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The representation of real numbers from (0; 1] by Perron series (P -representation of numbers) is consi-
dered. We find sufficient conditions for the existence and uniqueness of the expansion of a number in
the Perron series, reveal the geometric interpretation of the digits of the P -representation of numbers in
standard and difference forms, describe the topological-metric properties of cylindrical sets, and analyze
the differential properties of continuousmonotonic functions (projectors of a P -representation into another
P -representation). Sufficient conditions for singularity of these functions are found.

Розглянуто подання та зображення дiйсних чисел з (0; 1] рядами Перрона (P -зображення чисел).
Знайдено достатнi умови iснування та єдиностi розкладу числа в ряд, з’ясовано геометричний змiст
цифр зображення числа у стандартнiй i рiзницевiй (P -зображення) формах, описано топологомет-
ричнi властивостi цилiндричних множин. Дослiджено диференцiальнi властивостi неперервних
монотонних функцiй (проєкторiв одного P -зображення в iнше). Знайдено достатнi умови їхньої
сингулярностi.

1. Вступ. Рiзнi моделi дiйсного числа уформi числового ряду,щодозволяють ототожнювати
число з нескiнченною послiдовнiстю натуральних чисел, є ефективним засобом розвитку
метричної та ймовiрнiсної теорiї дiйсних чисел, теорiї функцiй зi складною локальною
структурою, теорiї сингулярних розподiлiв випадкових величин, теорiї динамiчних систем,
фрактальної геометрiї та фрактального аналiзу. Прикладами таких моделей є s-ковi ряди,
Qs, Q\infty i Q\ast 

\infty -зображення [1 – 3], рядиЕнгеля [4 – 11], рядиЛюрота (додатнi та знакозмiннi)
[12 – 15], ряди Сильвестера [10, 16], ряди Остроградського –Серпiнського –Пiрса [4, 6, 17,
18] тощо.

Оскар Перрон у [19] наводить приклад ряду, що є узагальненням згаданих вище рядiв
Енгеля, Люрота та Сильвестера:

1

p1
+

\infty \sum 
n=1

r1r2 . . . rn
(p1  - 1)p1(p2  - 1)p2 . . . (pn  - 1)pnpn+1

, (1)

де (rn)
\infty 
n=1 —довiльна послiдовнiсть натуральних чисел, pn \in \BbbN , p1 \geq 2, pn+1 \geq rn+1 для

кожного n \in \BbbN . Ряд (1) буде:
– рядом Енгеля при rn = pn  - 1;
– модифiкованим рядом Енгеля при rn = pn;
– рядом Люрота при rn \equiv 1;
– рядом Сильвестера при rn = (pn  - 1)pn.
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У роботi [19] Перрон доводить, що ряд (1) є збiжним, його сума є числом з (0; 1] i кожне
число з (0; 1] можна подати як суму ряду (1). Проте для кожного x \in (0; 1] таких рядiв
iснує континуальна кiлькiсть.

У цiй роботi ми запропонували модифiкацiю ряду (1) та умови, що гарантують єдинiсть
розкладу числа у модифiкований ряд (1). Цi умови визначають два класи зображень чисел,
що мають “просту” геометрiю (метричнi й топологiчнi властивостi): P -зображення та його
рiзницеву форму (P -зображення). Описано метричнi властивостi цилiндричних множин,
породжених цими зображеннями, а також вивчено диференцiальнi властивостi функцiї,
що є проєктором одного P -зображення у iнше. Знайдено умови, при яких проєктор є
сингулярною функцiєю.

2. Ряди Перрона.
Означення 1. Рядом Перрона будемо називати числовий ряд вигляду

\infty \sum 
n=0

r0r1 . . . rn
(p1  - 1)p1(p2  - 1)p2 . . . (pn  - 1)pnpn+1

, (2)

де (rn)
\infty 
n=0 — довiльна послiдовнiсть натуральних чисел, pn \in \BbbN , pn \geq rn - 1 + 1 для кожного

n \in \BbbN .
Зауваження 1. Далi пiд дробом r0r1 . . . rn

(p1  - 1)p1(p2  - 1)p2 . . . (pn  - 1)pnpn+1
при умовi n = 0

будемо розумiти дрiб r0
p1

.

Лема 1. Для кожної послiдовностi натуральних чисел (rn)
\infty 
n=0 справджується рiвнiсть

\infty \sum 
n=0

rn
(r0 + 1) . . . (rn + 1)

= 1.

Доведення. За допомогою методу математичної iндукцiї можна показати, що для кож-
ного k \in \BbbN справджується рiвнiсть

k\sum 
n=0

rn
(r0 + 1) . . . (rn + 1)

= 1 - 1

(r0 + 1) . . . (rk + 1)
.

Звiдси випливає, що

1 - 1

2k+1
\leq 

k\sum 
n=0

rn
(r0 + 1) . . . (rn + 1)

< 1.

Твердження леми 1 слiдує безпосередньо з останньої нерiвностi.
Лема 2. Ряд Перрона (2) є збiжним, причому його сума є числом з (0; 1].
Доведення. Враховуючи лему 1, маємо

0 <
\infty \sum 
n=0

r0r1 . . . rn
(p1  - 1)p1(p2  - 1)p2 . . . (pn  - 1)pnpn+1

\leq 
\infty \sum 
n=0

r0r1 . . . rn
r0(r0 + 1)r1(r1 + 1) . . . rn - 1(rn - 1 + 1)(rn + 1)

=
\infty \sum 
n=0

rn
(r0 + 1) . . . (rn + 1)

= 1.
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3. Зображення дiйсних чисел рядами Перрона (\bfitP -зображення). Цилiндричнi множини.
Нехай функцiї \varphi n(x1, . . . , xn) : \BbbN n \rightarrow \BbbN для кожного n \in \BbbN , \varphi 0 = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t} \in \BbbN . Через P

позначатимемо фiксовану послiдовнiсть функцiй (\varphi n)
\infty 
n=0.

Означення 2. Нехай число x \in (0; 1] є сумою ряду (2), причому r0 = \varphi 0 i rn = \varphi n(p1, . . . ,
pn) для кожного n \in \BbbN . Тодi розклад числа x у ряд (2) будемо називати його P -поданням, а
скорочений запис \Delta P

p1p2...pn... — його P -зображенням. Число pi будемо називати i-ю цифрою
P -зображення числа x.

Означення 3. Цилiндром рангу k з основою c1c2 . . . ck P -зображення будемо називати
непорожню множину \Delta P

c1c2...ck
всiх чисел з (0; 1], для яких iснує P -зображення вигляду

\Delta P
c1c2...ckpk+1pk+2...

, тобто

\Delta P
c1c2...ck

=
\Bigl\{ 
x : x \in (0; 1], x = \Delta P

c1c2...ckpk+1pk+2...

\Bigr\} 
.

Лема 3. Для цилiндра \Delta P
c1c2...ck

рангу k справджуються рiвностi

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
c1c2...ck

=

k - 1\sum 
n=0

r0 . . . rn
(c1  - 1)c1 . . . (cn  - 1)cncn+1

, (3)

\mathrm{s}\mathrm{u}\mathrm{p}\Delta P
c1c2...ck

= \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
c1c2...ck

+
r0 . . . rk - 1

(c1  - 1)c1 . . . (ck  - 1)ck
, (4)

\bigm| \bigm| \Delta P
c1...ck

\bigm| \bigm| = \mathrm{s}\mathrm{u}\mathrm{p}
\bigl( 
\Delta P

c1...ck

\bigr) 
 - \mathrm{i}\mathrm{n}\mathrm{f}

\bigl( 
\Delta P

c1...ck

\bigr) 
=

r0 . . . rk - 1

(c1  - 1)c1 . . . (ck  - 1)ck
, (5)

де r0 = \varphi 0 i ri = \varphi i(c1, . . . , ci) для кожного i = 1, . . . , k  - 1.

Доведення. Доведемо рiвнiсть (3) для k = 1. Розглянемо цилiндр першого рангу \Delta P
c1 .

Зрозумiло, що число r0
c1

є нижньоюмежею цилiндра \Delta P
c1 . Покажемо, що число r0

c1
є точною

нижньою межею цилiндра \Delta P
c1 . Для цього достатньо довести, що в цилiндрi \Delta P

c1 мiстяться
числа, як завгодно близькi до числа r0

c1
.

Розглянемо ряд Перрона (2), у якому послiдовностi (rn)\infty n=0 i (pn)\infty n=1 визначенi реку-
рентно таким чином: r0 = \varphi 0, p1 = c1, rn = \varphi n(p1, . . . , pn), pn+1 = rnq + 1 для кожного
n \in \BbbN , де q \in \BbbN , q \geq 2. Позначимо суму такого ряду через xq. Очевидно, що xq \in \Delta P

c1 ,
причому

xq =
r0
c1

+
\infty \sum 
n=1

r0r1 . . . rn
(c1  - 1)c1 \cdot r1q \cdot (r1q + 1) . . . rn - 1q \cdot (rn - 1q + 1)(rnq + 1)

\leq r0
c1

+
r0

(c1  - 1)c1

\infty \sum 
n=1

r1 . . . rn
r21q

2 . . . r2n - 1q
2 \cdot rnq

=
r0
c1

+
r0

(c1  - 1)c1

\infty \sum 
n=1

1

r1 . . . rnq2n - 1
\leq r0

c1
+

r0
(c1  - 1)c1

\infty \sum 
n=1

1

q2n - 1

=
r0
c1

+
r0

(c1  - 1)c1

q

q2  - 1
\leq r0

c1
+

r0
(c1  - 1)c1

1

q  - 1
.
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Оскiльки r0
c1

+
r0

(c1  - 1)c1

1

q  - 1
\rightarrow r0

c1
при q \rightarrow \infty , то xq \rightarrow 

r0
c1

при q \rightarrow \infty . Отже, \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
c1 =

r0
c1
. Таким чином, рiвнiсть (3) доведено для випадку k = 1.

Доведемо рiвнiсть (4) для k = 1. Враховуючи, що pn \geq rn - 1 + 1, а також лему 1,
отримаємо

\Delta P
c1p2p3... =

r0
c1

+

\infty \sum 
n=1

r0r1 . . . rn
(c1  - 1)c1(p2  - 1)p2 . . . (pn  - 1)pnpn+1

\leq r0
c1

+
r0

(c1  - 1)c1

\infty \sum 
n=1

r1 . . . rn
r1(r1 + 1) . . . rn - 1(rn - 1 + 1)(rn + 1)

=
r0
c1

+
r0

(c1  - 1)c1

\infty \sum 
n=1

rn
(r1 + 1) . . . (rn + 1)

= \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
c1 +

r0
(c1  - 1)c1

.

При цьому верхня оцiнка завжди досягається й дорiвнює сумi ряду, в якому послi-
довностi (rn)

\infty 
n=0 i (pn)

\infty 
n=1 визначено рекурентно у такий спосiб: r0 = \varphi 0, p1 = c1,

rn = \varphi n(p1, . . . , pn), pn+1 = rn+1 для кожного n \in \BbbN . Отже, \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
c1 = \mathrm{i}\mathrm{n}\mathrm{f} \Delta P

c1 +
r0

(c1  - 1)c1
.

Таким чином, рiвнiсть (4) доведено для випадку k = 1.

Доведення рiвностей (3) i (4) для k \geq 2 аналогiчнi до доведень цих рiвностей при k = 1.
Рiвнiсть (5) випливає з рiвностей (3) i (4).

Зауваження 2. З доведення леми 3 випливає, що точна нижня межа цилiндра йому не
належить, а точна верхня межа — належить.

Наслiдок 1. Для цилiндра \Delta P
c1...ck

рангу k \geq 2 справджуються рiвностi

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
c1...ck

= \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
c1...ck - 1

+
r0r1 . . . rk - 1

(c1  - 1)c1 . . . (ck - 1  - 1)ck - 1ck
, (6)

\mathrm{s}\mathrm{u}\mathrm{p}\Delta P
c1...ck

= \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
c1...ck - 1

+
r0r1 . . . rk - 1

(c1  - 1)c1 . . . (ck - 1  - 1)ck - 1(ck  - 1)
, (7)

де r0 = \varphi 0 i ri = \varphi i(c1, . . . , ci) для кожного i = 1, . . . , k  - 1.

Наслiдок 2. Для цилiндрiв рангу n i кожного k \geq rn - 1 + 1 виконується спiввiдношення
\mathrm{i}\mathrm{n}\mathrm{f} \Delta P

c1...cn - 1k
= \mathrm{s}\mathrm{u}\mathrm{p}\Delta P

c1...cn - 1[k+1].

Лема 4. Для довiльної послiдовностi (pn)
\infty 
n=1 такої, що pn \geq rn - 1 + 1, де rn - 1 =

\varphi n - 1(p1, . . . , pn - 1), \bigm| \bigm| \Delta P
p1...pn

\bigm| \bigm| \rightarrow 0 при n \rightarrow \infty .

Доведення. Нехай послiдовнiсть (pn)
\infty 
n=1 задовольняє умови цiєї леми. Тодi згiдно з

формулою (5) маємо

0 <
\bigm| \bigm| \Delta P

p1...pn

\bigm| \bigm| = r0 . . . rn - 1

(p1  - 1)p1 \cdot . . . (pn  - 1)pn

\leq r0 . . . rn - 1

r0(r0 + 1) . . . rn - 1(rn - 1 + 1)
=

1

(r0 + 1) . . . (rn - 1 + 1)
\leq 1

2n
\rightarrow 0.

Тому
\bigm| \bigm| \Delta P

p1...pn

\bigm| \bigm| \rightarrow 0 при n \rightarrow \infty .
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Лема 5. Для довiльної послiдовностi P функцiй \varphi i, довiльних x \in (0; 1] i n \in \BbbN iснує
єдиний цилiндр \Delta P

p1...pn рангу n такий, що

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pn < x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P

p1...pn . (8)

Доведення. Скористаємося методом математичної iндукцiї. Зафiксуємо послiдовнiсть
P функцiй \varphi i i число x \in (0; 1].

База iндукцiї. Нехай n = 1. Нерiвнiсть \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1 < x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P

p1 з урахуванням рiвно-
стей (3) i (4) рiвносильна нерiвностi

p1 >
r0
x

\geq p1  - 1, r0 = \varphi 0.

Очевидно, що iснує єдине число p1 \geq r0 + 1 таке, що виконується остання нерiвнiсть.
Позначимо це число як p\prime 1. Тодi \Delta P

p\prime 1
— єдиний цилiндр першого рангу, що задовольняє

нерiвнiсть (8).
Можемо записати, що x = \mathrm{i}\mathrm{n}\mathrm{f} \Delta P

p\prime 1
+ x1 =

r0
p\prime 1

+ x1. При цьому

0 < x1 \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
p\prime 1

 - \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p\prime 1

=
r0

(p\prime 1  - 1)p\prime 1
.

Перевiримо твердження для n = 2. Нехай \Delta P
p1p2 — деякий цилiндр другого рангу.

Оскiльки цилiндр \Delta P
p1p2 є пiдмножиною цилiндра \Delta P

p1 , то

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1 \leq \mathrm{i}\mathrm{n}\mathrm{f} \Delta P

p1p2 i \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
p1 \geq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P

p1p2 .

Тому з нерiвностi \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1p2 < x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P

p1p2 випливає нерiвнiсть \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1 < x\leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P

p1 . Тодi
завдяки доведеному вище p1 = p\prime 1, а отже, r1 = \varphi 1(p

\prime 
1).

Згiдно з рiвностями (3) i (4), а також попереднiми домовленостями нерiвнiсть

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p\prime 1p2

< x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
p\prime 1p2

рiвносильна таким нерiвностям:
r0
p\prime 1

+
r0r1

(p\prime 1  - 1)p\prime 1p2
<

r0
p\prime 1

+ x1 \leq 
r0
p\prime 1

+
r0r1

(p\prime 1  - 1)p\prime 1p2
+

r0r1
(p\prime 1  - 1)p\prime 1(p2  - 1)p2

,

r0r1
(p\prime 1  - 1)p\prime 1p2

< x1 \leq 
r0r1

(p\prime 1  - 1)p\prime 1(p2  - 1)
,

p2 >
r0r1

(p\prime 1  - 1)p\prime 1x1
\geq p2  - 1.

Для того щоб стверджувати iснування та єдинiсть значення p2 \geq r1+1, при якому викону-
ється остання нерiвнiсть, достатньо показати, що r0r1

(p\prime 1  - 1)p\prime 1x1
\geq r1. А ця умова рiвносиль-

на нерiвностi x1 \leq r0
(p\prime 1  - 1)p\prime 1

, iстиннiсть якої встановлено вище. Тому таке натуральне

число p2 iснує та єдине. Позначимо його як p\prime 2. Тодi \Delta P
p\prime 1p

\prime 
2
— єдиний цилiндр другого

рангу, що задовольняє нерiвнiсть (8).
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Припущення iндукцiї. Припустимо, що при n = k iснує єдиний цилiндр \Delta P
p\prime 1...p

\prime 
k
рангу

k такий, що
\mathrm{i}\mathrm{n}\mathrm{f} \Delta P

p\prime 1...p
\prime 
k
< x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P

p\prime 1...p
\prime 
k
.

Нехай xk = x - \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p\prime 1...p

\prime 
k
. Тодi з припущення iндукцiї випливає, що

0 < xk \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
p\prime 1...p

\prime 
k
 - \mathrm{i}\mathrm{n}\mathrm{f} \Delta P

p\prime 1...p
\prime 
k
=

r0r1 . . . rk - 1

(p\prime 1  - 1)p\prime 1 . . .
\bigl( 
p\prime k  - 1

\bigr) 
p\prime k

,

де r0 = \varphi 0 i ri = \varphi i(p
\prime 
1, . . . , p

\prime 
i) для всiх i = 1, . . . , k  - 1.

Крок iндукцiї. Нехай n = k + 1 i \Delta P
p1...pkpk+1

— деякий цилiндр (k + 1)-го рангу.
Тодi, аналогiчно до випадку при n = 2, з нерiвностi \mathrm{i}\mathrm{n}\mathrm{f} \Delta P

p1...pkpk+1
< x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P

p1...pkpk+1

випливає нерiвнiсть \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pk

< x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
p1...pk

. Звiдси маємо, що p1 = p\prime 1, . . . , pk = p\prime k, а
отже, r0 = \varphi 0 i ri = \varphi i(p

\prime 
1, . . . , p

\prime 
i) для всiх i = 1, . . . , k.

Тепер залишилося довести, що iснує єдине значення pk+1 \geq rk + 1 таке, що

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p\prime 1...p

\prime 
kpk+1

< x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
p\prime 1...p

\prime 
kpk+1

.

З урахуванням припущення iндукцiї, а також рiвностей (6) i (7) остання нерiвнiсть
рiвносильна нерiвностям

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p\prime 1...p

\prime 
k
+

r0r1 . . . rk

(p\prime 1  - 1)p\prime 1 . . .
\bigl( 
p\prime k  - 1

\bigr) 
p\prime kpk+1

< x \leq \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p\prime 1...p

\prime 
k
+

r0r1 . . . rk

(p\prime 1  - 1)p\prime 1 . . .
\bigl( 
p\prime k  - 1

\bigr) 
p\prime k(pk+1  - 1)

,

r0r1 . . . rk

(p\prime 1  - 1)p\prime 1 . . .
\bigl( 
p\prime k  - 1

\bigr) 
p\prime kpk+1

< xk \leq r0r1 . . . rk

(p\prime 1  - 1)p\prime 1 . . .
\bigl( 
p\prime k  - 1

\bigr) 
p\prime k(pk+1  - 1)

,

pk+1 >
r0r1 . . . rk

(p\prime 1  - 1)p\prime 1 . . .
\bigl( 
p\prime k  - 1

\bigr) 
p\prime kxk

\geq pk+1  - 1.

Щоб стверджувати iснування та єдинiсть значення pk+1 \geq rk+1, при якому виконується
остання нерiвнiсть, достатньо показати, що

r0r1 . . . rk

(p\prime 1  - 1)p\prime 1 . . .
\bigl( 
p\prime k  - 1

\bigr) 
p\prime kxk

\geq rk.

А ця умова рiвносильна нерiвностi xk \leq r0r1 . . . rk - 1

(p\prime 1  - 1)p\prime 1 . . .
\bigl( 
p\prime k  - 1

\bigr) 
p\prime k

, яка вище випливала з

припущення iндукцiї. Тому таке натуральне число pk+1 iснує та єдине. Позначимо його як
p\prime k+1. Тодi \Delta P

p\prime 1...p
\prime 
kp

\prime 
k+1

— єдиний цилiндр (k + 1)-го рангу, що задовольняє нерiвнiсть (8).
Тому згiдно з принципом математичної iндукцiї для кожного n \in \BbbN i довiльного x \in 

(0; 1] iснує єдиний цилiндр \Delta P
p\prime 1...p

\prime 
n
рангу n такий, що

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p\prime 1...p

\prime 
n
< x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P

p\prime 1...p
\prime 
n
.
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Теорема 1. При довiльнiй послiдовностi P функцiй \varphi i кожен x \in (0; 1] має єдине
P -подання, тобто iснує єдина послiдовнiсть натуральних чисел (pn)

\infty 
n=1 така, що

x =
\infty \sum 
n=0

r0r1 . . . rn
(p1  - 1)p1 . . . (pn  - 1)pnpn+1

\equiv \Delta P
p1...pn...,

де r0 = \varphi 0, rn = \varphi n(p1, . . . , pn) i pn \geq rn - 1 + 1 для кожного n \in \BbbN .
Доведення. Iснування. З мiркувань, наведених у доведеннi леми 5, слiдує, що для до-

вiльного набору P функцiй \varphi i, довiльних фiксованих n \in \BbbN i x \in (0; 1] число pn в основах
цилiндрiв \Delta P

p1...pk
рангу k \geq n, що задовольняють нерiвнiсть (8), є одним i тим же. Таким

чином, маємо, що послiдовнiсть функцiй P i число x породжують деяку послiдовнiсть
(pn)

\infty 
n=1. Покажемо, що \Delta P

p1...pn... = x.

Припустимо, що \Delta P
p1...pn... \not = x. Тодi для довiльного k \in \BbbN маємо \Delta P

p1...pn... \in \Delta P
p1...pk

,

а отже, \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pk

< \Delta P
p1...pn... \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P

p1...pk
. Враховуючи цю нерiвнiсть i нерiвнiсть

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pk

< x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
p1...pk

, маємо, що при кожному k \in \BbbN :

0 <
\bigm| \bigm| x - \Delta P

p1...pn...

\bigm| \bigm| < \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
p1...pk

 - \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pk

=
\bigm| \bigm| \Delta P

p1...pk

\bigm| \bigm| .
Але згiдно з лемою 4 при достатньо великих k значення

\bigm| \bigm| \Delta P
p1...pk

\bigm| \bigm| може бути як завгодно
близьким до нуля, а

\bigm| \bigm| x - \Delta P
p1...pn...| є фiксованою додатною величиною. Отримали супереч-

нiсть, а тому припущення хибне.
Отже, \Delta P

p1...pn... = x. Звiдси слiдує, що для кожного числа x \in (0; 1] iснує своє
P -подання при довiльнiй послiдовностi функцiй P.

Єдинiсть. Припустимо, що для деякої послiдовностi функцiй P та деякого x iснує два
рiзних P -подання Тодi нехай x = \Delta P

p1...pn... = \Delta P
p\prime 1...p

\prime 
n...

.

Нехай натуральне число k таке, що pi = p\prime i для всiх i < k i pk \not = p\prime k. Тодi маємо, що
x \in \Delta P

p1...pk - 1pk
й одночасно з цим x \in \Delta P

p1...pk - 1p
\prime 
k
, а отже,

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pk - 1pk

< x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
p1...pk - 1pk

,

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pk - 1p

\prime 
k
< x \leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P

p1...pk - 1p
\prime 
k
.

Але це суперечить лемi 5. Отримали суперечнiсть, а тому припущення хибне. Отже, кожне
число x \in (0; 1] має єдине P -подання для кожної послiдовностi функцiй P.

Наслiдок 3. Цилiндр \Delta P
p1...pn є промiжком вигляду (a; b]. При цьому довжина цього про-

мiжку (мiра Лебега цилiндра \Delta P
p1...pn ) дорiвнює

\bigm| \bigm| \Delta P
p1...pn

\bigm| \bigm| .
Наслiдок 4. Нехай x = \Delta P

p1...pn.... Тодi

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pn = \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
\mathrm{s}\mathrm{u}\mathrm{p}\Delta P

p1...pn = x.

Наслiдок 5. Якщо \Delta P
b1...bn

i \Delta P
c1...cm — два рiзнi цилiндри, то можливi тiльки два такi

випадки:
– \Delta P

b1...bn
\cap \Delta P

c1...cm = \varnothing , якщо iснує натуральне k \leq \mathrm{m}\mathrm{i}\mathrm{n}\{ n,m\} таке, що bi = ci для всiх
i < k i bk \not = ck;

– \Delta P
b1...bn

\subset \Delta P
c1...cm , якщо n > m i bi = ci для всiх i \leq m.
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Наслiдок 6. Справджуються рiвностi

(0; 1] =
\infty \bigcup 

i=r0+1

\Delta P
i , (9)

\Delta P
p1...pn =

\infty \bigcup 
i=rn+1

\Delta P
p1...pni, (10)

де r0 = \varphi 0 i rn = \varphi n(p1, . . . , pn) для кожного n \in \BbbN .
Наслiдок 7. Справджуються рiвностi

\infty \sum 
i=r0+1

\bigm| \bigm| \Delta P
i

\bigm| \bigm| = 1, (11)

\bigm| \bigm| \Delta P
p1...pn

\bigm| \bigm| = \infty \sum 
i=rn+1

\bigm| \bigm| \Delta P
p1...pni

\bigm| \bigm| , (12)

де r0 = \varphi 0 i rn = \varphi n(p1, . . . , pn) для кожного n \in \BbbN .
Наслiдок 8 (основне метричне спiввiдношення). Для всiх i \geq rn + 1\bigm| \bigm| \bigm| \Delta P

p1...pni

\bigm| \bigm| \bigm| \bigm| \bigm| \Delta P
p1...pn

\bigm| \bigm| =
rn

(i - 1)i
,

де rn = \varphi n(p1, . . . , pn) для кожного n \in \BbbN .
Теорема 2. Нехай x = \Delta P

p1...pn... i x
\prime = \Delta P

p\prime 1...p
\prime 
n...

, а k \in \BbbN таке, що pi = p\prime i при всiх i < k

i pk \not = p\prime k. Тодi, для того щоб x > x\prime , необхiдно й достатньо, щоб pk < p\prime k.
Доведення. Достатнiсть. Нехай k \in \BbbN таке, що pi = p\prime i при всiх i < k i pk < p\prime k.
При k = 1 маємо

x = \Delta P
p1p2... > \mathrm{i}\mathrm{n}\mathrm{f} \Delta P

p1 =
r0
p1

, x\prime = \Delta P
p\prime 1p

\prime 
2...

\leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
p\prime 1

=
r0

p\prime 1  - 1
.

Звiдси одержуємо
x >

r0
p1

\geq r0
p\prime 1  - 1

\geq x\prime .

Якщо k \geq 2, то згiдно з рiвностями (6), (7) отримуємо

x = \Delta P
p1...pk - 1pk...

> \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pk - 1pk

= \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pk - 1

+
r0r1 . . . rk - 1

(p1  - 1)p1 . . . (pk - 1  - 1)pk - 1pk
,

x\prime = \Delta P
p1...pk - 1p

\prime 
k...

\leq \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
p1...pk - 1p

\prime 
k

= \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pk - 1

+
r0r1 . . . rk - 1

(p1  - 1)p1 . . . (pk - 1  - 1)pk - 1

\bigl( 
p\prime k  - 1

\bigr) .
Оскiльки pi = p\prime i при всiх i < k, то значення r1, . . . , rk - 1 для чисел x i x\prime однаковi.
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Звiдси маємо, що

x > \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pk - 1

+
r0r1 . . . rk - 1

(p1  - 1)p1 . . . (pk - 1  - 1)pk - 1pk

\geq \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
p1...pk - 1

+
r0r1 . . . rk - 1

(p1  - 1)p1 . . . (pk - 1  - 1)pk - 1

\bigl( 
p\prime k  - 1

\bigr) \geq x\prime .

Достатнiсть доведено.
Необхiднiсть. Нехай x > x\prime , тобто \Delta P

p1...pk - 1pk...
> \Delta P

p1...pk - 1p
\prime 
k...

. Припустимо, що при
цьому pk > p\prime k. Але згiдно з доведеним вище (достатнiсть) слiдує, що x < x\prime . Одержали
суперечнiсть, а тому припущення хибне. Отже, з нерiвностi x > x\prime слiдує, що pk < p\prime k.

4. Рiзницева форма \bfitP -зображення (\bfitP -зображення).
Означення 4. Рiзницевим поданням рядуПеррона будемо називати запис ряду (2) у виглядi

\infty \sum 
n=0

r0r1 . . . rn
(r0 + g1  - 1)(r0 + g1) . . . (rn - 1 + gn  - 1)(rn - 1 + gn)(rn + gn+1)

, (13)

де gn = pn  - rn - 1 i gn \geq 1 для всiх n \in \BbbN .
Рiзницева форма запису (13) ряду Перрона (2) є лише перепозначенням його еле-

ментiв. Проте вона має одну важливу перевагу. У формi запису (2) на цифри pn на-
кладено умови, що залежать вiд числа rn - 1. Натомiсть у рiзницевiй формi запису (13)
жодних умов на цифри gn не накладають i вони можуть бути довiльними натуральними
числами.

Нехай P —послiдовнiсть функцiй (\varphi n)
\infty 
n=0. Розглянемо функцiї \varphi n такi, що \varphi 0 = \varphi 0 =

\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t} i
\varphi n(g1, . . . , gn) = \varphi n(p1, . . . , pn),

де r0 = \varphi 0, pn = rn - 1 + gn, rn = \varphi n(p1, . . . , pn) для кожного n \in \BbbN . Послiдовнiсть функцiй
(\varphi n)

\infty 
n=0 позначимо як P .

Означення 5. Нехай число x \in (0; 1] є сумою ряду (13), причому r0 = \varphi 0 i rn =
\varphi n(g1, . . . , gn) для кожного n \in \BbbN . Тодi розклад числа x у ряд (13) будемо називати його
P -поданням, а скорочений запис \Delta P

g1g2...gn... ряду (13) будемо називати P -зображенням числа
x. Число gi називатимемо i-ю цифрою P -зображення числа x.

Зауваження 3. Якщо послiдовнiсть P функцiй \varphi n породжена послiдовнiстю P функ-
цiй \varphi n, то P -зображення \Delta P

g1g2...gn... i P -зображення \Delta P
p1p2...pn... числа x є перекодуваннями

один одного, що пов’язанi формулами pn = rn - 1 + gn для кожного n \in \BbbN , де r0 = \varphi 0 = \varphi 0

i rn = \varphi n(g1, . . . , gn) = \varphi n(p1, . . . , pn).

Означення цилiндра для P -зображення аналогiчне до означення цилiндра P -зобра-
ження. Всi властивостi P -зображення та цилiндрiв аналогiчнi до вiдповiдних властивостей
P -зображення, а всi рiвностi лише змiнюють свою форму запису завдяки пiдстановцi pn =
rn - 1 + gn.

Наслiдок 9. Нехай x = \Delta P
g1...gn... i x

\prime = \Delta P
g\prime 1...g

\prime 
n...

, а k \in \BbbN таке, що gi = g\prime i при всiх i < k

i gk \not = g\prime k. Тодi, для того щоб x > x\prime , необхiдно й достатньо, щоб gk < g\prime k.

Твердження випливає безпосередньо з теореми 2.
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5. Проєктор мiж \bfitP -зображеннями.
Означення 6. Нехай P 1 i P 2 — двi рiзнi послiдовностi функцiй \varphi 

(1)
n i \varphi (2)

n вiдповiдно,
x = \Delta P 1

g1g2...gn... \in (0; 1]. Функцiю f = f
\bigl[ 
P 1;P 2

\bigr] 
: (0; 1] \rightarrow (0; 1] таку, що

f(x) = f
\Bigl( 
\Delta P 1

g1g2...gn...

\Bigr) 
= \Delta P 2

g1g2...gn...,

називатимемо проєктором з P 1 -зображення у P 2 -зображення.
Лема 6. Для довiльних послiдовностей функцiй P 1 i P 2 проєктор f

\bigl[ 
P 1;P 2

\bigr] 
є зростаю-

чою на (0; 1] функцiєю.
Доведення. Нехай x1 = \Delta P 1

g1g2...gn..., x2 = \Delta P 1

g\prime 1g
\prime 
2...g

\prime 
n...

, x1 > x2 i k \in \BbbN таке, що gi = g\prime i
при всiх i < k i gk \not = g\prime k. Тодi згiдно з наслiдком 9 gk < g\prime k. Але завдяки цьому ж наслiдку

f(x1) = \Delta P 2
g1g2...gn... > \Delta P 2

g\prime 1g
\prime 
2...g

\prime 
n...

= f(x2).

Отже, проєктор f
\bigl[ 
P 1;P 2

\bigr] 
є зростаючою на (0; 1] функцiєю.

Лема 7. Для довiльних послiдовностей функцiй P 1 i P 2 : \mathrm{l}\mathrm{i}\mathrm{m}x\rightarrow 0+ f(x) = 0.

Доведення. Нехай (xn)
\infty 
n=1 — деяка довiльна послiдовнiсть така, що xn = \Delta P 1

g
(n)
1 ...g

(n)
k ...

i \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty xn = 0. Оскiльки

xn = \Delta P 1

g
(n)
1 ...g

(n)
k ...

> \mathrm{i}\mathrm{n}\mathrm{f} \Delta P 1

g
(n)
1

=
r0

r0 + g
(n)
1

> 0,

то \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty 
r0

r0+g
(n)
1

= 0, а тому \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty g
(n)
1 = \infty .

Нехай послiдовнiсть (yn)
\infty 
n=1 така, що yn = f(xn). Тодi

0 < yn = \Delta P 2

g
(n)
1 ...g

(n)
k ...

< \mathrm{s}\mathrm{u}\mathrm{p}\Delta P 2

g
(n)
1

=
r0

r0 + g
(n)
1  - 1

\rightarrow 0.

Отже, \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty yn = 0, а отже, \mathrm{l}\mathrm{i}\mathrm{m}x\rightarrow 0+ f(x) = 0.
Теорема 3. Для довiльних послiдовностей функцiй P 1 i P 2 проєктор f

\bigl[ 
P 1;P 2

\bigr] 
є непе-

рервною функцiєю на всiй областi визначення.
Доведення. Зрозумiло, що проєктор f є монотонним сюр’єктивним вiдображенням

промiжку (0; 1] на себе. Вiдомо, що монотонна функцiя може мати розриви тiльки першого
роду.Проте наявнiсть такого розриву у проєктора f суперечить його сюр’єктивностi. Звiдси
слiдує, що проєктор f є неперервною на (0; 1] функцiєю.

6. Умови сингулярностi проєктора.
Лема 8. Для довiльних послiдовностей функцiй P 1 i P 2 проєктор f

\bigl[ 
P 1;P 2

\bigr] 
має скiн-

ченну похiдну майже скрiзь на (0; 1) (у розумiннi мiри Лебега).
Доведення. Покладемо f(0) = 0. Тодi з урахуванням лем 6, 7 i теореми 3 довизначена у

такий спосiб функцiя буде зростаючою та неперервною на вiдрiзку [0; 1]. Тому ця функцiя,
а отже, й проєктор f, матимуть скiнченну похiдну майже скрiзь всерединi вiдрiзка [0; 1].

Означення 7. Цилiндричною P -похiдною \frakC P f(x0) деякої функцiї f уточцi x0 = \Delta P
g1...gn...

називається границя

\frakC P f(x0) = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

f
\Bigl( 
\mathrm{s}\mathrm{u}\mathrm{p}\Delta P

g1...gn

\Bigr) 
 - f

\Bigl( 
\mathrm{i}\mathrm{n}\mathrm{f} \Delta P

g1...gn

\Bigr) 
\bigm| \bigm| \bigm| \Delta P

g1...gn

\bigm| \bigm| \bigm| .
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Лема 9. Якщо деяка функцiя f у точцi x0 \in (0; 1) має класичну похiдну f \prime (x0), то у
точцi x0 iснує цилiндрична P -похiдна \frakC P f(x0), причому f \prime (x0) = \frakC P f(x0).

Доведення. Не складно показати, що коли у точцi x0 iснує класична похiдна функцiї
f, тобто iснує границя \mathrm{l}\mathrm{i}\mathrm{m}x\rightarrow x0

f(x0) - f(x)

x0  - x
, тодi iснують також одностороннi похiднi у

точцi x0 i границя \mathrm{l}\mathrm{i}\mathrm{m}x\prime >x0>x\prime \prime 

x\prime  - x\prime \prime \rightarrow 0

f(x\prime ) - f(x\prime \prime )

x\prime  - x\prime \prime 
, причому всi вони рiвнi класичнiй похiднiй

функцiї f у точцi x0.
Нехай x = \Delta P

g1...gn... \in (0; 1). Згiдно з лемою 4

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\Bigl( 
\mathrm{s}\mathrm{u}\mathrm{p}\Delta P

g1...gn  - \mathrm{i}\mathrm{n}\mathrm{f} \Delta P
g1...gn

\Bigr) 
= 0.

Тодi якщо x0 є кiнцем цилiндра, то \frakC P f(x0) є односторонньою похiдною. Якщо ж x0 не

є кiнцем жодного з цилiндрiв, то \frakC P f(x0) є границею типу \mathrm{l}\mathrm{i}\mathrm{m}x\prime >x0>x\prime \prime 

x\prime  - x\prime \prime \rightarrow 0

f(x\prime ) - f(x\prime \prime )

x\prime  - x\prime \prime 
при

x\prime = \mathrm{s}\mathrm{u}\mathrm{p}\Delta P
g1g2...gn i x\prime \prime = \mathrm{i}\mathrm{n}\mathrm{f} \Delta P

g1g2...gn .

Отже, якщо функцiя f диференцiйовна у точцi x0, то у точцi x0 iснує цилiндрична
P -похiдна \frakC P f(x0), причому f \prime (x0) = \frakC P f(x0).

Лема 10. Цилiндрична P 1 -похiдна \frakC P 1
f(x) проєктора f уточцi x = \Delta P 1

g1...gn... має вигляд

\frakC P 1
f(x) =

\infty \prod 
k=1

r
(2)
k - 1

\Bigl( 
r
(1)
k - 1 + gk  - 1

\Bigr) \Bigl( 
r
(1)
k - 1 + gk

\Bigr) 
r
(1)
k - 1

\Bigl( 
r
(2)
k - 1 + gk  - 1

\Bigr) \Bigl( 
r
(2)
k - 1 + gk

\Bigr) , (14)

де r
(1)
0 = \varphi 

(1)
0 , r

(2)
0 = \varphi 

(2)
0 , r

(1)
k = \varphi 

(1)
k (g1, . . . , gk) i r

(2)
k = \varphi 

(2)
k (g1, . . . , gk).

Доведення. Нехай f
\Bigl( 
\Delta P 1

g1...gn

\Bigr) 
— образ цилiндра \Delta P 1

g1...gn . Зрозумiло, що тодi

f
\Bigl( 
\Delta P 1

g1...gn

\Bigr) 
= \Delta P 2

g1...gn .

Оскiльки проєктор є неперервною функцiєю, то

f
\Bigl( 
\mathrm{s}\mathrm{u}\mathrm{p}\Delta P 1

g1...gn

\Bigr) 
= \mathrm{s}\mathrm{u}\mathrm{p} f

\Bigl( 
\Delta P 1

g1...gn

\Bigr) 
= \mathrm{s}\mathrm{u}\mathrm{p}\Delta P 2

g1...gn ,

f
\Bigl( 
\mathrm{i}\mathrm{n}\mathrm{f} \Delta P 1

g1...gn

\Bigr) 
= \mathrm{i}\mathrm{n}\mathrm{f} f

\Bigl( 
\Delta P 1

g1...gn

\Bigr) 
= \mathrm{i}\mathrm{n}\mathrm{f} \Delta P 2

g1...gn .

А тому

\frakC P 1
f(x) = \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

\mathrm{s}\mathrm{u}\mathrm{p}\Delta P 2
g1...gn  - \mathrm{i}\mathrm{n}\mathrm{f} \Delta P 2

g1...gn\bigm| \bigm| \bigm| \Delta P 1
g1...gn

\bigm| \bigm| \bigm| = \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

\bigm| \bigm| \bigm| \Delta P 2
g1...gn

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \Delta P 1
g1...gn

\bigm| \bigm| \bigm| 
= \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

r
(2)
0 . . . r

(2)
n - 1

\Bigl( 
r
(1)
0 + g1  - 1

\Bigr) \Bigl( 
r
(1)
0 + g1

\Bigr) 
. . .

\Bigl( 
r
(1)
n - 1 + gn  - 1

\Bigr) \Bigl( 
r
(1)
n - 1 + gn

\Bigr) 
\Bigl( 
r
(2)
0 + g1  - 1

\Bigr) \Bigl( 
r
(2)
0 + g1

\Bigr) 
. . .

\Bigl( 
r
(2)
n - 1 + gn  - 1

\Bigr) \Bigl( 
r
(2)
n - 1 + gn

\Bigr) 
r
(1)
0 . . . r

(1)
n - 1
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= \mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

n\prod 
k=1

r
(2)
k - 1

\Bigl( 
r
(1)
k - 1 + gk  - 1

\Bigr) \Bigl( 
r
(1)
k - 1 + gk

\Bigr) 
r
(1)
k - 1

\Bigl( 
r
(2)
k - 1 + gk  - 1

\Bigr) \Bigl( 
r
(2)
k - 1 + gk

\Bigr) 

=
\infty \prod 
k=1

r
(2)
k - 1

\Bigl( 
r
(1)
k - 1 + gk  - 1

\Bigr) \Bigl( 
r
(1)
k - 1 + gk

\Bigr) 
r
(1)
k - 1

\Bigl( 
r
(2)
k - 1 + gk  - 1

\Bigr) \Bigl( 
r
(2)
k - 1 + gk

\Bigr) .
Наслiдок 10. Якщо проєктор f

\bigl[ 
P 1;P 2

\bigr] 
має у точцi x0 = \Delta P 1

g1...gn... \in (0; 1) класичну
похiдну f \prime (x0), то або f \prime (x0) = 0, або

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

r
(2)
k - 1

\Bigl( 
r
(1)
k - 1 + gk  - 1

\Bigr) \Bigl( 
r
(1)
k - 1 + gk

\Bigr) 
r
(1)
k - 1

\Bigl( 
r
(2)
k - 1 + gk  - 1

\Bigr) \Bigl( 
r
(2)
k - 1 + gk

\Bigr) = 1. (15)

Доведення. Нехай проєктор f
\bigl[ 
P 1;P 2

\bigr] 
має у точцi x0 класичну похiдну f \prime (x0). Тодi

f \prime (x0) = \frakC P 1
f(x0).

Припустимо, що f \prime (x0) \not = 0. Тодi \frakC P 1
f(x0) > 0, оскiльки проєктор f

\bigl[ 
P 1;P 2

\bigr] 
зростає на

(0; 1]. Отже, нескiнченний добуток (14) є збiжним, необхiдною умовою чого є виконання
рiвностi (15).

Теорема 4 (достатнi умови сингулярностi проєктора f
\bigl[ 
P 1;P 2

\bigr] 
). Нехай для послiдовно-

стей функцiй P 1 i P 2 iснує n0 \in \BbbN таке, що \varphi 
(1)
i \equiv a = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t} i \varphi (2)

i \equiv b = \mathrm{c}\mathrm{o}\mathrm{n}\mathrm{s}\mathrm{t} для всiх
i \geq n0, a \not = b. Тодi проєктор f

\bigl[ 
P 1;P 2

\bigr] 
є сингулярною функцiєю, тобто має похiдну, рiвну

нулю, майже скрiзь (у розумiннi мiри Лебега).
Доведення. Нехай проєктор f

\bigl[ 
P 1;P 2

\bigr] 
має у точцi x0 = \Delta P 1

g1...gn... класичну похiдну
f \prime (x0). Покажемо, що за вказаних у теоремi умов рiвнiсть (15) виконується для не бiльш
нiж злiченної множини точок.

Припустимо, що для деякої точки x0 = \Delta P 1
g1...gn... виконується рiвнiсть (15). Позначимо

r
(2)
k - 1

\Bigl( 
r
(1)
k - 1 + gk  - 1

\Bigr) \Bigl( 
r
(1)
k - 1 + gk

\Bigr) 
r
(1)
k - 1

\Bigl( 
r
(2)
k - 1 + gk  - 1

\Bigr) \Bigl( 
r
(2)
k - 1 + gk

\Bigr) = sk.

Тодi \mathrm{l}\mathrm{i}\mathrm{m}k\rightarrow \infty sk = 1. Нехай k \geq n0 + 1. Тому, враховуючи припущення у твердженнi
теореми, отримуємо

b(a+ gk  - 1)(a+ gk)

a(b+ gk  - 1)(b+ gk)
= sk.

Виразимо gk через a, b i sk :

b(a+ gk  - 1)(a+ gk) = ska(b+ gk  - 1)(b+ gk),

g2kb+ gk(2ab - b) + a2b - ab = g2kask + gk(2ab - a)sk + b2ask  - absk,

g2k(b - ask) + gk(2ab(1 - sk) - b+ ask) + ab(a - bsk  - 1 + sk) = 0.

Отримали квадратне рiвняння стосовно gk. Позначимо через Dk його дискримiнант. Тодi

Dk = (2ab(1 - sk) - b+ ask)
2  - 4(b - ask)ab(a - bsk  - 1 + sk),
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\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

Dk = (b - a)2 + 4(b - a)2ab = (b - a)2(1 + 4ab) > 0,

gk =
 - (2ab(1 - sk) - b+ ask)\pm 

\surd 
Dk

2(b - ask)
,

\mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

gk =
b - a\pm 

\sqrt{} 
(b - a)2(1 + 4ab)

2(b - a)
=

1

2
\pm 1

2

\surd 
1 + 4ab.

Зрозумiло, що можливим є лише варiант \mathrm{l}\mathrm{i}\mathrm{m}k\rightarrow \infty gk =
1

2
+

1

2

\surd 
1 + 4ab.

Випадок 1: Число 1+4ab не є квадратом цiлого числа. Тодi \mathrm{l}\mathrm{i}\mathrm{m}k\rightarrow \infty gk є iррацiональним
числом, що суперечить тому, що числа gk є натуральними. Отже, припущення хибне i в
цьому випадку рiвнiсть (15) не виконується. А тому згiдно з наслiдком 10 усюди, де iснує
класична похiдна f \prime проєктора f

\bigl[ 
P 1;P 2

\bigr] 
, ця похiдна дорiвнює нулю. Оскiльки похiдна

проєктора f
\bigl[ 
P 1;P 2

\bigr] 
iснує майже скрiзь (у розумiннi мiри Лебега), то вона майже скрiзь

рiвна нулю. Отже, у цьому випадку проєктор f
\bigl[ 
P 1;P 2

\bigr] 
є сингулярною функцiєю.

Випадок 2: Число 1 + 4ab є квадратом цiлого числа. Зрозумiло, що тодi 1 + 4ab є
квадратом непарного числа, а тому \mathrm{l}\mathrm{i}\mathrm{m}k\rightarrow \infty gk є натуральним числом. Позначимо його
через g\ast . Оскiльки послiдовнiсть (gk)

\infty 
k=1 складається з натуральних чисел, то рiвнiсть

\mathrm{l}\mathrm{i}\mathrm{m}k\rightarrow \infty gk = g\ast рiвносильна тому, що iснує число k0 таке, що gk = g\ast для всiх k \geq k0.

Проте таких чисел x = \Delta P 1
g1g2...gn... — злiченна кiлькiсть. А тому майже скрiзь класична

похiдна проєктора f
\bigl[ 
P 1;P 2

\bigr] 
буде рiвною нулю.

Отже, у цьому випадку проєктор f
\bigl[ 
P 1;P 2

\bigr] 
також є сингулярною функцiєю.
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