau vxi(x, t)dQ

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
MT

c

\int 
Q

ect
n\sum 

i=1

v2xitdQ.

(24)
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Комбiнуючи (23) i (24), обираючи c =
2MT

\alpha 
i зважаючи на нерiвнiсть Пуанкаре, маємо

(\scrL u, v)L2(Q) = (LDu, v)L2(Q) + (LIu, v)L2(Q) \geq (LDu, v)L2(Q)  - | (LIu, v)L2(Q)| 

\geq \alpha 

\int 
Q

ect
n\sum 

i=1

v2xitdQ - MT

c

\int 
Q

ect
n\sum 

i=1

v2xitdQ \geq \alpha 

2

\int 
Q

ect
n\sum 

i=1

v2xitdQ \geq C\| v\| 2
W+

BR+
.

(25)

Застосовуючи стандартним чином нерiвнiсть Шварца до лiвої частини, отримуємо
(\scrL u, v)L2(Q) \leq \| \scrL u\| W - 

BR+
\| v\| W+

BR+
. Враховуючи (25), маємо C\| v\| W+

BR+
\leq \| \scrL u\| W - 

BR+
. Оскiль-

ки мiж u(x, t) i v(x, t) справджується спiввiдношення

\| u\| 2
H+

BR
=

\int 
Q

\Biggl( 
e2ctv2t +

n\sum 
i=1

e2ctv2xit

\Biggr) 
dQ \leq e2cT

\int 
Q

\Biggl( 
v2t +

n\sum 
i=1

v2xit

\Biggr) 
dQ = e2cT \| v\| 2

W+

BR+
,

то

\| \scrL u\| W - 
BR+

\geq C\| v\| W+

BR+
\geq Ce - 2cT \| u\| H+

BR
\geq C1\| u\| H+

BR

для деякої сталої C1. Таким чином, твердження леми доведено для всiх u \in C\infty 
BR.

Для решти функцiй з W+
BR потрiбне твердження можна встановити за допомогою

граничного переходу. А саме: нехай u \in W+
BR (необов’язково гладка). Внаслiдок щiльно-

стi вкладення C\infty 
BR \subset W+

BR елемент u можна наблизити послiдовнiстю елементiв um \in 
C\infty 
BR. Тобто \| u  - um\| W+

BR
\rightarrow 0 при m \rightarrow \infty . Внаслiдок леми 3 має мiсце нерiвнiсть

\| \scrL u - \scrL um\| W - 
BR+

\leq C1\| u - um\| W+
BR

. А отже, \scrL um \rightarrow \scrL u у просторi W - 
BR+ . При цьому для

кожного елемента um внаслiдок доведеного вище має мiсце нерiвнiсть

C\| um\| H+
BR

\leq \| \scrL um\| W - 
BR+

. (26)

Залишилося зазначити, що зi збiжностi у просторi W+
BR випливає збiжнiсть у H+

BR, а тому
\| u - um\| H+

BR
\rightarrow 0. Тепер, переходячи до границi при m \rightarrow \infty у нерiвностi (26), отримуємо

потрiбне твердження.
Лема 6. Iснує така стала C > 0, що для довiльної функцiї v(x, t) \in W+

BR+ виконується
нерiвнiсть

\| \scrL \ast v\| W - 
BR

\geq C\| v\| H+

BR+
.

Доведення цiєї леми аналогiчне до доведення леми (4), якщо розглянути допомiжну
функцiю

u(x, t) =

t\int 
0

ec\tau v(x, \tau ) d\tau ,

де c — додатна стала, а для оцiнки iнтегральної складової застосувати лему 2.
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4. Узагальнена розв’язнiсть. Розглянемо задачi

\scrL u = f, f \in W - 
BR+ , (27)

\scrL \ast v = g, g \in W - 
BR. (28)

Розв’язки задачi (27) будемо розумiти в сенсi таких означень.
Означення 1. Розв’язком задачi (27) iз правою частиною f \in W - 

BR+ називають функцiю
u \in W+

BR, для якої iснує послiдовнiсть функцiй ui \in C\infty 
BR, i = 1, 2, . . . , таких, що

\| u - ui\| W+
BR

 - \rightarrow 
i\rightarrow \infty 

0, \| \scrL ui  - f\| W - 
BR+

 - \rightarrow 
i\rightarrow \infty 

0.

Означення 2. Сильним розв’язком задачi (27) iз правою частиною f \in W - 
BR+ називають

функцiю u \in W+
BR таку, що \scrL u = f у просторi W - 

BR+ .
Означення 3. Слабким розв’язком задачi (27) iз правою частиною f \in W - 

BR+ називають
функцiю u \in W+

BR таку, що рiвнiсть

(\scrL u, v)W+
BR

= (f, v)W+

BR+

виконується для будь-яких функцiй v \in W+
BR+ таких, що L\ast v \in H - 

BR.
Можна розглянути визначення розв’язку задачi (27) у ширшому класi H+

BR.
Означення 4. Розв’язком задачi (27) iз правою частиною f \in W - 

BR+ називають функцiю
u \in H+

BR, для якої iснує послiдовнiсть функцiй ui \in C\infty 
BR, i = 1, 2, . . . , таких, що

\| u - ui\| H+
BR

 - \rightarrow 
i\rightarrow \infty 

0, \| \scrL ui  - f\| W - 
BR+

 - \rightarrow 
i\rightarrow \infty 

0.

Означення 5. Слабким розв’язком задачi (27) iз правою частиною f \in W - 
BR+ називають

функцiю u \in H+
BR таку, що рiвнiсть

(u,\scrL \ast v)H+
BR

= (F, v)W+

BR+

виконується для будь-яких функцiй v \in W+
BR+ , \scrL \ast v \in H - 

BR.
Аналогiчно можна ввести означення i для розв’язку спряженої задачi (28).
У попередньому пунктi для операторiв \scrL , \scrL \ast доведено нерiвностi

C1\| u\| H+
BR

\leq \| \scrL u\| W - 
BR+

\leq C2\| u\| W+
BR

, (29)

C1\| v\| H+

BR+
\leq \| \scrL \ast v\| W - 

BR
\leq C2\| v\| W+

BR+
(30)

для довiльних u \in W+
BR, v \in W+

BR+ . Ґрунтуючись на цих нерiвностях i використовуючи
результати з [1], можна сформулювати теореми узагальненої розв’язностi.

Теорема 1. Означення (1) – (3) еквiвалентнi.
Теорема 2. Означення (4), (5) еквiвалентнi.
Теорема 3. Для будь-якої функцiї f \in H - 

BR+ iснує єдиний розв’язок u \in W+
BR задачi (27)

у сенсi означень 1 – 3. Причому для деякої сталої C, що не залежить вiд f, виконується
нерiвнiсть

\| u\| W+
BR

\leq C\| f\| H - 
BR+

.
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Теорема 4. Для будь-якої функцiї f \in W - 
BR+ iснує єдиний розв’язок u \in H+

BR задачi (27)
у сенсi означень 4, 5. Причому для деякої сталої C, що не залежить вiд f, виконується
нерiвнiсть

\| u\| H+
BR

\leq C\| f\| W - 
BR+

.

Зауваження 5. Аналогiчнi теореми можна сформулювати й для спряженої задачi (28).
5. Оптимальне керування. Розглянемо тепер задачу оптимального керування системою,

еволюцiю якої описує рiвняння

\scrL u = f +\scrA h. (31)

Тут h — керування, що належить деякiй множинi допустимих керувань \scrU з простору
керувань \scrH , та \scrA — деякий оператор. На розв’язках рiвняння (31) задано функцiонал
J(h) = \Phi (u(h)), який треба мiнiмiзувати при умовi h \in \scrU .

Розглянемо декiлька операторiв \scrA i вкажемо вiдповiднi простори керувань для них:

\scrA 1h =

d\sum 
k=1

\delta (t - tk)\otimes \varphi k(x), t, tk \in [0, T ], \varphi k(x) \in L2(\Omega ). (32)

Тут

h =
\bigl\{ 
(tk, \varphi k(x))

\bigr\} d
k=1

, \scrH =
\bigl( 
[0, T ]\times L2(\Omega )

\bigr) d
.

Пiд \scrA 1h ми розумiємо функцiонал, що дiє на гладких у Q функцiях таким чином:

(\scrA 1h)(v) =

d\sum 
k=1

\int 
\Omega 

v(tk, x)\varphi k(x) d\Omega .

У подальшому, для спрощення викладу, припустимо, що область \Omega є цилiндричною за
змiнною x1, тобто \Omega = [a, b]\times \Omega \prime ,

\scrA 2h =
d\sum 

k=1

\delta (x1  - x1,k)\otimes \varphi k(t, x2, . . . , xn), (33)

x1, x1,k \in [a, b], \varphi k(t, x2, . . . , xn) \in L2((0, T )\times \Omega \prime ).

Тут

h =
\bigl\{ 
(x1,k, \varphi k(t, x2, . . . , xn))

\bigr\} d
k=1

, \scrH =
\bigl( 
[a, b]\times L2((0, T )\times \Omega \prime )

\bigr) d
.

Пiд \scrA 2h ми розумiємо функцiонал, що дiє на гладких у Q функцiях у такий спосiб:

(\scrA 2h)(v) =

d\sum 
k=1

\int 
[0,T ]\times \Omega \prime 

v(t, x1,k, x2, . . . , xn)\varphi k(t, x2, . . . , xn) d\Omega 
\prime dt,

\scrA 3h =
d\sum 

k=1

p\sum 
i=1

\delta (t - ti)\otimes \delta (x1  - x1,k)\otimes \varphi ik(x2, . . . , xn), (34)

ISSN 1562-3076. Нелiнiйнi коливання, 2024, т. 27, № 1



16 АНДРIЙ АНIКУШИН, АНАСТАСIЯ АНДАРАЛ

x1, x1,k \in [a, b], t, ti \in [0, T ], \varphi ik(x2, . . . , xn) \in L2((0, T )\times \Omega \prime ).

Тут

h =
\bigl\{ 
(ti, x1,k, \varphi ik(x2, . . . , xn))

\bigr\} d
k=1

, \scrH = [0, T ]p \times [a, b]d \times 
\bigl( 
L2(\Omega 

\prime )
\bigr) pd

.

Пiд \scrA 3h ми розумiємо функцiонал, що дiє на гладких у Q функцiях так:

(\scrA 2h)(v) =
d\sum 

k=1

p\sum 
i=1

\int 
\Omega \prime 

v(ti, x1,k, x2, . . . , xn)\varphi k(x2, . . . , xn) d\Omega 
\prime ,

\scrA 4h =
d\sum 

k=1

\delta (x1  - ak(t))\otimes \varphi k(t, x2, . . . , xn), (35)

ak(t) \in W 1
2 (0, T ), \varphi k(t, x2, . . . , xn) \in L2((0, T )\times \Omega \prime ).

Тут

h =
\bigl\{ 
(ak(t), \varphi k(t, x2, . . . , xn))

\bigr\} d
k=1

, \scrH =
\bigl( 
W 1

2 (0, T )\times L2((0, T )\times \Omega \prime )
\bigr) d
.

Пiд \scrA 4h ми розумiємо функцiонал, що дiє на гладких у Q функцiях таким чином:

(\scrA 4h)(v) =
d\sum 

k=1

\int 
[0,T ]\times \Omega \prime 

v(t, ak(t), x2, . . . , xn)\varphi k(t, x2, . . . , xn) d\Omega 
\prime dt.

Нескладно довести [1], що всi вказанi оператори можна розглядати як вiдображення,
якi дiють iз вiдповiдних просторiв керувань \scrH у W - 

BR+ i є слабко-неперервними. Доведенi
апрiорнi нерiвностi (29), (30) дозволяють стверджувати [1], що справедлива така теорема.

Теорема 5. Нехай стан системи описано розв’язком задачi (31) з одним iз наведених
операторiв \scrA та вiдповiдним простором керувань \scrH . Припустимо, що множина допустимих
керувань \scrU є замкненою, опуклою та обмеженою в \scrH , а критерiй якостi \Phi (\cdot ) : H+

BR \rightarrow \BbbR є
слабко напiвнеперервним знизу за станом системи u(t, x, h) й обмеженим знизу. Тодi iснує
оптимальне керування системою (31).

Зауваження 6. За допомогою доведених апрiорних нерiвностей (29), (30) можна та-
кож довести деякi диференцiальнi властивостi критерiю якостi, властивостi регуляризова-
ної задачi, побудувати та довести збiжнiсть чисельних методiв для пошуку узагальнених
розв’язкiв i оптимального керування тощо.

Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв. Усi необхiднi данi мiстяться в статтi. Всi автори зробили рiвномiрний внесок
у цю роботу. Автори висловлюють подяку фiзико-математичному факультету Карлового
унiверситету, Прага, Чехiя, за пiдтримку при написаннi роботи.
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