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МОМЕНТ КIЛЬКОСТЕЙ РУХУ ТА ОБМЕЖЕНIСТЬ РУХУ
У ЗАДАЧI ТРЬОХ ТIЛ
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The influence of the angular momentum on the stabilization of motion in the three-body problem is
considered. Sufficient conditions for boundedness of motion are obtained both in the restricted three-body
problem and in its general case. The key role in these conditions is the role of angular momentum. Although
in the spatial circular restricted three-body problem, the angular momentum is not an integral of motion
but only a linear component of the Jacobi integral, it ensures the boundedness of motion of an infinitely
small particle under certain additional conditions. A comparative analysis of the general and restricted
three-body problems is carried out.

Розглянуто вплив моменту кiлькостей руху на стабiлiзацiю руху в задачi трьох тiл. Отримано
достатнi умови обмеженостi руху як в обмеженiй задачi трьох тiл, так i в її загальному випадку.
Ключовою за цих умов є роль моменту кiлькостей руху. Хоча в просторовiй круговiй обмеженiй
задачi трьох тiл момент кiлькостей руху не є iнтегралом руху, а лише складовою частиною iнтеграла
Якобi, однак забезпечує обмеженiсть руху нескiнченно малої частки за певних додаткових умов.
Проведено порiвняльний аналiз загальної i обмеженої задач трьох тiл.

1. Вступ. Простота формулювання задачi трьох тiл i разом iз тим неможливiсть її розв’я-
зання у повному обсязi стали викликом як для фахiвцiв iз царини природничих наук
(астрономiя, астрофiзика i т. д.), так i математикiв. Проте нинi, зважаючи на час, у якому
ми живемо, а саме, перш за все, маємо на увазi активне освоєння космiчного простору,
задача трьох тiл вже давно перестала бути чисто академiчною, а перетворилася значною
мiрою й цiлком обґрунтовано в прикладну. Комп’ютерне моделювання, аналiтичнi й чи-
словi методи, стимулом для розвитку яких певною мiрою послужила i сама задача трьох
тiл, дозволили досягти значних успiхiв у її дослiдженнi [1 – 4]. При цьому аналiтичний
пiдхiд, доповнюючи числовi методи, сприяв глибшому розумiнню останнiх.

Розглянемо базовi рiвняння задачi трьох тiл, якi запишемо у виглядi [5]:

\bfitrho \prime \prime 
1 = \mu 2

\bfitrho 2  - \bfitrho 1

| \bfitrho 12| 3
+ \mu 3

\bfitrho 3  - \bfitrho 1

| \bfitrho 13| 3
,

\bfitrho \prime \prime 
2 =  - \mu 1

\bfitrho 2  - \bfitrho 1

| \bfitrho 12| 3
+ \mu 3

\bfitrho 3  - \bfitrho 2

| \bfitrho 23| 3
,

\bfitrho \prime \prime 
3 =  - \mu 1

\bfitrho 3  - \bfitrho 1

| \bfitrho 13| 3
 - \mu 2

\bfitrho 3  - \bfitrho 2

| \bfitrho 23| 3
,

(1.1)
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де штрих означає диференцiювання по \tau , \tau = t
\surd 
GM/r

3/2
0 , \mu i = mi/M, M = m1+m2+m3,

r0 — параметр, що має розмiрнiсть одиницi довжини. В рiвняннях (1.1) \bfitrho i = \bfr i/r0, i =
1, 2, 3, де \bfr i — радiуси-вектори точок у iнерцiйнiй системi вiдлiку з початком у центрi
мас mi. Параметр r0 введений для того, щоб у подальшому оперувати безрозмiрними
величинами.

Якщо у рiвняннях (1.1) покладемо \mu 3 = 0, то приходимо до обмеженої задачi трьох тiл

\bfitrho 1
\prime \prime = \mu 

\bfitrho 12

| \bfitrho 12| 3
,

\bfitrho 2
\prime \prime =  - (1 - \mu )

\bfitrho 12

| \bfitrho 12| 3
,

\bfitrho 3
\prime \prime =  - (1 - \mu )

\bfitrho 13

| \bfitrho 13| 3
 - \mu 

\bfitrho 23

| \bfitrho 23| 3
,

(1.2)

де
\mu =

m2

m1 +m2
, 0 < \mu \leq 1

2
.

Оскiльки

\bfitrho 13 =
1

\mu 1 + \mu 2
(\bfitrho 3 + \mu 2\bfitrho 12), \bfitrho 23 =

1

\mu 1 + \mu 2
(\bfitrho 3  - \mu 1\bfitrho 12)

i вiдповiдно для обмеженої задачi

\bfitrho 13 = (\bfitrho 3 + \mu \bfitrho 12), \bfitrho 23 = [\bfitrho 3  - (1 - \mu )\bfitrho 12],

то системи (1.1), (1.2) зручно записувати ще й у такому виглядi:

\bfitrho \prime \prime 
12 =  - (\mu 1 + \mu 2)

\bfitrho 12

| \bfitrho 12| 3
+ \mu 3

\biggl( 
 - \bfitrho 13

| \bfitrho 13| 3
+

\bfitrho 23

| \bfitrho 23| 3

\biggr) 
,

\bfitrho \prime \prime 
3 =  - \mu 1

\bfitrho 13

| \bfitrho 13| 3
 - \mu 2

\bfitrho 23

| \bfitrho 23| 3
,

(1.3)

\bfitrho 12
\prime \prime =  - \bfitrho 12

| \bfitrho 12| 3
,

\bfitrho 3
\prime \prime =  - (1 - \mu )

\bfitrho 13

| \bfitrho 13| 3
 - \mu 

\bfitrho 23

| \bfitrho 23| 3
.

(1.4)

2. Про ключовi iнтеграли руху у задачi трьох тiл. При якiсному дослiдженнi руху у
задачi трьох тiл ключову роль вiдiграють iнтеграл енергiї та векторний iнтеграл моменту
кiлькостей руху, а тому надалi саме їх iстотно використовуватимемо. Зокрема, iнтеграл
енергiї вiдповiдно до систем рiвнянь у виглядi (1.1) i (1.3) будемо записувати так:

1

2

3\sum 
i

\mu i\bfitrho 
\prime 2
i  - 

\sum 
i<j

\mu i\mu j

\rho ij
= h = const,

1

2

\biggl( 
\mu 1\mu 2

\mu 1 + \mu 2
\bfitrho \prime 2
12 +

\mu 3

\mu 1 + \mu 2
\bfitrho \prime 2
3

\biggr) 
 - 
\sum 
i<j

\mu i\mu j

\rho ij
= h = const, (2.1)

де \rho ij = | \bfitrho ij | , i, j = 1, 2, 3. Надалi обмежуватимемося випадком, коли h < 0.
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Векторний iнтеграл моменту кiлькостей руху крiм звичного вигляду
3\sum 
i

\mu i

\bigl( 
\bfitrho i \times \bfitrho \prime 

i

\bigr) 
= \bfC 

зображуватимемо ще й у виглядi [6]

\mu 1\mu 2

\bigl( 
\bfitrho 12 \times \bfitrho \prime 

12

\bigr) 
+ \mu 3

\bigl( 
\bfitrho 3 \times \bfitrho \prime 

3

\bigr) 
= \bfC , (2.2)

що вiдповiдає рiвнянням руху у виглядi (1.3). Припускатимемо, що \bfC \not = \bfzero .
Далi без обмеження загальностi мiркувань вважатимемо справедливою рiвнiсть

3\sum 
i

\mu i\bfitrho i = \bfzero , (2.3)

яка фiксує початок системи вiдлiку у центрi мас матерiальних точок (тiл), що розгляда-
ються. Її аналог у випадку обмеженої задачi трьох тiл має вигляд

(1 - \mu )\bfitrho 1 + \mu \bfitrho 2 = \bfzero . (2.4)

Аналогом iнтеграла енергiї у обмеженiй задачi трьох тiл за умови, що вона є круговою,
є iнтеграл Якобi

1

2
\bfitrho \prime 
3
2  - 

\bigl( 
\bfitrho 3 \times \bfitrho \prime 

3

\bigr) \bigm| \bigm| 
\zeta 
 - 
\biggl( 
1 - \mu 

\rho 13
+

\mu 

\rho 23

\biggr) 
= h\ast . (2.5)

Тут вираз (\bfitrho 3 \times \bfitrho \prime 
3) | \zeta у лiвiй частинi рiвностi (2.5) є проєкцiєю моменту кiлькостей руху

малої частки (\bfitrho 3 \times \bfitrho \prime 
3) на вiсь O\zeta iнерцiйної системи вiдлiку. Вiсь O\zeta перпендикулярна

до площини, у якiй рухаються два масивнi тiла. Як бачимо, iнтеграл Якобi являє собою
суму енергiї малої частки i проєкцiї її моменту кiлькостей руху на вiсь O\zeta i, таким чином,
жодна зi складових iнтеграла Якобi не є iнтегралом руху. Однак, як переконаємося далi,
це не усуває можливостi стабiлiзуючої ролi моменту кiлькостей руху.

3. Про стабiлiзуючу роль моменту кiлькостей руху у круговiй обмеженiй задачi трьох
тiл. Кругова обмежена задача трьох тiл (матерiальних точок), хоч i є доволi спрощеною
моделлю руху трьох тiл у випадку, коли маса одного з них настiльки мала порiвняно з
масами двох iнших (якi рухаються по кругових орбiтах), що її впливом на них нехтують
[7, 8], проте знаходить багато цiкавих застосувань i нинi [4, 7, 9 – 14].

Як показав Якобi, обмежена кругова задача допускає перший iнтеграл (iнтеграл Якобi),
що в свою чергу дозволило Хiллу [15] довести iснування обмежених рухiв малої частки
за умови, що стала рiвня h iнтеграла Якобi вiд’ємна i | h| перевищує деяку критичну ве-
личину \widetilde h > 0. Далi цю умову зручно називати умовою Хiлла. Якщо вона виконується, то
область можливих рухiв нескiнченно малої частки є об’єднанням областi \omega H обмежених
рухiв по координатах (областi Хiлла) i областi \omega nc обмежених рухiв по швидкостях, тобто
\omega = \omega H

\bigcup 
\omega nc, причому \omega H

\bigcap 
\omega nc = \varnothing . На вiдмiну вiд \omega H , область \omega nc не є обмеженою,

однак рухи малої частки в цiй областi задовольняють умову дистальностi, що надзвичай-
но важливо, коли мова iде про їхню обмеженiсть, принаймнi у рамках запропонованого
пiдходу.

Нагадаємо основнi означення, якими користуватимемося далi.
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Означення 1. Рух \bfitrho (\tau ) = (\bfitrho 1, \bfitrho 2, \bfitrho 3)
T системи (1.1) назвемо стiйким за Лагранжем,

якщо виконується умова

c1 \leq | \bfitrho ij(\tau )| \leq c2 \forall \tau \in R = ] - \infty ,\infty [ \forall i < j,

де c1, c2 — додатнi сталi.
Означення 2. Рух \bfitrho (\tau ) = (\bfitrho 1, \bfitrho 2, \bfitrho 3)

T системи (1.1) назвемо дистальним, якщо вико-
нується нерiвнiсть

| \bfitrho ij(\tau )| \geq c3 \forall \tau \in R \forall i < j, 0 < c3 = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.

Означення 3. Фiксовану пару точок (\mu i, \mu j), i < j, системи (1.1) згiдно з [16] назвемо
стiйкою за Хiллом, якщо виконується нерiвнiсть

| \bfitrho ij(\tau )| < c4 \forall \tau \in R, 0 < c4 = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.

Систему рiвнянь (1.4) вiднесено до iнерцiйної системи вiдлiку з початком у центрi мас
двох масивних тiл. Зокрема, припускаючи, що O\xi , O\eta i O\zeta — осi цiєї системи координат,
вважатимемо, що вiсь O\zeta перпендикулярна площинi обертання двох масивних тiл.

Нехай у розглядуванiй системi вiдлiку (\xi 1, \eta 1, 0) i (\xi 2, \eta 2, 0) —координати тiл iз масами
(1 - \mu ) i \mu вiдповiдно, а \xi , \eta , \zeta — координати малої частки. Тодi друге векторне рiвняння
системи (1.4) можемо записати у виглядi

\xi \prime \prime =  - (1 - \mu )
\xi  - \xi 1
\rho 313

 - \mu 
\xi  - \xi 2
\rho 323

,

\eta \prime \prime =  - (1 - \mu )
\eta  - \eta 1
\rho 313

 - \mu 
\eta  - \eta 2
\rho 323

, (3.1)

\zeta \prime \prime =  - (1 - \mu )
\zeta 

\rho 313
 - \mu 

\zeta 

\rho 323
,

де

\rho 213 = (\xi  - \xi 1)
2 + (\eta  - \eta 1)

2 + \zeta 2,

\rho 223 = (\xi  - \xi 2)
2 + (\eta  - \eta 2)

2 + \zeta 2.
(3.2)

В iнерцiйнiй системi вiдлiку (O\xi , \eta , \zeta ) iнтеграл Якобi набуває вигляду

\bfitrho \prime 
3
2  - 2

\bigl( 
\xi \eta \prime  - \eta \xi \prime 

\bigr) 
 - 2

\biggl( 
1 - \mu 

\rho 13
+

\mu 

\rho 23

\biggr) 
= 2h, h = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}, (3.3)

де \bfitrho \prime 
3
2 = \xi \prime 2 + \eta \prime 2 + \zeta \prime 2. Якщо ж скористатися системою координат, яка обертається з

одиничною кутовою швидкiстю навколо осi, перпендикулярної до площини обертання
двох масивних тiл, тобто коли

\xi = x \mathrm{c}\mathrm{o}\mathrm{s} \tau  - y \mathrm{s}\mathrm{i}\mathrm{n} \tau ,

\eta = x \mathrm{s}\mathrm{i}\mathrm{n} \tau + y \mathrm{c}\mathrm{o}\mathrm{s} \tau ,
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де (x, y, z) — координати малої частки щодо системи координат, яка обертається, то
iнтеграл Якобi переходить у одну з рiвностей

\bfitrho \prime 
3
2  - 2

\bigl( 
xy\prime  - yx\prime 

\bigr) 
 - 2

\biggl( 
x2 + y2 +

1 - \mu 

\rho 13
+

\mu 

\rho 23

\biggr) 
= 2h

або

x\prime 
2
+ y\prime 

2
+ z\prime 

2  - 
\bigl( 
x2 + y2

\bigr) 
 - 2(1 - \mu )

\rho 13
 - 2\mu 

\rho 23
= 2h. (3.4)

У цьому випадку друге векторне рiвняння системи (1.4) набуває вигляду [7]

x\prime \prime  - 2y\prime = x - (1 - \mu )
x - \mu 

\rho 313
 - \mu 

x+ 1 - \mu 

\rho 323
,

y\prime \prime + 2x\prime = y  - (1 - \mu )
y

\rho 313
 - \mu 

y

\rho 323
,

z\prime \prime =  - (1 - \mu )
z

\rho 313
 - \mu 

z

\rho 323
,

де

\bfitrho 2
13 = (x - \mu )2 + y2 + z2, \bfitrho 2

23 = (x+ 1 - \mu )2 + y2 + z2.

Саме iнтеграл Якобi у виглядi (3.4) використовував Хiлл. Однак нам надалi зручнiше
скористатися iнтегралом Якобi у формi (3.3).

Теорема 1. Нехай рух нескiнченно малої частки, що визначається рiвняннями (1.4), є
дистальним. Якщо, крiм того, цей рух належить областi

\Omega =

\biggl\{ \bigl( 
\bfitrho 3, \bfitrho 

\prime 
3

\bigr) 
: \bfitrho \prime 

3
2  - 2

\bigl( 
\xi \eta \prime  - \eta \xi \prime 

\bigr) 
 - 2

\biggl( 
1 - \mu 

\rho 13
+

\mu 

\rho 23

\biggr) 
= 2h, h < 0

\biggr\} 
,

то вiн є стiйким за Лагранжем.
Доведення. Розглянемо функцiю

V = \xi \xi \prime + \eta \eta \prime .

Її похiдна по векторному полю, яке визначається рiвняннями (3.1), має вигляд

V \prime = \xi \prime 2 + \eta \prime 2  - \xi 

\biggl[ 
(1 - \mu )

\xi  - \xi 1
\rho 313

+ \mu 
\xi  - \xi 2
\rho 323

\biggr] 
 - \eta 

\biggl[ 
(1 - \mu )

\eta  - \eta 1
\rho 313

+ \mu 
\eta  - \eta 2
\rho 323

\biggr] 
. (3.5)

Як випливає зi структури правої частини рiвностi (3.5), вона, враховуючи згiдно з [17]
обмеженiсть плоских координат \xi i \eta , при прямуваннi вiдстаней \rho 13 i \rho 23 до нескiнченностi
прямує до суми \xi \prime 2 + \eta \prime 2. Тепер, виходячи з того, що за умов теореми рух малої частки
обмежений по координатах \xi i \eta , потрiбно довести, що вiн обмежений по координатi \zeta .

Припустимо супротивне, що координата \zeta є необмеженою. Тодi, враховуючи рiвно-
стi (3.2), робимо висновок, що необмеженими є обидвi вiдстанi \rho 13 i \rho 23, тобто iснує така
послiдовнiсть \{ \tau k\} , k = 1, 2, 3, . . . , що

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\tau k = \infty , \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\rho 13(\tau k) = \infty , \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\rho 23(\tau k) = \infty . (3.6)
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На пiдставi iнтеграла Якобi у виглядi (3.3) маємо нерiвнiсть\bigl( 
\xi \eta \prime  - \eta \xi \prime 

\bigr) 
\geq  - h - 

\biggl( 
1 - \mu 

\rho 13
+

\mu 

\rho 23

\biggr) 
,

яку, враховуючи справедливiсть нерiвностi\bigl( 
\xi \eta \prime  - \eta \xi \prime 

\bigr) 
\leq 
\sqrt{} 

\xi 2 + \eta 2
\sqrt{} 
\xi \prime 2 + \eta \prime 2, (3.7)

перепишемо у виглядi\sqrt{} 
\xi \prime 2 + \eta \prime 2 \geq 1\sqrt{} 

\xi 2 + \eta 2

\biggl[ 
 - h - 

\biggl( 
1 - \mu 

\rho 13
+

\mu 

\rho 23

\biggr) \biggr] 
. (3.8)

На елементах послiдовностi \{ \tau k\} , враховуючи (3.6), належнiсть вектора (\bfitrho 3, \bfitrho 
\prime 
3) обла-

стi \Omega i обмеженiсть суми \xi 2 + \eta 2, як граничний варiант нерiвностi (3.8) отримуємо\Bigl\{ \sqrt{} 
\xi \prime 2 + \eta \prime 2

\Bigr\} 
\infty 

\geq | h| \sqrt{} 
\xi 2 + \eta 2

i, таким чином, як границю для V \prime маємо

\{ V \prime \} \infty = \xi \prime 2 + \eta \prime 2 > \lambda > 0, \lambda = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.

Отже на пiдставi неперервностi правої частини рiвностi (3.5) можемо стверджувати, що в
послiдовностi \{ \tau k\} iснує такий достатньо великий номер s, що при k \geq s справджується
нерiвнiсть

V \prime | \tau \in \{ \tau k\} \geq \delta \forall k \geq s, 0 < \delta = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}, \delta < \lambda . (3.9)

Згiдно з умовами теореми 1 розглядуваний рух є дистальним i, як наслiдок,швидкiсть малої
частки обмежена. Це дає пiдстави прийти до висновку, що iснує послiдовнiсть промiжкiв
часу зростаючої довжини

\{ Tj\} = [\tau s+j  - \tau nj ], \tau s+j \in \{ \tau k\} , j = 1, 2, 3, . . . ,

\tau nj < \tau s+j , n1 < n2 < n3 . . . ,

на яких виконується нерiвнiсть

V \prime \geq \delta \forall \tau \in \{ Tj\} . (3.10)

Зауважимо, що саме обмеженiсть швидкостi малої частки дозволяє вiд нерiвностi (3.9),
справедливої для послiдовностi точок, перейти до нерiвностi (3.10), яка виконується для
послiдовностi часових вiдрiзкiв, довжина яких зростає.

Iнтегруючи (3.10), отримуємо нерiвнiсть

V | \tau \tau 1\geq \delta (\tau  - \tau 1), \tau > \tau 1, [\tau 1, \tau ] \subseteq \{ Tj\} ,

яку, покладаючи в нiй \tau 1 = \tau nj , \tau = \tau s+j , переписуємо у виглядi

V | \tau =\tau s+j  - V | \tau 1=\tau nj
\geq \delta (\tau s+j  - \tau nj ). (3.11)
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Величини \tau nj в нерiвностi (3.11) завжди вiдповiдають такимскiнченниммоментамчасу,що
вiдстанi \rho 13 i \rho 23 досягають у них критичних значень, при яких забезпечується виконання
нерiвностi (3.10). Таким чином, довжина промiжку часу [\tau s+j  - \tau nj ] при j \rightarrow \infty вiдповiдно
до (3.6) прямує до нескiнченностi. Отже, права частина нерiвностi (3.11) також прямує
до нескiнченностi. Оскiльки лiва частина нерiвностi (3.11) внаслiдок обмеженостi (\xi , \eta ) i
(\xi \prime , \eta \prime ) обмежена, то отримуємо суперечнiсть, звiдки випливає справедливiсть теореми 1.

Зауваження. Нагадаємо, що згiдно з умовою Хiлла стала рiвня h iнтеграла Якобi по-
винна бути вiд’ємною i | h| > \widetilde h > 0, де \widetilde h — деяка критична стала. У випадку теореми 1
стала h лише вiд’ємна. Таким чином, згiдно з теоремою 1 обмеженiсть руху має мiсце
навiть тодi, коли умова Хiлла не виконується. Одним iз прикладiв таких рухiв є, зокрема,
трикутнi рухи Лагранжа, коли два масивнi тiла i мала частка утворюють рiвностороннiй
трикутник.

4. Про стабiлiзуючу роль моменту кiлькостей руху в елiптичнiй обмеженiй задачi трьох
тiл. Як ми вже переконалися, для доведення теореми 1 ключовою обставиною було iсну-
вання iнтеграла Якобi. Останнiй, а точнiше його складова, що є проєкцiєю моменту кiль-
костей руху малої частки (\bfitrho 3 \times \bfitrho \prime 

3) на вiсь O\zeta , перпендикулярну до площини, у якiй
рухаються два масивнi тiла, забезпечили оцiнку (3.8). При цьому, як вже зазначалося ви-
ще, сам момент кiлькостей руху не є iнтегралом руху. У цьому зв’язку, беручи до уваги, що
елiптична обмежена задача трьох тiл взагалi не допускає iнтегралiв руху, виникає питання,
чи може все таки момент кiлькостей руху малої частки виконувати стабiлiзуючу функцiю
в елiптичнiй обмеженiй задачi. Принаймнi така постановка задачi має сенс, коли за малу
частку виступає космiчний апарат. Виявляється, що вiдповiдь на це питання позитивна.

Теорема 2. Нехай \bfitrho (\tau ) = (\bfitrho 12, \bfitrho 3)
T — дистальний рух системи (1.4). Тодi, якщо про-

єкцiя моменту кiлькостей руху малої частки

\bfM 3 = \bfitrho 3 \times \bfitrho \prime 
3

на вiсь O\zeta , перпендикулярну площинi обертання двох масивних тiл, задовольняє нерiвнiсть

\bfM 3| O\zeta \geq \lambda , 0 < \lambda = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}, (4.1)

то розглядуваний рух стiйкий за Лагранжем.
Доведення. Як уже зазначалося вище, систему рiвнянь (1.4) вiднесено до iнерцiйної

системи вiдлiку з початком у центрi мас тiл, що притягуються. Згiдно з вибором системи
вiдлiку i умовою (4.1) теореми 2 маємо нерiвнiсть

\bfM 3| O\zeta =
\bigl( 
\xi \eta \prime  - \eta \xi \prime 

\bigr) 
\geq \lambda , 0 < \lambda = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}.

Враховуючи справедливiсть нерiвностi (3.7) i, як наслiдок, оцiнки\sqrt{} 
\xi \prime 2 + \eta \prime 2 \geq \lambda \sqrt{} 

\xi 2 + \eta 2
,

далi можемо скористатися схемою доведення теореми 1 i прийти до висновку про справед-
ливiсть теореми 2.

Як бачимо, хоча момент кiлькостей руху малої частки i не є iнтегралом руху, однак
вiдiграє стабiлiзуючу роль. Цiкавим є те, що стiйкiсть за Лагранжем малої частки у цьому
випадку має мiсце незалежно вiд спiввiдношення мас m1 i m2 (порiвн. з [18]).
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5. Про стабiлiзуючу роль моменту кiлькостей руху у загальному випадку задачi трьох
тiл. Якщо iнтеграл моменту кiлькостей руху розглядати у виглядi (2.2), то очевидними є
такi можливi сценарiї руху:

1) превалює момент кiлькостей руху третього тiла;
2) превалює момент кiлькостей руху стiйкої за Хiллом пари (\mu 1, \mu 2) ;
3) не iснує превалюючої складової у рiвностi (2.2).
Перший сценарiй можливий у випадку, коли маса \mu 3 третього тiла значно перевершує

маси стiйкої за Хiллом пари (\mu 1, \mu 2). Навпаки, другий випадок можливий тодi, коли маса
\mu 3 третього тiла надто мала, щоб iстотно впливати на рух стiйкої за Хiллом пари (\mu 1, \mu 2).
Зупинимося далi на цих двох сценарiях як найпростiших.

Зрозумiло, що коли виконується перший сценарiй, то є всi пiдстави скористатися схе-
мою, яку вже застосовували вище в обмеженiй задачi.

Теорема 3. Нехай \bfitrho (\tau ) = (\bfitrho 12, \bfitrho 3)
T — дистальний рух системи (1.3), що належить

множинi
\Omega =

\bigl\{ \bigl( 
\bfitrho , \bfitrho \prime \bigr) : T  - U = h < 0

\bigr\} 
i, крiм того, пара матерiальних точок (\mu 1, \mu 2), яка вiдповiдає цьому руху, стiйка за Хiллом.

Тодi, якщо iснує сталий вектор \bfl з початком у центрi мас такий, що проєкцiя вектора

\bfM 3 = \bfitrho 3 \times \bfitrho \prime 
3

на нього задовольняє нерiвнiсть

\bfM 3| \bfl \geq \lambda , 0 < \lambda = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}, (5.1)

то розглядуваний рух стiйкий за Лагранжем.
Доведення. Як уже зазначалося вище, системи рiвнянь (1.1), (1.3) вiднесено до iнер-

цiйної системи вiдлiку з початком у центрi мас тiл, що притягуються. Зокрема, вважаючи,
що O\xi , O\eta i O\zeta — осi цiєї системи координат, виберемо вiсь O\zeta таким чином, що вона
збiгається з напрямком \bfl . Площину \xi O\eta виберемо перпендикулярною до осi O\zeta . Згiдно з
вибором системи вiдлiку i умовою (5.1) теореми 3 маємо нерiвнiсть

\bfM 3| \zeta =
\bigl( 
\xi 3\eta 

\prime 
3  - \eta 3\xi 

\prime 
3

\bigr) 
\geq \lambda , 0 < \lambda = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t}. (5.2)

Враховуючи справедливiсть нерiвностi\bigl( 
\xi 3\eta 

\prime 
3  - \eta 3\xi 

\prime 
3

\bigr) 
\leq 
\sqrt{} 

\xi 23 + \eta 23

\sqrt{} 
\xi \prime 23 + \eta \prime 23 ,

на пiдставi (5.2) маємо \sqrt{} 
\xi \prime 23 + \eta \prime 23 \geq \lambda \sqrt{} 

\xi 23 + \eta 23
. (5.3)

За умов теореми 3 вiдповiдно до леми i теореми з [19] рух третього тiла обмежений
щодо пари координат (\xi 3, \eta 3). Таким чином, згiдно з (5.3) отримуємо\sqrt{} 

\xi \prime 23 + \eta \prime 23 \geq \gamma , 0 < \gamma = const.
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Розглянемо друге векторне рiвняння системи (1.3), яке запишемо у виглядi

\xi \prime \prime 3 =  - \mu 1
\xi 3  - \xi 1
| \bfitrho 13| 3

 - \mu 2
\xi 3  - \xi 2
| \bfitrho 23| 3

,

\eta \prime \prime 3 =  - \mu 1
\eta 3  - \eta 1
| \bfitrho 13| 3

 - \mu 2
\eta 3  - \eta 2
| \bfitrho 23| 3

, (5.4)

\zeta \prime \prime 3 =  - \mu 1
\zeta 3  - \zeta 1
| \bfitrho 13| 3

 - \mu 2
\zeta 3  - \zeta 2
| \bfitrho 23| 3

.

Розглянемо функцiю
V = \xi 3\xi 

\prime 
3 + \eta 3\eta 

\prime 
3.

Її похiдна по векторному полю, визначеному рiвняннями (5.4), має вигляд

V \prime = \xi \prime 23 + \eta \prime 23  - \xi 3

\biggl[ 
\mu 1

\xi 3  - \xi 1
| \bfitrho 13| 3

+ \mu 2
\xi 3  - \xi 2
| \bfitrho 23| 3

\biggr] 
 - \eta 3

\biggl[ 
\mu 1

\eta 3  - \eta 1
| \bfitrho 13| 3

+ \mu 2
\eta 3  - \eta 2
| \bfitrho 23| 3

\biggr] 
.

Використовуючи далi схему доведення теореми 1, переконуємося у справедливостi тео-
реми 3.

Теорема 4. Нехай \bfitrho (\tau ) = (\bfitrho 12, \bfitrho 3)
T — рух системи (1.3), що належить множинi

\Omega =
\bigl\{ \bigl( 

\bfitrho , \bfitrho \prime \bigr) : T  - U = h < 0
\bigr\} 
.

Тодi, якщо пара матерiальних точок (\mu 1, \mu 2), яка вiдповiдає цьому руху, стiйка за Хiллом,
причому справедливi нерiвностi\bigm| \bigm| \bfitrho 12 \times \bfitrho \prime 

12

\bigm| \bigm| \geq c, 0 < c = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t},

\mu 1\mu 2(\mu 1 + \mu 2) + 2c2h \leq 0,

то розглядуваний рух стiйкий за Лагранжем.
Доведення. Представимо iнтеграл енергiї (2.1) для дослiджуваного руху у виглядi\Biggl[ 

1

\mu 1 + \mu 2

\Biggl( 
\rho \prime 212 +

| \bfitrho 12 \times \bfitrho \prime 
12| 

2

\rho 212

\Biggr) 
 - 2

\rho 12

\Biggr] 

+
1

\mu 1\mu 2

\biggl( 
\mu 3

\mu 1 + \mu 2
\bfitrho \prime 2
3  - 2

\mu 1\mu 3

\rho 13
 - 2

\mu 2\mu 3

\rho 23

\biggr) 
=

2h

\mu 1\mu 2
.

Далi розглядатимемо його як квадратне рiвняння стосовно 1/\rho 12 :

1

\mu 1 + \mu 2

\Biggl( 
| \bfitrho 12 \times \bfitrho \prime 

12| 
2

\rho 212

\Biggr) 
 - 2

\rho 12

+

\biggl[ 
1

\mu 1 + \mu 2
\rho \prime 212 +

1

\mu 1\mu 2

\biggl( 
\mu 3

\mu 1 + \mu 2
\bfitrho \prime 2
3  - 2

\mu 1\mu 3

\rho 13
 - 2

\mu 2\mu 3

\rho 23
 - 2h

\biggr) \biggr] 
= 0. (5.5)
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На пiдставi (5.5) маємо

1

\rho 12
=

(\mu 1 + \mu 2)

c2(\tau )

\times 

\Biggl\{ 
1\pm 

\sqrt{} 
1 - c2(\tau )

\mu 1 + \mu 2

\biggl[ 
\rho \prime 212

\mu 1 + \mu 2
+

1

\mu 1\mu 2

\biggl( 
\mu 3\bfitrho \prime 2

3

\mu 1 + \mu 2
 - 2

\mu 1\mu 3

\rho 13
 - 2

\mu 2\mu 3

\rho 23
 - 2h

\biggr) \biggr] \Biggr\} 
,

(5.6)

де

c2(\tau ) =
\bigm| \bigm| \bfitrho 12 \times \bfitrho \prime 

12

\bigm| \bigm| 2.
Рiвнiсть (5.6) далi подамо у виглядi

1

\rho 12
 - (\mu 1 + \mu 2)

c2(\tau )

= \pm (\mu 1 + \mu 2)

c2(\tau )

\sqrt{} 
1 - c2(\tau )

\mu 1 + \mu 2

\biggl[ 
\rho \prime 212

\mu 1 + \mu 2
+

1

\mu 1\mu 2

\biggl( 
\mu 3\bfitrho \prime 2

3

\mu 1 + \mu 2
 - 2

\mu 1\mu 3

\rho 13
 - 2

\mu 2\mu 3

\rho 23
 - 2h

\biggr) \biggr] 
.

(5.7)

Здiйснимо тепер деякi перетворення над виразом пiд знаком радикала. В результатi
отримуємо

1 - c2(\tau )

\mu 1 + \mu 2
[. . .] =

\mu 1\mu 2(\mu 1 + \mu 2) + 2c2(\tau )h

\mu 1\mu 2(\mu 1 + \mu 2)

 - c2(\tau )

\mu 1 + \mu 2

\biggl[ 
\rho \prime 212

\mu 1 + \mu 2
+

1

\mu 1\mu 2

\biggl( 
\mu 3\bfitrho 

\prime 2
3

\mu 1 + \mu 2
 - 2

\mu 1\mu 3

\rho 13
 - 2

\mu 2\mu 3

\rho 23

\biggr) \biggr] 
. (5.8)

За умов теореми 4 виконується нерiвнiсть

\mu 1\mu 2(\mu 1 + \mu 2) + 2c2(\tau )h

\mu 1\mu 2(\mu 1 + \mu 2)
\leq 0.

Припустимо тепер, що при виконаннi умов теореми 4 дослiджуваний рух \bfitrho (\tau ) =\bigl( 
(\bfitrho 12, \bfitrho 3)

T
\bigr) 
не є обмеженим. Тодi iснує така послiдовнiсть \{ \tau k\} , k = 1, 2, 3, . . . , що

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\tau k = \infty , \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\rho 3(\tau k) = \infty , \rho 3(\tau k) = | \bfitrho 3(\tau k)| . (5.9)

Розглянемо спочатку випадок, коли

\mu 1\mu 2(\mu 1 + \mu 2) + 2c2(\tau )h \leq \mu 1\mu 2(\mu 1 + \mu 2) + 2c2h < 0.

Тодi вiдповiдно до (5.9) iснує таке достатньо велике число k, що величини 1/\rho 13(\tau k) i
1/\rho 23(\tau k) стають як завгодно малими i, як наслiдок, права частина рiвностi (5.7) з урахуван-
ням (5.8) стає уявною. Отримуємо суперечнiсть.

Нехай тепер

\mu 1\mu 2(\mu 1 + \mu 2) + 2c2(\tau )h \leq 0.

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 4



МОМЕНТ КIЛЬКОСТЕЙ РУХУ ТА ОБМЕЖЕНIСТЬ РУХУ У ЗАДАЧI ТРЬОХ ТIЛ 521

Тодi, якщо припустити необмеженiсть руху за умов цiєї нерiвностi, то виконується (5.9) i,
як наслiдок, \rho 12(\tau k) вiдповiдно до рiвнянь (1.3) при k \rightarrow \infty наближається до елiптичного
кеплерiвського руху, i, таким чином, справедлива рiвнiсть

\rho \prime 212 =
e2\widetilde c2 \mathrm{s}\mathrm{i}\mathrm{n}2 f,

де стала e вiдповiдає ексцентриситету елiптичної орбiти, \widetilde c2 — граничне значення c2(\tau ),
f — iстинна аномалiя.

Оскiльки на елементах послiдовностi \{ \tau k\} при k \rightarrow \infty 

1

\rho 13(\tau k)
\rightarrow 0,

1

\rho 23(\tau k)
\rightarrow 0, (5.10)

то для граничного виразу суми членiв пiд знаком радикала отримуємо нерiвнiсть\Biggl\{ 
\mu 1\mu 2(\mu 1 + \mu 2) + 2c2(\tau )h

\mu 1\mu 2(\mu 1 + \mu 2)
 - c2(\tau )

\mu 1 + \mu 2

\times 
\biggl[ 

\rho \prime 212
\mu 1 + \mu 2

+
1

\mu 1\mu 2

\biggl( 
\mu 3\bfitrho 

\prime 2
3

\mu 1 + \mu 2
 - 2

\mu 1\mu 3

\rho 13
 - 2

\mu 2\mu 3

\rho 23

\biggr) \biggr] \Biggr\} 
\infty 

\leq  - c2(\tau )

\mu 1 + \mu 2

\biggl[ 
1

\mu 1 + \mu 2

e2\widetilde c2 \mathrm{s}\mathrm{i}\mathrm{n}2 f +
1

\mu 1\mu 2

\biggl( 
\mu 3\bfitrho 

\prime 2
3

\mu 1 + \mu 2

\biggr) \biggr] 
. (5.11)

Розглянемо бiльш детально нерiвнiсть (5.11). Функцiя \mathrm{s}\mathrm{i}\mathrm{n}2 f, яка входить у її праву
частину, рiвна одиницi при f = (2i + 1)\pi /2, i = 0, 1, 2, . . . , а оскiльки ми дослiджуємо
рухи, що належать множинi \Omega , то права частина нерiвностi (5.11) стає вiд’ємною, коли
\mathrm{s}\mathrm{i}\mathrm{n}2 f = 1.

Згiдно з умовами теореми 4 пара матерiальних точок (\mu 1, \mu 2) стiйка за Хiллом, а роз-
глядуваний рух є дистальним, що обумовлює обмеженiсть швидкостей матерiальних точок
системи (1.3). Перiод елiптичного кеплерiвського руху, до якого наближається \rho 12(\tau k) при
k \rightarrow \infty , також обмежений. У його межах \mathrm{s}\mathrm{i}\mathrm{n}2 f як неперервна функцiя набуває всiх своїх
значень. Таким чином, беручи до уваги (5.10) i (5.11), отримуємо всi пiдстави стверджувати,
що iснує таке значення \tau \ast (k), при якому вираз\Biggl\{ 

\mu 1\mu 2(\mu 1 + \mu 2) + 2c2(\tau )h

\mu 1\mu 2(\mu 1 + \mu 2)

 - c2(\tau )

\mu 1 + \mu 2

\biggl[ 
\rho \prime 212

\mu 1 + \mu 2
+

1

\mu 1\mu 2

\biggl( 
\mu 3\bfitrho 

\prime 2
3

\mu 1 + \mu 2
 - 2

\mu 1\mu 3

\rho 13
 - 2

\mu 2\mu 3

\rho 23

\biggr) \biggr] \Biggr\} \bigm| \bigm| \bigm| \bigm| \bigm| 
\tau =\tau \ast (k)

стає вiд’ємним i, як наслiдок, права частина рiвностi (5.7) стає уявним числом. З iншого бо-
ку, за умов теореми 4 лiва частина рiвностi (5.7) завжди дiйсна. Приходимо до суперечностi,
звiдки робимо висновок про справедливiсть теореми 4.

Отриманi теореми 3 i 4 є вiдображенням того факту, що превалювання однiєї складової
щодо iншої у виразi iнтеграла моменту кiлькостей руху (2.2) може слугувати вагомим
елементом ресурсу для забезпечення стiйкостi за Лагранжем.
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6. Порiвняльний аналiз загальної i обмеженої задач трьох тiл. 6.1. Почнемо з iнварi-
антних спiввiдношень вiдповiдно для систем (1.1) i (1.2), що мають мiсце для будь-якої
барицентричної системи координат. Для загальної задачi трьох тiл це рiвнiсть (2.3), для
обмеженої задачi — (2.4). На перший погляд вiдмiннiсть мiж цими спiввiдношеннями є
iстотною, оскiльки в рiвностi (2.4) вiдсутнiй радiус-вектор третьої матерiальної точки. Крiм
того, у типовому випадку, коли розглядається обмежена кругова задача або елiптична, аб-
солютнi величини | \bfitrho 1| i | \bfitrho 2| завжди обмеженi, незалежно вiд того, якою є | \bfitrho 3| , що зовсiм
не так у загальнiй задачi. Однак не становить жодних труднощiв знайти такий вигляд за-
пису iнварiантних спiввiдношень (2.3) i (2.4), який стає однаковим як для системи (1.1),
так i для системи (1.2). Безпосередньою перевiркою легко переконатися, що це є рiвнiсть

\mu 1\bfitrho 13 + \mu 2\bfitrho 23  - \bfitrho 3 = \bfzero . (6.1)

Бiльш того, легко переконатися в тому, що ця рiвнiсть є носiєм тотожної iнформацiї як для
загальної задачi трьох тiл, так i для обмеженої, коли мова йде про такi важливi параметри
руху як обмеженiсть (необмеженiсть) руху. Зокрема, коли абсолютна величина | \bfitrho 3| обме-
жена, то обмеженим є рух як системи (1.1), так i системи (1.2) i навпаки. Для обмеженої
задачi трьох тiл це очевидно, виходячи з того, що центр мас системи належить обмеженiй
парi тiл (\mu 1, \mu 2). Для загального випадку задачi трьох тiл це випливає з того факту, що
оскiльки, як зазначалося вище, розглядається випадок, коли h < 0, то у будь-який момент
часу одна з вiдстаней мiж тiлами завжди є обмеженою.

На пiдставi (6.1) отримуємо важливi рiвностi, якi зв’язують квадрат вiдстанi третього
тiла вiд центра мас i взаємнi вiдстанi мiж тiлами

\rho 23 =  - (1 - \mu )\mu \rho 212 + (1 - \mu )\rho 213 + \mu \rho 223,

\rho 23 =  - \mu 1\mu 2\rho 
2
12 + \mu 1(\mu 1 + \mu 2)\rho 

2
13 + \mu 2(\mu 1 + \mu 2)\rho 

2
23

вiдповiдно для обмеженої i загальної задач трьох тiл.
6.2. Хоча при h < 0 у задачi трьох тiл одна з взаємних вiдстаней | \bfitrho ij(\tau )| обмежена,

проте заздалегiдь не вiдомо, чи в процесi еволюцiї системи залишатиметься обмеженою
одна й та ж взаємна вiдстань. Адже пiд час руху системи найменшими по черзi можуть
ставати рiзнi взаємнi вiдстанi, i це створює певнi проблеми при дослiдженнi умов обмеже-
ностi руху. Нажаль, цей факт було усвiдомлено не одразу. Знадобився досить тривалий час,
щоб стало зрозумiлим, наскiльки важливо знати, чи в процесi руху обмежена фiксована
вiдстань iснує взагалi, а якщо iснує, то як знайти умови, якi б дозволили зафiксувати пару
матерiальних точок iз обмеженою вiдстанню мiж ними у процесi еволюцiї системи. Так
поступово формувалося поняття стiйкої за Хiллом пари матерiальних точок або стiйкiсть
типу Хiлла та пропонувалися вiдповiднi критерiї стiйкостi [2, 16, 20 – 24]. При цьому клю-
чова роль для формування початкових умов, якi б забезпечували стiйкiсть за Хiллом пари
матерiальних точок, належала iнтегралам енергiї та моменту кiлькостей руху.

Не можна оминути увагою i того факту, що стiйка за Хiллом пара завжди є в обмеженiй
задачi трьох тiл, принаймнi у випадку кругової або елiптичної задачi, що випливає з самого
способу їхньогоформування.А томудеякоюмiроюможемо стверджувати,щокоренi понят-
тя стiйкої за Хiллом пари фактично сягають обмеженої задачi, коли наявнiсть фiксованої
пари тiл iз обмеженою вiдстанню мiж ними передбачено самою постановкою обмеженої
задачi. Таким чином, хоч обмежена задача i є окремим випадком загальної задачi трьох
тiл, однак вона може бути джерелом бiльш широких у сенсi застосування понять.
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З викладеного вище стає зрозумiлим, чому обмежена задача трьох тiл має багато засто-
сувань. Адже для успiшного застосування моделi загальної задачi трьох тiл дуже важливим,
але достатньо трудомiстким етапом є встановлення стiйкої за Хiллом пари тiл, яка слугує
вагомою опорною сходинкою для подальшого якiсного дослiдження руху. Разом iз тим
в обмеженiй задачi стiйка за Хiллом пара iснує автоматично. I хоча в обмеженiй задачi,
зокрема, елiптичнiй ми позбуваємося ключових iнтегралiв руху, проте в загальнiй задачi
саме цi ключовi iнтеграли ми часто використовуємо для фiксацiї початкових умов таким
чином, щоб фактично наблизити загальну задачу до обмеженої. Отже, як бачимо, i обме-
жена, i загальна задачi трьох тiл тiсно пов’язанi мiж собою, що потребує вмiлого їхнього
поєднання в процесi дослiдження руху трьох тiл. I це дiйсно вiдбувається на практицi.
Так, зокрема, в рамках програми освоєння космiчного простору зазвичай такi системи як
Земля –Мiсяць — космiчний апарат, Сонце – Земля –Мiсяць, Сонце –Юпiтер — астероїд
i т. д. розглядають як обмеженi задачi трьох тiл, оскiльки в кожнiй з цих систем маса тре-
тього тiла набагато менша, нiж кожного з двох перших тiл, i нею нехтують у вiдповiдних
рiвняннях руху.

Оскiльки обмежена задача має меншу розмiрнiсть у порiвняннi iз загальною, то кiлькiс-
нi результати простiше отримати, виходячи саме з неї, як бiльш простої у математичному
сенсi, використовуючи для цього комп’ютерне моделювання. Однак на пiдставi останнього
не завждиможна прийти до правильних якiсних результатiв, коли мова йде про необмеженi
iнтервали часу. В реальнiй ситуацiї, якою б малою не була маса третього тiла, вона все одно
вiдмiнна вiд нуля, i фактично ми маємо справу з загальним випадком задачi трьох тiл, а
тому, коли є необхiдний ресурс для якiсного дослiдження в рамках загальної задачi трьох
тiл, тодi цим ресурсом як бiльш повним джерелом iнформацiї не варто нехтувати. У цьому
сенсi загальна задача трьох тiл може виконувати контрольну функцiю стосовно обмеженої
задачi i, маючи цю можливiсть контролю, можна бiльш упевнено проводити дослiдження у
рамках моделi обмеженої задачi, використовуючи при цьому як аналiтичнi, так i чисельнi
методи.

6.3. Важливим елементом дослiдження руху у задачi трьох тiл є рiвняння вiдстаней [5]:

\rho 212
\prime \prime 
= 2v212  - 2

\mu 1 + \mu 2

\rho 12
+

\mu 3

\rho 13

\biggl( 
\rho 223  - \rho 212

\rho 213
 - 1

\biggr) 
+

\mu 3

\rho 23

\biggl( 
\rho 213  - \rho 212

\rho 223
 - 1

\biggr) 
,

\rho 213
\prime \prime 
= 2v213  - 2

\mu 1 + \mu 3

\rho 13
+

\mu 2

\rho 12

\biggl( 
\rho 223  - \rho 213

\rho 212
 - 1

\biggr) 
+

\mu 2

\rho 23

\biggl( 
\rho 212  - \rho 213

\rho 223
 - 1

\biggr) 
,

\rho 223
\prime \prime 
= 2v223  - 2

\mu 2 + \mu 3

\rho 23
+

\mu 1

\rho 12

\biggl( 
\rho 213  - \rho 223

\rho 212
 - 1

\biggr) 
+

\mu 1

\rho 13

\biggl( 
\rho 212  - \rho 223

\rho 213
 - 1

\biggr) 
,

E\prime 
12 = \mu 3

\biggl[ 
\rho 212

\prime 
\biggl( 

1

\rho 312
 - 1

\rho 313

\biggr) 
+ \rho 223

\prime 
\biggl( 

1

\rho 313
 - 1

\rho 323

\biggr) 
+ 2\bfitrho 23\bfitrho 

\prime 
13

\biggl( 
1

\rho 323
 - 1

\rho 313

\biggr) \biggr] 
, (6.2)

E\prime 
13 =  - \mu 2

\biggl[ 
\rho 213

\prime 
\biggl( 

1

\rho 312
 - 1

\rho 313

\biggr) 
+ 2\bfitrho 23\bfitrho 

\prime 
13

\biggl( 
1

\rho 323
 - 1

\rho 312

\biggr) \biggr] 
,

E\prime 
23 = \mu 1

\biggl[ 
\rho 223

\prime 
\biggl( 

1

\rho 323
 - 1

\rho 312

\biggr) 
+ 2(\bfitrho 13\bfitrho 23)

\prime 
\biggl( 

1

\rho 312
 - 1

\rho 313

\biggr) 
 - 2\bfitrho 23\bfitrho 

\prime 
13

\biggl( 
1

\rho 312
 - 1

\rho 313

\biggr) \biggr] 
,

\bigl( 
\bfitrho 23\bfitrho 

\prime 
13

\bigr) \prime 
=

1

2

\bigl( 
 - v212 + v213 + v223

\bigr) 
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 - \mu 1 + \mu 3

2\rho 13

\biggl( 
1 +

\rho 223  - \rho 212
\rho 213

\biggr) 
+

\mu 2

2\rho 12

\biggl( 
1 +

\rho 223  - \rho 213
\rho 212

\biggr) 
 - \mu 2

\rho 23
,

де \rho ij = | \bfitrho ij | , vij = | \bfitrho \prime 
ij | , Eij = vij  - 2/\rho ij , i < j, i, j = 1, 2, 3. Тут, як i в рiвняннях (1.1)

i (1.3), штрих означає диференцiювання за безрозмiрним часом \tau . Крiм того, систему рiв-
нянь (6.2) також вiднесено до iнерцiйної системи вiдлiку. Саме цей вигляд рiвнянь руху
дозволив нам отримати важливi теореми, що стосуються якiсних характеристик дослiджу-
ваних рухiв.

Iнтеграл енергiї для рiвнянь (6.2) набуває вигляду

\mu 1\mu 2E12 + \mu 1\mu 3E13 + \mu 2\mu 3E23 = 2h.

Вiдповiдним аналогом для обмеженої задачi є рiвняння

\rho 212
\prime \prime 
= 2

\biggl( 
v212  - 

1

\rho 12

\biggr) 
,

\rho 213
\prime \prime 
= 2v213  - 

\mu 

\rho 12
+ \mu 

\bigl( 
\rho 223  - \rho 213

\bigr) 
\rho 312

 - 2
(1 - \mu )

\rho 13
 - 2\mu 

\bfitrho 13\bfitrho 23

\rho 323
,

\rho 223
\prime \prime 
= 2v223  - 

(1 - \mu )

\rho 12
 - (1 - \mu )

\bigl( 
\rho 223  - \rho 213

\bigr) 
\rho 312

 - 2
\mu 

\rho 23
 - 2(1 - \mu )

\bfitrho 13\bfitrho 23

\rho 313
,

E13
\prime =  - \mu 

\biggl[ \biggl( 
2

\rho 13
 - 2

\rho 23

\biggr) \prime 
+ 2y

\biggl( 
1

\rho 312
 - 1

\rho 323

\biggr) 
(6.3)

+

\bigl( 
\rho 213  - \rho 223

\bigr) \prime 
\rho 312

 - 2(1 - \mu )

\biggl( 
1

\rho 12

\biggr) \prime 
 - (1 - \mu )

\bigl( 
\rho 212
\bigr) \prime 

\rho 323

\biggr] 
,

E23
\prime = (1 - \mu )

\biggl[ \biggl( 
2

\rho 13
 - 2

\rho 23

\biggr) \prime 
+ 2y

\biggl( 
1

\rho 312
 - 1

\rho 313

\biggr) 

+

\bigl( 
\rho 213  - \rho 223

\bigr) \prime 
\rho 312

+ 2\mu 

\biggl( 
1

\rho 12

\biggr) \prime 
+ \mu 

\bigl( 
\rho 212
\bigr) \prime 

\rho 313

\biggr] 
,

y\prime =

\bigl[ 
(1 - 2\mu )\rho 212 + \rho 213  - \rho 223

\bigr] 
2\rho 312

+
1

2

\bigl[ 
 - (1 - 2\mu )v212 + (v223  - v213)

\bigr] 
,

де
E13 = v213  - 

2

\rho 13
, E23 = v223  - 

2

\rho 23
.

При дослiдженнi якiсних характеристик руху в рамках обмеженої i загальної задач
трьох тiл виявилося ефективним введення “плоских” координат:

x =  - \bfitrho 3\bfitrho 12, y =  - \bfitrho 3\bfitrho 
\prime 
12. (6.4)

Як показано в [17], у круговiй обмеженiй задачi трьох тiл x i y є проєкцiями вектора
\bfitrho 3 на плоскi осi ортогональної системи координат, що обертається. У випадку елiптичної
обмеженої задачi цi величини також у деякому узагальненому сенсi є проєкцiями вектора

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 4



МОМЕНТ КIЛЬКОСТЕЙ РУХУ ТА ОБМЕЖЕНIСТЬ РУХУ У ЗАДАЧI ТРЬОХ ТIЛ 525

\bfitrho 3 на осi рухомої системи вiдлiку, зорiєнтованi вздовж напрямкiв векторiв  - \bfitrho 12 i  - \bfitrho \prime 
12.

Як виявилося [19], застосування рухомої системи координат iз початком у центрi мас i
парою осей, зорiєнтованих вздовж напрямкiв векторiв  - \bfitrho 12 i  - \bfitrho \prime 

12, є ефективним i у
випадку загальної задачi трьох тiл. Цiкавим є те, що змiнну x також можна зобразити у
виглядi

x =
1

2

\bigl[ 
 - (\mu 1  - \mu 2)\rho 

2
12 + (\mu 1 + \mu 2)

\bigl( 
\rho 223  - \rho 213

\bigr) \bigr] 
,

x =
1

2

\bigl[ 
 - (1 - 2\mu )\rho 212 + \rho 223  - \rho 213

\bigr] 
вiдповiдно для загальної i обмеженої задач трьох тiл.

Диференцiюючи рiвностi (6.4), отримуємо

x\prime = y  - \bfitrho 12\bfitrho 
\prime 
3,

y\prime =  - 1 - \mu 3

\rho 312
x - \bfitrho \prime 

12\bfitrho 
\prime 
3  - \mu 3\bfitrho 3

\biggl( 
 - \bfitrho 13

\rho 313
+

\bfitrho 23

\rho 323

\biggr) 
.

(6.5)

Як бачимо, друге з цих рiвнянь з урахуванням рiвностей

\bfitrho \prime 
12\bfitrho 

\prime 
3 =

1

2

\bigl[ 
(\mu 1  - \mu 2)v

2
12  - (\mu 1 + \mu 2)

\bigl( 
v223  - v213

\bigr) \bigr] 
,

\bfitrho \prime 
12\bfitrho 

\prime 
3 =

1

2

\bigl[ 
(1 - 2\mu )v12

2 + v13
2  - v23

2
\bigr] 
,

справедливих вiдповiдно для загальної i обмеженої задач, за умови \mu 3 = 0 входить у
систему (6.3).

Оперуючи рiвняннями вiдстаней (6.2) i (6.3) сукупно з системою (6.5), нам вдалося
довести обмеженiсть руху щодо плоских координат x i y як в обмеженiй, так i в загальнiй
задачi трьох тiл [17, 19], що послугувало ключовим моментом для доведення обмеженостi
руху щодо всiх трьох координат [25]. Важливим є той факт, що доведення обмеженостi
руху, а конкретнiше стiйкостi за Лагранжем, вдалося провести єдиним методом i для
обмеженої, i для загальної задач трьох тiл. Оскiльки якiснi висновки щодо характеру
руху в обох задачах збiгаються, то є всi пiдстави стверджувати, що модель обмеженої
задачi, а точнiше елiптичної обмеженої задачi, є достовiрною як у теоретичному сенсi, так
i щодо практичних вимог до неї. Заслуговує на увагу i той факт, що поняття стiйкої за
Хiллом пари, яке сформувалося пiд впливом обмеженої задачi, певною мiрою вiдiграє роль
об’єднуючої ланки, дозволяючи адаптувати результати, отриманi в обмеженiй задачi, для
загальної задачi трьох тiл. При всiй простотi постановки обмеженої задачi, як бачимо, вона
унiкальна тим, що зберiгає основнi властивостi загальної задачi трьох тiл, виконуючи тим
самим роль ефективного наближення останньої.

На закiнчення приведемо двi теореми, якi є незначним пiдсиленням теорем 1, 2 з
роботи [25].

Теорема 5. Якщо в просторовiй обмеженiй елiптичнiй задачi трьох тiл рух нескiнченно
малої частки, що визначається рiвняннями (1.4), задовольняє умову дистальностi i при \mu =
1/2 не належить многовиду симетричних рухiв
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\bfitrho \prime \prime 
12 =  - \bfitrho 12

| \bfitrho 12| 3
,

\bfitrho \prime \prime 
3 =  - \bfitrho 3

| \bfitrho 13| 3
,

то вiн стiйкий за Лагранжем.
У роботi [25] ми взагалi виключали з розгляду ситуацiю, коли маси, що утворюють

пару, рiвнi. Тут, допускаючи рiвнiсть мас, якi утворюють пару, ми усуваємо з розгляду
лише множину симетричних рухiв, серед яких можуть бути необмеженi. Лебегова мiра
симетричних рухiв щодо фазового простору як системи (1.3), так i системи (1.4) дорiвнює
нулю. Детальнiше про симетричнi рухи див. [26].

Теорема 6. Нехай рух \bfitrho (\tau ) = (\bfitrho 12, \bfitrho 3)
T системи (1.3), який належить множинi

\Omega =
\bigl\{ \bigl( 

\bfitrho \prime , \bfitrho 
\bigr) 
: T  - U = h < 0

\bigr\} 
,

є дистальним. Тодi, якщо пара матерiальних точок (\mu 1, \mu 2), яка вiдповiдає цьому руху,
стiйка за Хiллом, причому за умови, що \mu 1 = \mu 2 = \mu , цей рух не належить многовиду
симетричних рухiв

\bfitrho \prime \prime 
12 =  - 2\mu 

\bfitrho 12

| \bfitrho 12| 3
 - \mu 3

\bfitrho 12

| \bfitrho 13| 3
,

\bfitrho \prime \prime 
3 =  - \bfitrho 3

| \bfitrho 13| 3
,

то вiн стiйкий за Лагранжем.
Доведення цих теорем не виходить за межi пiдходу, запропонованого у роботi [25].
7. Висновки. У результатi дослiдження рiвнянь руху у задачi трьох тiл нам вдалося

отримати достатнi умови обмеженостi руху як в обмеженiй задачi трьох тiл, так i в її за-
гальному випадку. При цьому основну увагу було зосереджено на ролi моменту кiлькостей
руху як стабiлiзуючого фактора. Як ми могли переконатися, загальна й обмежена задачi
трьох тiл як iдейно спорiдненi тiсно пов’язанi мiж собою, i при розв’язаннi конкретних
практичних задач може бути корисним їхнє паралельне використання.

Автор заявляє про вiдсутнiсть конфлiкту iнтересiв. Усi необхiднi данi мiстяться в статтi.
Автор засвiдчує вiдсутнiсть спецiального фiнансування цiєї статтi.
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