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We obtain necessary and sufficient conditions for the existence of a unique solution bounded on the entire
axis of a second-order differential equation with piecewise constant operator coefficients.

Отримано необхiднi й достатнi умови для iснування єдиного обмеженого на всiй осi розв’язку
диференцiального рiвняння другого порядку з кусково-сталими операторними коефiцiєнтами.

1. Вступ. Нехай X —комплексний банахiв простiр iз нормою \| \cdot \| i нульовим елементом \=0,
\scrL (X) — простiр лiнiйних неперервних операторiв, що дiють iз X у X ; I , O — вiдповiдно
одиничний i нульовий оператори в X ; Cb(\BbbR ,X) — банахiв простiр усiх неперервних i
обмежених на \BbbR функцiй f : \BbbR \rightarrow X з нормою \| f\| C := supt\in \BbbR \| f(t)\| ; C(1)

b (\BbbR ,X) —банахiв
простiр усiх неперервно диференцiйовних на \BbbR функцiй x \in Cb(\BbbR ,X) з похiдною x\prime \in 
Cb(\BbbR ,X) i нормою \| x\| C(1) := \| x\| C + \| x\prime \| C .

Розглянемо диференцiальне рiвняння\left\{   x\prime \prime (t) = A1x
\prime (t) + A2x(t) + y(t), t \geq 0,

x\prime \prime (t) = B1x
\prime (t) + B2x(t) + y(t), t < 0,

(1)

в якому y \in Cb(\BbbR ,X), Ak, Bk, k = 1, 2, — фiксованi оператори з \scrL (X) . Обмеженим
розв’язком рiвняння (1) будемо називати таку функцiю x \in C

(1)
b (\BbbR ,X), що для кожного

t \in \BbbR \setminus \{ 0\} iснує x\prime \prime (t) i виконується рiвнiсть (1).
Мета цiєї статтi — отримати умови для операторних коефiцiєнтiв Ak, Bk, k = 1, 2, якi

забезпечують виконання такої умови.
Умова обмеженостi. Для довiльної функцiї y \in Cb(\BbbR ,X) диференцiальне рiвняння (1) має

єдиний обмежений розв’язок x.
Для диференцiального рiвняння першого порядку зi змiнним операторним коефiцiєн-

том умову обмеженостi та її зв’язок iз умовою експоненцiальної дихотомiї на \BbbR вiдповiд-
ного однорiдного диференцiального рiвняння дослiджено, зокрема, в [1, 2] у довiльному
банаховому просторi для випадку обмежених i в [3, 4] — для випадку необмежених опера-
торних коефiцiєнтiв. Про використання бiльш слабкої умови експоненцiальної дихотомiї
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на пiвосях i фредгольмовостi вiдповiдного оператора для розв’язування задач про обмеженi
на \BbbR розв’язки таких диференцiальних рiвнянь див. [4, 5] i наведену там лiтературу.

Умову обмеженостi для аналогiчного до (1) диференцiального рiвняння першого по-
рядку дослiджували в [6]. Про iснування i властивостi обмежених на \BbbR розв’язкiв дифе-
ренцiального рiвняння другого порядку зi сталими операторними коефiцiєнтами див. [7].

2. Позначення i допомiжнi твердження. Покладемо X2 =

\biggl\{ 
\=x =

\biggl( 
x(1)

x(2)

\biggr) \bigm| \bigm| \bigm| \bigm| x(1), x(2) \in X

\biggr\} 
.

Тодi X2 — комплексний банахiв простiр iз покоординатним додаванням i множенням
на скаляр та нормою \| \=x\| \ast =

\bigm\| \bigm\| x(1)\bigm\| \bigm\| +
\bigm\| \bigm\| x(2)\bigm\| \bigm\| , \=x \in X2. Якщо E , F , G , H \in \scrL (X), то,

як i для випадку числових матриць, T =

\biggl( 
E F
G H

\biggr) 
задає оператор iз \scrL 

\bigl( 
X2
\bigr) 
за правилом

T\=x =

\biggl( 
Ex(1) + Fx(2)

Gx(1) +Hx(2)

\biggr) 
, \=x \in X2.

Нехай TA =

\biggl( 
A1 A2

I O

\biggr) 
, TB =

\biggl( 
B1 B2

I O

\biggr) 
, \sigma (TA), \sigma (TB) — спектри операторiв TA i

TB вiдповiдно; i\BbbR = \{ \lambda \in \BbbC | Re\lambda = 0\} .
Як i в [7], будемо називати коренi \Lambda 1,\Lambda 2 \in \scrL (X) операторного рiвняння

\Lambda 2  - A1\Lambda  - A2 = O (2)
роздiленими, якщо iснує неперервний обернений оператор \Psi A = (\Lambda 1 - \Lambda 2)

 - 1 до оператора
(\Lambda 1  - \Lambda 2). У [7] доведено таку теорему.

Теорема 1. Припустимо, що рiвняння (2) має роздiленi коренi \Lambda 1, \Lambda 2. Покладемо

UA =

\Biggl( 
\Lambda 1 \Lambda 2

I I

\Biggr) 
, U - 1

A =

\Biggl( 
\Psi A  - \Psi A\Lambda 2

 - \Psi A \Psi A\Lambda 1

\Biggr) 
.

Тодi U - 1
A — неперервний обернений оператор до оператора UA, а також

U - 1
A TAUA =

\Biggl( 
\Lambda 1 O

O \Lambda 2

\Biggr) 
, (3)

eTAt = UA

\Biggl( 
e\Lambda 1t O

O e\Lambda 2t

\Biggr) 
U - 1

A , t \in \BbbR . (4)

Зазначимо, що згiдно з наведеним у [8] зауваженням 1.3 неперервна оборотнiсть опе-
ратора UA еквiвалентна неперервнiй оборотностi оператора (\Lambda 1  - \Lambda 2).

Вiдомо (див., наприклад, [1], розд. 2, § 4), що коли V \in \scrL (X), \sigma (V) \cap i\BbbR = \varnothing , \sigma  - (V) i
\sigma +(V) —частини спектра \sigma (V) оператора V , що лежать вiдповiдно у лiвiй i правiй пiвпло-
щинi \BbbC (одна з них може бути порожньою), P\pm (V) — проєктори Рiсса, що вiдповiдають
\sigma \pm (V), то простiр X зображується у виглядi прямої суми X = X - (V) \.+X+(V) iнварiантних
щодо оператора V пiдпросторiв X\pm (V) = P\pm (V)X, а також справджується така теорема.

Теорема 2. Диференцiальне рiвняння u\prime (t) = Vu(t) + v(t), t \in \BbbR , має для кожної функцiї
v \in Cb(\BbbR ,X) єдиний розв’язок u в просторi C(1)

b (\BbbR ,X) тодi й тiльки тодi, коли \sigma (V)\cap i\BbbR =
\varnothing . Цей розв’язок будують за таким правилом. Покладемо

GV(t) =

\left\{    - eVtP+(V), t < 0,

eVtP - (V), t > 0.
(5)
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Тодi u є згорткою

u(t) = (GV \ast v)(t) =
\int 
\BbbR 

GV(t - s)v(s)ds, t \in \BbbR . (6)

Розглянемо тепер диференцiальне рiвняння першого порядку\left\{   \=x\prime (t) = TA\=x(t) + \=y(t), t \geq 0,

\=x\prime (t) = TB\=x(t) + \=y(t), t < 0.
(7)

Обмеженим розв’язком рiвняння (7), вiдповiдним до функцiї \=y \in Cb

\bigl( 
\BbbR ,X2

\bigr) 
, будемо на-

зивати таку функцiю \=x \in Cb

\bigl( 
\BbbR ,X2

\bigr) 
, що для кожного t \in \BbbR \setminus \{ 0\} iснує \=x\prime (t) i виконується

рiвнiсть (7). Умову обмеженостi для рiвняння (7) формулюємо так само, як i для рiв-
няння (1).

Внаслiдок теореми 2 з [6] справджується таке твердження.
Теорема 3. Для того щоб диференцiальне рiвняння (7) задовольняло умову обмеженостi,

необхiдно й достатньо, щоб виконувалися такi умови:
i1) \sigma (TA) \cap i\BbbR = \varnothing , \sigma (TB) \cap i\BbbR = \varnothing ;
i2) X2 = X2

 - (TA) \.+X2
+(TB).

Нехай P - , P+ —проєктори в X2, щовiдповiдають зображенню X2 = X2
 - (TA) \.+X2

+(TB).
Безпосередньо перевiряємо, що при виконаннi умов i1), i2) теореми 3 вiдповiдний до функ-
цiї \=y \in Cb

\bigl( 
\BbbR ,X2

\bigr) 
обмежений розв’язок \=x рiвняння (7) можна визначити таким чином:

якщо t \geq 0, то

\=x(t) =

t\int 
0

eTA(t - s)P - (TA)\=y(s) ds - 
+\infty \int 
t

eTA(t - s)P+(TA)\=y(s) ds

+ eTAtP - 

0\int 
 - \infty 

e - TBsP - (TB)\=y(s) ds+ eTAtP - 

+\infty \int 
0

e - TAsP+(TA)\=y(s) ds; (8)

якщо t < 0, то

\=x(t) =

t\int 
 - \infty 

eTB(t - s)P - (TB)\=y(s) ds - 
0\int 

t

eTB(t - s)P+(TB)\=y(s) ds

 - eTBtP+

+\infty \int 
0

e - TAsP+(TA)\=y(s) ds - eTBtP+

0\int 
 - \infty 

e - TBsP - (TB)\=y(s) ds. (9)

Справдi, збiжнiсть вiдповiдних iнтегралiв, обмеженiсть функцiї \=x на \BbbR , її диферен-
цiйовнiсть i виконання рiвностей (7) для кожного t \in \BbbR \setminus \{ 0\} випливає iз властивостей
функцiї Грiна (5). Також внаслiдок (8), (9) маємо

\=x(0) = P - 

0\int 
 - \infty 

e - TBsP - (TB)\=y(s) ds - P+

+\infty \int 
0

e - TAsP+(TA)\=y(s) ds = \=x(0 - ).

У подальшому також потрiбна така лема.
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Лема 1. Нехай функцiя \varphi : [a, b] \rightarrow X неперервна на [a, b] i для кожного s \in (a, b) iснує
\varphi \prime (s). Тодi

\| \varphi (b) - \varphi (a)\| \leq (b - a) sup
s\in (a,b)

\| \varphi \prime (s)\| .

Доведення. Внаслiдок теореми Гана – Банаха iснує такий функцiонал h \in X\ast , що
\| h\| = 1, h(\varphi (b)  - \varphi (a)) = \| \varphi (b)  - \varphi (a)\| . Покладемо \alpha (t) = Reh(\varphi (t)), t \in [a, b]. Тодi
iснує таке \xi \in (a, b), що

\| \varphi (b) - \varphi (a)\| = h(\varphi (b) - \varphi (a)) = \alpha (b) - \alpha (a)

= \alpha \prime (\xi )(b - a) \leq (b - a)
\bigm| \bigm| h(\varphi \prime (\xi ))

\bigm| \bigm| \leq (b - a) sup
s\in (a,b)

\bigm\| \bigm\| \varphi \prime (s)
\bigm\| \bigm\| .

3. Основнi результати. У подальшому використовуємо таке припущення.
Припущення 1. Iснує такий оператор W \in \scrL (X), що \sigma (W) \cap i\BbbR = \varnothing , а також A1W+

A2 = B1W+B2.

Зауважимо, що припущення 1 виконується, зокрема, у випадку, коли рiвняння

\Lambda 2  - B1\Lambda  - B2 = O (10)

i (2) мають такий спiльний корiнь \Lambda 0 \in \scrL (X), що \sigma (\Lambda 0) \cap i\BbbR = \varnothing .

Наступна теорема мiстить вiдповiдь на природне питання про одночасне виконання
умови обмеженостi для диференцiальних рiвнянь (1) i (7).

Теорема 4. Якщо виконується припущення 1, то рiвняння (1) задовольняє умову обмеже-
ностi у тому й тiльки тому випадку, коли умову обмеженостi задовольняє рiвняння (7).

Доведення. Достатнiсть. Нехай умова обмеженостi виконується для рiвняння (7).
Зафiксуємофункцiю y \in Cb(\BbbR ,X). Внаслiдок (7) для вiдповiдного дофункцiї \=y(t) =

\biggl( 
y(t)
\=0

\biggr) 
,

t \in \BbbR , єдиного обмеженого розв’язку \=x(t) =

\biggl( 
x1(t)
x2(t)

\biggr) 
, t \in \BbbR , виконуються рiвностi

x\prime 1(t) = A1x1(t) + A2x2(t) + y(t), t > 0,

x\prime 1(t) = B1x1(t) + B2x2(t) + y(t), t < 0,

x\prime 2(t) = x1(t), t \in \BbbR \setminus \{ 0\} .

Тому для кожного t \in \BbbR \setminus \{ 0\} iснує x\prime \prime 2(t) i функцiя x(t) = x2(t), t \in \BbbR , задовольняє
рiвнiсть (1).

Перевiримо,що x2 \in C
(1)
b (\BbbR ,X). Застосувавши прифiксованому t > 0 лему 1 дофункцiї

\varphi \ast (s) = x2(s) - x2(0) - s x1(0), s \in [0, t], отримаємо

\| x2(t) - x2(0) - t x1(0)\| \leq t sup
s\in (0,t)

\| x\prime 2(s) - x1(0)\| \leq t max
s\in [0,t]

\| x1(s) - x1(0)\| . (11)

Iз означення обмеженого розв’язку рiвняння (7) випливає, що x1, x2 \in Cb(\BbbR ,X). Тому,
подiливши (11) на t i перейшовши до границi при t \rightarrow 0+, дiстанемо рiвнiсть x\prime 2(0+) =
x1(0). Застосувавши аналогiчнi мiркування до функцiї \varphi \ast на вiдрiзку [ - t, 0], отримаємо
x\prime 2(0 - ) = x1(0), а отже, x\prime 2(0) = x1(0). Таким чином, x\prime 2(t) = x1(t) для кожного t \in \BbbR .
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Якщо, вiд супротивного, отриманий обмежений розв’язок x(t) = x2(t), t \in \BbbR , рiвнян-
ня (1), що вiдповiдає функцiї y, не єдиний, то вiдповiдне до (1) однорiдне диференцiаль-
не рiвняння має деякий ненульовий обмежений розв’язок u(t), t \in \BbbR . Але тодi функцiя

\=u(t) =

\biggl( 
u\prime (t)
u(t)

\biggr) 
, t \in \BbbR , буде ненульовим обмеженим розв’язком вiдповiдного до (7) однорiд-

ного диференцiального рiвняння. Суперечнiсть.
Необхiднiсть. Нехай тепер умова обмеженостi виконується для рiвняння (1).Позначимо

через Y набiр усiх таких функцiй f : \BbbR \rightarrow X, що f \in C
(1)
b (\BbbR ,X), для кожного t \in \BbbR \setminus \{ 0\} 

iснує f \prime \prime (t), яка продовжується до функцiї з Cb(\BbbR ,X) . Тодi Y — лiнiйний простiр iз поточ-
ковим додаванням i множенням на комплексне число. Визначимо лiнiйний оператор L :
Y \rightarrow Cb(\BbbR ,X) за правилом

(Lx)(t) =

\left\{   x\prime \prime (t) - A1x
\prime (t) - A2x(t), t \geq 0,

x\prime \prime (t) - B1x
\prime (t) - B2x(t), t < 0.

(12)

При цьому рiвняння (1) записуємо у виглядi Lx = y, внаслiдок умови обмеженостi для (1)
L є бiєкцiєю i вiдповiдний до функцiї y \in Cb(\BbbR ,X) єдиний обмежений розв’язок рiвнян-
ня (1) зображується у виглядi x = L - 1y. Також визначимо вiдображення D : C(1)

b (\BbbR ,X) \rightarrow 
Cb(\BbbR ,X), D2

Y : Y \rightarrow Cb(\BbbR ,X) за правилами

Dx = x\prime , x \in C
(1)
b (\BbbR ,X), D2

Yx = x\prime \prime , x \in Y.

Зазначимо, що кожен оператор Q \in \scrL (X) визначає оператор, який теж позначатимемо
через Q , у введених функцiональних просторах, дiючи на вiдповiднi функцiї поточково.

Зафiксуємо функцiю \=y(t) =

\biggl( 
y1(t)
y2(t)

\biggr) 
, t \in \BbbR , що належить простору Cb

\bigl( 
\BbbR ,X2

\bigr) 
. Доведе-

мо, що диференцiальне рiвняння (7) має вiдповiдний до \=y обмежений розв’язок.
Безпосередньо перевiряємо, що функцiї

\biggl( 
y1(t)
\=0

\biggr) 
, t \in \BbbR , вiдповiдає обмежений розв’я-

зок рiвняння (7) з координатами

x1 = DL - 1y1, x2 = L - 1y1. (13)

Внаслiдок теореми 2, припущення 1 i теореми Банаха про обернений оператор iснує
неперервний обернений оператор \scrR = (D  - W) - 1 до лiнiйного неперервного оператора
(D - W) : C(1)

b (\BbbR ,X) \rightarrow Cb(\BbbR ,X). Доведемо, що (7) має обмежений розв’язок, вiдповiдний

до функцiї
\biggl( 

\=0
y2(t)

\biggr) 
, t \in \BbbR , з координатами

x1 =
\bigl( 
W\scrR  - DL - 1\Gamma \scrR  - DL - 1W

\bigr) 
y2, x2 =

\bigl( 
\scrR  - L - 1\Gamma \scrR  - L - 1W

\bigr) 
y2, (14)

де, з урахуванням припущення 1,

\Gamma = W2  - A1W  - A2 = W2  - B1W  - B2.

Справдi,
x\prime 2  - x1 = (D - W)\scrR y2 = y2;

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 3



ОБМЕЖЕНI РОЗВ’ЯЗКИ ДИФЕРЕНЦIАЛЬНОГО РIВНЯННЯ ДРУГОГО ПОРЯДКУ . . . 347

при t > 0, з урахуванням комутовностi операторiв D i W , матимемо

x\prime 1(t) - A1x1(t) - A2x2(t) = (DW\scrR  - A1W\scrR  - A2\scrR )y2(t)

 - 
\bigl( 
D2

Y  - A1D - A2

\bigr) 
L - 1\Gamma \scrR y2(t)

 - 
\bigl( 
D2

Y  - A1D - A2

\bigr) 
L - 1Wy2(t)

= DW\scrR y2(t) - (A1W+A2W+\Gamma )\scrR y2(t) - Wy2(t)

= W(D - W)\scrR y2(t) - Wy2(t) = \=0; (15)

при t < 0, мiркуючи аналогiчно до (15), одержимо x\prime 1 - B1x1(t) - B2x2(t) = \=0. Таким чином,
рiвнiсть (7) виконується для кожного t \in \BbbR \setminus \{ 0\} . Нарештi безпосередньо з (14) випливає,
що x1, x2 \in Cb(\BbbR ,X).

Внаслiдок лiнiйностi диференцiального рiвняння (7) його обмеженим розв’язком, вiд-
повiдним до функцiї \=y, є сума розв’язкiв, заданих формулами (13) i (14).

Якщо, вiд супротивного, цей обмежений розв’язок не єдиний, то вiдповiдне до (7)
однорiдне диференцiальне рiвняння має ненульовий обмежений розв’язок \=u(t) =

\biggl( 
u1(t)
u2(t)

\biggr) 
,

t \in \BbbR . Але тодi u\prime 2(t) = u1(t) для кожного t \in \BbbR i безпосередньо перевiряємо, що функ-
цiя u2(t), t \in \BbbR , є ненульовим обмеженим розв’язком вiдповiдного до (1) однорiдного
диференцiального рiвняння. Суперечнiсть.

З теореми 4 випливає, що коли виконується припущення 1, то умова обмеженостi для
диференцiального рiвняння (1) виконується тодi й тiльки тодi, коли виконуються умо-
ви i1), i2) теореми 3. У наступнiй теоремi розглянемо випадок, коли перевiрка умов i1), i2)
зводиться до перевiрки умов на роздiленi коренi рiвнянь (2) i (10).

Теорема 5. Припустимо, що рiвняння (2) i (10) мають роздiленi коренi \Lambda 1, \Lambda 2 i \Phi 1, \Phi 2

вiдповiдно, а також виконується припущення 1. Для того щоб диференцiальне рiвняння (1)
задовольняло умову обмеженостi, необхiдно й достатньо, щоб виконувалися такi умови:

j1) (\sigma (\Lambda 1) \cup \sigma (\Lambda 2)) \cap i\BbbR = \varnothing , (\sigma (\Phi 1) \cup \sigma (\Phi 2)) \cap i\BbbR = \varnothing ;
j2) X2 = M - (\Lambda 1,\Lambda 2) \.+M+(\Phi 1,\Phi 2),

де

M - (\Lambda 1,\Lambda 2) =

\Biggl\{ 
UA

\Biggl( 
v(1)

v(2)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| v(k) \in X - (\Lambda k), k = 1, 2

\Biggr\} 
,

M+(\Phi 1,\Phi 2) =

\Biggl\{ 
UB

\Biggl( 
v(1)

v(2)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| v(k) \in X+(\Phi k), k = 1, 2

\Biggr\} 
.

Доведення. Скориставшись рiвнiстю (3), робимо висновок, що при виконаннi умов
теореми 5 умова j1) еквiвалентна умовi i1) теореми 3.

Внаслiдок леми 5 iз [6] i рiвностi (4)

X2
 - (TA) =

\biggl\{ 
\=u \in X2

\bigm| \bigm| \bigm| \bigm| sup
t\geq 0

\bigm\| \bigm\| eTAt\=u
\bigm\| \bigm\| 
\ast < \infty 

\biggr\} 

=

\Biggl\{ 
\=u \in X2

\bigm| \bigm| \bigm| \bigm| \bigm| supt\geq 0

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\Biggl( 
e\Lambda 1t O

O e\Lambda 2t

\Biggr) 
U - 1

A \=u

\bigm\| \bigm\| \bigm\| \bigm\| \bigm\| 
\ast 

< \infty 

\Biggr\} 
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=

\Biggl\{ 
UA

\Biggl( 
v(1)

v(2)

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| supt\geq 0

\bigm\| \bigm\| \bigm\| e\Lambda ktv(k)
\bigm\| \bigm\| \bigm\| < \infty , k = 1, 2

\Biggr\} 
= M - (\Lambda 1,\Lambda 2).

Аналогiчно перевiряємо, що X2
+(TB) = M+(\Phi 1,\Phi 2). Отже, умова j2) еквiвалентна умовi i2)

теореми 3.
Приклад. Нехай X = \BbbC 2, \| u\| = | u(1)| +| u(2)| , u =

\biggl( 
u(1)

u(2)

\biggr) 
\in \BbbC 2. За допомогою теореми 5

доведемо, що диференцiальне рiвняння (1), в якому

A1 =

\Biggl( 
 - 1 0

0 3

\Biggr) 
, A2 =

\Biggl( 
2 0

0  - 2

\Biggr) 
, B1 =

\Biggl( 
 - 2 0

 - 6 4

\Biggr) 
, B2 =

\Biggl( 
3 0

6  - 3

\Biggr) 
,

задовольняє умову обмеженостi.
Безпосередньо перевiряємо, що в цьому випадку операторнi рiвняння (2) i (10) мають

вiдповiдно роздiленi коренi

\Lambda 1 =

\Biggl( 
1 0

0 1

\Biggr) 
, \Lambda 2 =

\Biggl( 
 - 2 0

0 2

\Biggr) 
i \Phi 1 =

\Biggl( 
1 0

0 1

\Biggr) 
, \Phi 2 =

\Biggl( 
 - 3 0

 - 6 3

\Biggr) 
.

Оскiльки \Lambda 1 = \Phi 1, \sigma (\Lambda 1) = \{ 1\} , \sigma (\Lambda 2) = \{  - 2, 2\} , \sigma (\Phi 2) = \{  - 3, 3\} , то виконується припу-

щення 1 i умова j1) теореми 5. Також X - (\Lambda 1) = \{ \=0\} , X - (\Lambda 2) =

\biggl\{ \biggl( 
\alpha 
0

\biggr) \bigm| \bigm| \bigm| \bigm| \alpha \in \BbbC 
\biggr\} 
, а отже,

M - (\Lambda 1,\Lambda 2) =

\left\{             

\left(       
1 0  - 2 0

0 1 0 2

1 0 1 0

0 1 0 1

\right)       

\left(       
0

0

\alpha 

0

\right)       

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\alpha \in \BbbC 

\right\}             
=

\left\{             
\alpha 

\left(       
 - 2

0

1

0

\right)       

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\alpha \in \BbbC 

\right\}             
.

Враховуючи, що

\Phi 2

\Biggl( 
1

1

\Biggr) 
=  - 3

\Biggl( 
1

1

\Biggr) 
, \Phi 2

\Biggl( 
0

1

\Biggr) 
= 3

\Biggl( 
0

1

\Biggr) 
,

робимо висновок, що X+(\Phi 1) = \BbbC 2, X+(\Phi 2) =

\biggl\{ \biggl( 
0
\delta 

\biggr) \bigm| \bigm| \bigm| \bigm| \delta \in \BbbC 
\biggr\} 
. Тому

M+(\Phi 1,\Phi 2) =

\left\{             

\left(       
1 0  - 3 0

0 1  - 6 3

1 0 1 0

0 1 0 1

\right)       

\left(       
\beta 

\gamma 

0

\delta 

\right)       

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\beta , \gamma , \delta \in \BbbC 

\right\}             

=

\left\{             
\beta 

\left(       
1

0

1

0

\right)       + \gamma 

\left(       
0

1

0

1

\right)       + \delta 

\left(       
0

3

0

1

\right)       

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\beta , \gamma , \delta \in \BbbC 

\right\}             
.
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Вектори

\left(    
 - 2
0
1
0

\right)    ,
\left(    
1
0
1
0

\right)    ,
\left(    
0
1
0
1

\right)    ,
\left(    
0
3
0
1

\right)    утворюють базис у \BbbC 4, а отже,

\BbbC 4 = M - (\Lambda 1,\Lambda 2) \.+M+(\Phi 1,\Phi 2),

тобто умова j2) теореми 5 теж виконується.
Зауважимо, що для того щоб знайти вiдповiдний до заданої функцiї y(t) =

\biggl( 
y1(t)
y2(t)

\biggr) 
,

t \in \BbbR , з простору Cb

\bigl( 
\BbbR ,\BbbC 2

\bigr) 
єдиний обмежений розв’язок диференцiального рiвняння, що

розглядаємо в прикладi, потрiбно скористатися формулами (8), (9) i виписати вiдповiдний

до \=y(t) =

\left(    
y1(t)
y2(t)
0
0

\right)    , t \in \BbbR , єдиний обмежений розв’язок вiдповiдного рiвняння (7). З дове-

дення теореми 4 випливає, що його третя й четверта координати визначатимуть шуканий
розв’язок.

Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв.
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