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РОЗПОДIЛУ ОДНОГО ВИПАДКОВОГО СТЕПЕНЕВОГО РЯДУ
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We investigate the asymptotic properties of the Fourier – Stieltjes transform of the distribution of a random
variable with independent s-adic digits. We find the necessary and sufficient conditions for the zero value
of the upper bound at infinity of the modulus of the corresponding Fourier – Stieltjes transform.

Дослiджено асимптотичнi властивостi перетворення Фур’є –Стiлтьєса розподiлу випадкової вели-
чини з незалежними s-ковими цифрами. Акцент зроблено на знаходженнi необхiдних i достатнiх
умов рiвностi нулю значення верхньої межi на нескiнченностi модуля вiдповiдного перетворення
Фур’є –Стiлтьєса.

1. Вступ. Нехай F (x) — функцiя розподiлу. Для перетворення Фур’є –Стiлтьєса функцiї
F (x)

f(t) =

+\infty \int 
 - \infty 

eitxdF (x)

розглянемо величину
L(F ) = lim sup

| t| \rightarrow +\infty 
| f(t)| .

Якщо F (x) є функцiєю стрибкiв, то вiдомо [1], що L(F ) = 1, адже f(t) є майже перiодич-
ною функцiєю. Якщо F (x) абсолютно неперервна, то L(F ) = 0. Якщо функцiя F (x) є
сингулярною, то L(F ) може набувати довiльного значення з вiдрiзку [0; 1].

Приклад сингулярної функцiї G(x), для якої L(G) = 0, наведено в роботi [2]. Приклади
сингулярних функцiй G(x) таких, що L(G) = 1, наведено в [3, 4]. У роботi [5] для кожного
заданого a \in [0; 1] побудовано сингулярну функцiю G(x) таку, що L(G) = a.

Нехай s—натуральне число бiльше одиницi, (\psi k) —послiдовнiсть незалежних випад-
кових величин, якi набувають значень 0, 1, . . . , s  - 1 з iмовiрностями p0k, p1k, . . . , p(s - 1)k

вiдповiдно. Розглянемо випадкову величину

\psi =

\infty \sum 
k=1

\psi ks
 - k.

Необхiднi й достатнi умови того, що L(F\psi ) = 0, одержано в роботах [6, 7] для випадкiв
s = 2, s = 3 вiдповiдно.

У цiй статтi для кожного натурального s \geq 4 знайдено необхiднi й достатнi умови того,
що L(F\psi ) = 0.
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2. Необхiднi й достатнi умови того, що \bfitL (\bfitF \bfitpsi ) = \bfzero . Для кожного натурального n i
j \in \{ 1, . . . , s - 1\} позначимо

Bjn =
\sum 

1\leq i<k\leq s - 1
k - i=j

pinpkn,

fn(x) = 1 - 
s - 1\sum 
j=1

4Bjn sin
2(xj),

gn - 1(x) =
+\infty \prod 
k=1

fn - 1+k

\Bigl( x

2sk

\Bigr) 
.

Теорема 1. Рiвнiсть L(F\psi ) = 0 справджується тодi й тiльки тодi, коли для кожного
j \in \{ 0; 1, . . . , s - 1\} виконується умова

lim
n\rightarrow +\infty 

pjn =
1

s
. (1)

Доведення. У [6, 7] показано, що рiвнiсть L(F\psi ) = 0 справедлива тодi й тiльки тодi,
коли виконується умова (1), тому нехай у подальшому s \geq 4. Зрозумiло, що

f\psi (t) =

+\infty \int 
 - \infty 

eitxdF\psi (x) =M(eit\psi ) =
+\infty \prod 
k=1

M
\bigl( 
e
it\psi n
sn
\bigr) 
.

Таким чином, маємо

\bigm| \bigm| \bigm| M\Bigl( e it\psi nsn \Bigr) \bigm| \bigm| \bigm| 2 = \Biggl( s - 1\sum 
k=0

pkn cos

\biggl( 
kt

sn

\biggr) \Biggr) 2
+

\Biggl( 
s - 1\sum 
k=0

pkn sin

\biggl( 
kt

sn

\biggr) \Biggr) 2

=

s - 1\sum 
k=0

p2kn +
\sum 

1\leq j<l\leq s - 1

2pjnpln

\biggl( 
cos

\biggl( 
jt

sn

\biggr) 
cos

\biggl( 
lt

sn

\biggr) 
+ sin

\biggl( 
jt

sn

\biggr) 
sin

\biggl( 
lt

sn

\biggr) \biggr) 

=

s - 1\sum 
k=0

p2kn +
\sum 

1\leq j<l\leq s - 1

2pjnpln

\biggl( 
cos

\biggl( 
(j  - l)t

sn

\biggr) \biggr) 

=

s - 1\sum 
k=0

p2kn +
\sum 

1\leq j<l\leq s - 1

2pjnpln

\biggl( 
1 - 2 sin2

\biggl( 
(j  - l)t

2sn

\biggr) \biggr) 

= 1 - 
\sum 

1\leq j<l\leq s - 1

4pjnpln

\biggl( 
sin2

\biggl( 
(j  - l)t

2sn

\biggr) \biggr) 

= 1 - 
s - 1\sum 
j=1

4Bjn sin
2

\biggl( 
jt

2sn

\biggr) 
= fn

\biggl( 
t

2sn

\biggr) 
.
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Отже, одержуємо рiвнiсть

| f\psi (t)| 2 =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
+\infty \int 

 - \infty 

eitxdF\psi (x)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
2

= g0(t).

Нехай L(F\psi ) = 0.

Розглянемо окремi випадки.
Випадок A. Нехай s = 2q + 1 — непарне число. Зрозумiло, що для кожного значення

l \in \{ 1, . . . , q\} маємо \bigm| \bigm| f\psi (2\pi lsn - 1)
\bigm| \bigm| 2 = gn - 1(2\pi l) \rightarrow 0, n\rightarrow +\infty . (2)

Для кожного значення l \in \{ 1, . . . , q\} розглянемо неперервну функцiю

Fl(x0;x1, . . . , xs - 1) =

\Biggl( 
s - 1\sum 
k=0

xk cos

\biggl( 
2\pi lk

s2

\biggr) \Biggr) 2
+

\Biggl( 
s - 1\sum 
k=0

xk sin

\biggl( 
2\pi lk

s2

\biggr) \Biggr) 2

на компактi A =
\bigl\{ 
(y0; y1, . . . , ys - 1) | y0 + y1 + . . .+ ys - 1 = 1; y0, y1, . . . , ys - 1 \geq 0

\bigr\} 
.

Припустимо, що для деякої точки (z0; z1, . . . , zs - 1) \in A виконується рiвнiсть

Fl(z0; z1, . . . , zs - 1) = 0,

звiдки \Biggl( 
s - 1\sum 
k=1

zk sin

\biggl( 
2\pi lk

s2

\biggr) \Biggr) 2
= 0,

тому z1 = . . . = zs - 1 = 0, але Fl(1; 0, . . . , 0) = 1 > 0.

Отже, для кожного l \in \{ 1, . . . , q\} iснує

min
(x0;x1,...,xs - 1)

Fl(z0; z1, . . . , zs - 1) = G(l; s) > 0.

Зрозумiло, що для кожного натурального k \in N

\sum 
0\leq j<l\leq i - 1

4pjkplk = 2 - 2
m - 1\sum 
j=0

p2jn < 2,

тому, враховуючи | sin(x)| \leq | x| для кожного дiйсного x, одержуємо

+\infty \prod 
k=3

\left(  1 - 
s - 1\sum 
j=1

4Bj(n+k) sin
2

\biggl( 
2\pi jl

sk

\biggr) \right)  \geq 
+\infty \prod 
k=3

\left(  1 - 
s - 1\sum 
j=1

4Bj(n+k) sin
2

\biggl( 
2\pi jl

sk

\biggr) \right)  

\geq 
+\infty \prod 
k=3

\left(  1 - 
s - 1\sum 
j=1

4Bj(n+k)

\biggl( 
2\pi jl

sk

\biggr) 2
\right)  

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 4



498 ОЛЕГ МАКАРЧУК

\geq 
+\infty \prod 
k=3

\left(  1 - (s - 1)2

s2k

s - 1\sum 
j=1

4Bj(n+k)

\right)  
\geq 

+\infty \prod 
k=3

\biggl( 
1 - 2(s - 1)2

s2k

\biggr) 
> 0.

Таким чином, умови (2) виконуються тiльки тодi, коли для для кожного числа l \in 
\{ 1, . . . , q\} \Biggl( 

s - 1\sum 
k=0

pkn cos

\biggl( 
2\pi lk

s

\biggr) \Biggr) 2
+

\Biggl( 
s - 1\sum 
k=0

pkn sin

\biggl( 
2\pi lk

s

\biggr) \Biggr) 2
\rightarrow 0, n\rightarrow +\infty .

При l \in \{ 1, . . . , q\} позначимо
s - 1\sum 
k=0

pkn cos

\biggl( 
2\pi lk

s

\biggr) 
= Aln,

s - 1\sum 
k=0

pkn sin

\biggl( 
2\pi lk

s

\biggr) 
= Bln.

Зрозумiло, що для кожного l \in \{ 1, . . . , q\} 

lim
n\rightarrow +\infty 

Aln = lim
n\rightarrow +\infty 

Bln = 0.

Розглянемо систему лiнiйних рiвнянь щодо p0n, p1n, . . . , p(s - 1)n :\left\{                 

\sum s - 1

k=1
pkn = 1,\sum s - 1

k=0
pkn cos

\biggl( 
2\pi lk

s

\biggr) 
= Aln, l \in \{ 1, . . . , q\} ,

\sum s - 1

k=0
pkn sin

\biggl( 
2\pi lk

s

\biggr) 
= Bln, l \in \{ 1, . . . , q\} .

Нехай \Delta — визначник матрицi, рядками якої є вектори

e0 = (1; 1, . . . , 1),

el =

\biggl( 
cos

\biggl( 
2\pi l \cdot 0
s

\biggr) 
; cos

\biggl( 
2\pi l \cdot 1
s

\biggr) 
, . . . , cos

\biggl( 
2\pi l(s - 1)

s

\biggr) \biggr) 
, l \in \{ 1, . . . , q\} ,

eq+l =

\biggl( 
sin

\biggl( 
2\pi l \cdot 0
s

\biggr) 
; sin

\biggl( 
2\pi l \cdot 1
s

\biggr) 
, . . . , sin

\biggl( 
2\pi l(s - 1)

s

\biggr) \biggr) 
, l \in \{ 1, . . . , q\} .

Оскiльки
s - 1\sum 
j=0

cos(jx) =
cos(0,5(s - 1)x sin(0,5sx)

sin(0,5x)
, sin(0,5x) \not = 0,
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s - 1\sum 
j=0

sin(jx) =
sin(0,5(s - 1)x sin(0,5sx)

sin(0,5x)
, sin(0,5x) \not = 0,

то легко бачити, що

s - 1\sum 
k=0

cos

\biggl( 
2\pi lk

s

\biggr) 
= 0 \forall l \in Z \setminus \{ 0\} , (3)

s - 1\sum 
k=0

sin

\biggl( 
2\pi lk

s

\biggr) 
= 0 \forall l \in Z. (4)

Отже, маємо

e0 \cdot e0 = 1,

el \cdot el =
s - 1\sum 
k=0

cos2
\biggl( 
2\pi lk

s

\biggr) 
=
s

2
+ 0,5

s - 1\sum 
k=0

cos

\biggl( 
4\pi lk

s

\biggr) 
=
s

2
\forall l \in \{ 1, . . . , q\} ,

eq+l \cdot eq+l =
s - 1\sum 
k=0

sin2
\biggl( 
2\pi lk

s

\biggr) 
=
s

2
 - 0,5

s - 1\sum 
k=0

cos

\biggl( 
4\pi lk

s

\biggr) 
=
s

2
\forall l \in \{ 1, . . . , q\} ,

el \cdot er =
s - 1\sum 
k=0

cos

\biggl( 
2\pi lk

s

\biggr) 
cos

\biggl( 
2\pi rk

s

\biggr) 

= 0,5
s - 1\sum 
k=0

cos

\biggl( 
2\pi (l + r)k

s

\biggr) 
+ 0,5

s - 1\sum 
k=0

cos

\biggl( 
2\pi (l  - r)k

s

\biggr) 
= 0 \forall l, r \in \{ 1, . . . , q\} , l \not = r,

el \cdot er+q =
s - 1\sum 
k=0

cos

\biggl( 
2\pi lk

s

\biggr) 
sin

\biggl( 
2\pi rk

s

\biggr) 

= 0,5
s - 1\sum 
k=0

sin

\biggl( 
2\pi (l + r)k

s

\biggr) 
+ 0,5

s - 1\sum 
k=0

sin

\biggl( 
2\pi (l  - r)k

s

\biggr) 
= 0 \forall l, r \in \{ 1, . . . , q\} , l \not = r,

el+q \cdot er+q =
s - 1\sum 
k=0

sin

\biggl( 
2\pi lk

s

\biggr) 
sin

\biggl( 
2\pi rk

s

\biggr) 

= 0,5
s - 1\sum 
k=0

cos

\biggl( 
2\pi (l  - r)k

s

\biggr) 
 - 0,5

s - 1\sum 
k=0

cos

\biggl( 
2\pi (l + r)k

s

\biggr) 
= 0 \forall l, r \in \{ 1, . . . , q\} , l \not = r.

Таким чином, визначник Грама системи векторiв e0, e1, . . . , e2q рiвний ss - 1

2s - 1
, тому

\Delta \not = 0.
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Розглянемо визначники

\Delta p0n = det

\left(                       

1 1 \cdot \cdot \cdot 1

A1n cos

\biggl( 
2\pi 

s

\biggr) 
\cdot \cdot \cdot cos

\biggl( 
2\pi (s - 1)

s

\biggr) 
...

... . . . ...

Aqn cos

\biggl( 
2\pi q

s

\biggr) 
\cdot \cdot \cdot cos

\biggl( 
2\pi (s - 1)q

s

\biggr) 
B1n sin

\biggl( 
2\pi 

s

\biggr) 
\cdot \cdot \cdot sin

\biggl( 
2\pi (s - 1)

s

\biggr) 
...

... . . . ...

Bqn sin

\biggl( 
2\pi q

s

\biggr) 
\cdot \cdot \cdot sin

\biggl( 
2\pi (s - 1)q

s

\biggr) 

\right)                       

,

\Delta p0n(1) = det

\left(                    

cos

\biggl( 
2\pi 

s

\biggr) 
\cdot \cdot \cdot cos

\biggl( 
2\pi (s - 1)

s

\biggr) 
...

... . . . ...

cos

\biggl( 
2\pi q

s

\biggr) 
\cdot \cdot \cdot cos

\biggl( 
2\pi (s - 1)q

s

\biggr) 
sin

\biggl( 
2\pi 

s

\biggr) 
\cdot \cdot \cdot sin

\biggl( 
2\pi (s - 1)

s

\biggr) 
...

... . . . ...

sin

\biggl( 
2\pi q

s

\biggr) 
\cdot \cdot \cdot sin

\biggl( 
2\pi (s - 1)q

s

\biggr) 

\right)                    

.

Використовуючи формули Крамера i розкладаючи визначник \Delta p0n за першим стовпцем,
маємо

p0n =
\Delta p0n

\Delta 
=

\Delta p0n(1) +
\sum q

k=1
( - 1)k+1Aln\Delta p0n(Aln) + ( - 1)k+1+qBln\Delta p0n(Bln)

\Delta 

\rightarrow \Delta p0n(1)

\Delta 
= p\ast 0, n\rightarrow +\infty .

Мiркуємо аналогiчно стосовно p1n, p2n, . . . , p(s - 1)n i їхнiх граничних значень p\ast 1, p\ast 2, . . . ,
p\ast s - 1 вiдповiдно. Очевидно, що p\ast 1, p\ast 2, . . . , p\ast s - 1 є єдиним (адже \Delta \not = 0) розв’язком системи\left\{                 

\sum s - 1

k=1
xk = 1,\sum s - 1

k=0
xk cos

\biggl( 
2\pi lk

s

\biggr) 
= 0, l \in \{ 1, . . . , q\} ,

\sum s - 1

k=0
xk sin

\biggl( 
2\pi lk

s

\biggr) 
= 0, l \in \{ 1, . . . , q\} .

(5)
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З iншого боку, враховуючи рiвностi (3) i (4), легко бачити, що
\biggl( 
1

s
,
1

s
, . . . ,

1

s

\biggr) 
— розв’язок

системи (5). Отже, для кожного l \in \{ 0, . . . , s - 1\} маємо

lim
n\rightarrow +\infty 

pln =
1

s
.

Випадок Б. Нехай s = 2q — парне число. Мiркуючи аналогiчно до випадку A, отри-
муємо

lim
n\rightarrow +\infty 

s - 1\sum 
k=0

pkn cos

\biggl( 
2\pi lk

2q

\biggr) 
= 0 \forall l \in \{ 1, . . . , q\} ,

lim
n\rightarrow +\infty 

s - 1\sum 
k=0

pkn sin

\biggl( 
2\pi lk

2q

\biggr) 
= 0 \forall l \in \{ 1, . . . , q  - 1\} .

Повторюючи мiркування випадку A, одержуємо умову (1).
Нехай для кожного l \in \{ 0, . . . , s - 1\} 

pln \rightarrow 1

s
, n\rightarrow +\infty ;

покажемо, що L(F\psi ) = 0. Припустимо, що L(F\psi ) > 0.
Зрозумiло, що

L2(F\psi ) = lim
x\rightarrow +\infty 

g0(x).

Нехай \pi tn — зростаюча необмежена зверху послiдовнiсть дiйсних чисел така, що

lim
n\rightarrow +\infty 

g0(tn) = L2(F\psi ).

Далi маємо
\pi tn

s[logs(tn)]+2
<

\pi tn

slogs(tn)+1
=
\pi 

s
,

\pi tn

s[logs(tn)]+2
\geq \pi tn

slogs(tn)+2
=

\pi 

s2
.

Оскiльки послiдовнiсть \pi tn

s[logs(tn)]+2
обмежена, то з неї можливо видiлити збiжну пiд-

послiдовнiсть, тобто iснує зростаюча необмежена зверху послiдовнiсть дiйсних чисел \widetilde tn
така, що

lim
n\rightarrow +\infty 

\bigm| \bigm| g0(\pi \widetilde tn)\bigm| \bigm| = L2(F\psi ),

lim
n\rightarrow +\infty 

\widetilde tn
s[logs( \widetilde tn)]+2

= \gamma \in 
\biggl[ 
1

s2
,
1

s

\biggr] 
.

Отже, нехай

\gamma \ast (n) =
\widetilde tn

s[logs( \widetilde tn)]+2
.

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 4



502 ОЛЕГ МАКАРЧУК

Зрозумiло, що iснує додатне число A i натуральне число N(L) таке, що для кожного
натурального n > N(L)

B1n > A.

Якщо \gamma не можна подати у виглядi a

sb
для деяких натуральних a, b, то \gamma має єдине

s-кове зображення, причому iснує пара цифр (qw), вiдмiнна вiд пар (00) та ((s - 1)(s - 1)),
яка зустрiчається нескiнченну кiлькiсть разiв у s-ковому розкладi числа \gamma . Таким чином,

\gamma = \Delta s
\alpha 01\alpha 02...\alpha 0d0

qw\alpha 11\alpha 12...\alpha 1d1
...qw\alpha n1\alpha n2...\alpha ndn ...

.

Нехай

\gamma \ast (n) = \Delta s
\alpha 01\alpha 02...\alpha 0d0

qw\alpha 11\alpha 12...\alpha 1d1
...qw\alpha n1\alpha n2...\alpha ndn\tau 1\tau 2...

,

де \tau 1, \tau 2, . . . — деякi цифри. Зрозумiло, що для кожного k \in \{ 1, 2, . . . , n - 1\} 

\gamma \ast \cdot sd0+2+d1+...+2+dk = wk +\Delta s
qw...,

де wk — деяке цiле число, причому

0 < \Delta s
qw(0) \leq \Delta s

qw... \leq \Delta s
qw(s - 1) < 1.

Нехай також

M(q;w) = min
\bigl\{ 
sin2

\bigl( 
\pi \Delta s

qw(0)

\bigr) 
; sin2

\bigl( 
\pi \Delta s

qw(s - 1)

\bigr) \bigr\} 
.

Зрозумiло, що M(q;w) > 0. Одержуємо

sin2
\bigl( 
\pi \gamma \ast (n) \cdot sd0+2+d1+...+2+dk

\bigr) 
= sin2(\pi wk + \pi \Delta s

qw...) = sin2
\bigl( 
\pi \Delta s

qw...

\bigr) 
\geq M(q;w).

Якщо n > N(A), то виконується нерiвнiсть

fn
\bigl( 
\gamma \ast (n) \cdot sd0+2+d1+...+2+dk

\bigr) 
\leq 1 - 4B1n \leq 1 - 4AM(q;w).

Таким чином, при досить великому n

g0(\pi \widetilde tn) \leq (1 - 4AM(q;w))j \rightarrow 0, j \rightarrow +\infty ,

i маємо суперечнiсть iз припущенням L(F\psi ) > 0.

Якщо \gamma подати у виглядi a

sb
для деяких натуральних a, b, то \gamma має два s-ковi зобра-

ження, одне з яких мiстить перiод (0), а iнше — перiод (s - 1).
Розглянемо такi випадки.
Випадок 1. Послiдовнiсть (\gamma \ast (n)) мiстить пiдпослiдовнiсть (\gamma \ast \ast (n)) таку, що

\gamma \ast \ast (n) = \Delta s
\beta 01\beta 02...\beta 0c0 (s - 1)(s - 1)...(s - 1)\underbrace{}  \underbrace{}  

e1

\beta 11\beta 12...\beta 1c1 ... (s - 1)(s - 1)...(s - 1)\underbrace{}  \underbrace{}  
en

\beta n1\beta n2...\beta ncn\xi 1\xi 2...
,

де \xi 1, \xi 2, . . . — деякi цифри, (en) — зростаюча послiдовнiсть натуральних чисел.
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Отже, маємо \bigl\{ 
\gamma \ast \ast (n) \cdot sc0+e1+c1+...+en - 1+cn - 1

\bigr\} 
\rightarrow 1, n\rightarrow +\infty ,

де \{ x\} — дробова частина числа x. А тому

sin2
\bigl( 
\pi \gamma \ast (n) \cdot sc0+e1+c1+...+en - 1+cn - 1 - 1

\bigr) 
\rightarrow \pi 

s
, n\rightarrow +\infty ,

тобто iснує послiдовнiсть натуральних (hn) така, що

lim
n\rightarrow +\infty 

\pi 

\Biggl\{ \widetilde tn
shn

\Biggr\} 
=
\pi 

s
.

Далi одержуємо

g0(\widetilde tn) \leq ghn(\widetilde tn) \rightarrow 
\Biggl( 
s - 1\sum 
k=0

1

s
cos
\Bigl( \pi 
s

\Bigr) \Biggr) 2
+

\Biggl( 
s - 1\sum 
k=0

1

s
sin
\Bigl( \pi 
s

\Bigr) \Biggr) 2
= 0, n\rightarrow +\infty ,

що суперечить припущенню L(F\psi ) > 0.

Випадок 2. Послiдовнiсть (\gamma \ast (n)) мiстить пiдпослiдовнiсть (\gamma \ast \ast \ast (n)) таку, що

\gamma \ast \ast \ast (n) = \Delta s
\beta 01\beta 02...\beta 0w0 00...0\underbrace{}  \underbrace{}  

q1

\beta 11\beta 12...\beta 1w1 ... 00...0\underbrace{}  \underbrace{}  
qn

\beta n1\beta n2...\beta nwn\eta 1\eta 2...
,

де \eta 1, \eta 2, . . . — деякi цифри, (qn) — зростаюча послiдовнiсть натуральних чисел.
Не обмежуючи загальностi, можна вважати, що для певної цифри r \in \{ 1, 2, . . . , s - 1\} i

для кожного k \in Z+ виконується рiвнiсть \beta 0wk = r.

Таким чином, маємо\bigl\{ 
\gamma \ast \ast \ast (n) \cdot sw0 - 1+q1+w1 - 1+...+qn - 1+wn - 1 - 1

\bigr\} 
\rightarrow r

s
, n\rightarrow +\infty .

Тобто

sin2
\bigl( 
\pi \gamma \ast \ast \ast (n) \cdot sw0 - 1+q1+w1 - q+...+qn - 1+wn - 1 - 1

\bigr) 
\rightarrow \pi r

s
, n\rightarrow +\infty ,

а тому iснує послiдовнiсть натуральних (ln) така, що

lim
n\rightarrow +\infty 

\pi 

\Biggl\{ \widetilde tn
sln

\Biggr\} 
=
\pi r

s
.

Отримуємо

g0(\widetilde tn) \leq gln(\widetilde tn) \rightarrow 
\Biggl( 
s - 1\sum 
k=0

1

s
cos
\Bigl( \pi r
s

\Bigr) \Biggr) 2
+

\Biggl( 
s - 1\sum 
k=0

1

s
sin
\Bigl( \pi r
s

\Bigr) \Biggr) 2
= 0, n\rightarrow +\infty ,

що суперечить припущенню L(F\psi ) > 0. Отже, L(F\psi ) = 0.
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