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We consider a Dirichlet initial boundary-value problem for a pseudoparabolic integro-differential equation
with Volterra-type integral terms. By using a priory inequalities method, we state results of the well-
posedness of the boundary-value problem. Moreover, we establish the existence of an optimal control
of the corresponding systems for control operators operating in spaces of generalized functions. Unlike
similar works, we do not use nonnegativity conditions for some terms with a lower order of the derivative.

Розглянуто початково-крайову задачу Дiрiхле для псевдопараболiчного iнтегро-диференцiального
рiвняння з iнтегральними складовими типу Вольтерри. З використанням методу апрiорних нерiв-
ностей сформульовано результати щодо коректностi постановки початково-крайової задачi. Крiм
того, встановлено iснування оптимального керування вiдповiдними системами для операторiв ке-
рування, що дiють у просторах узагальнених функцiй. На вiдмiну вiд подiбних робiт не використано
умов невiд’ємностi для деяких членiв iз нижчим порядком похiдної.

1. Вступ. Диференцiальнi та iнтегро-диференцiальнi моделi псевдопараболiчного типу дав-
но стали стандартним об’єктом вивчення прикладної математики. Це зумовлено широким
класом фiзичних процесiв, якi описують вiдповiднi рiвняння. Це, зокрема, випромiню-
вання iз затримкою у часi, двофазнi моделi потоку пористого середовища з динамiчною
капiлярнiстю або гiстерезисом, фазова модель поля для потокiв ненасиченого пористого
середовища, модель теплопровiдностi, моделi для опису свiтла, фiльтрацiї рiдини та газу
в пористих середовищах i середовищах “з трiщинами”, теплопровiдностi у неоднорiдних
середовищах, мiграцiї iонiв у ґрунтi, розповсюдження хвиль у дисперсному середовищi та
в тонкому еластичному склi тощо. Бiльш детальну iнформацiю про застосування таких
моделей можна знайти в [1 – 3] та в наведенiй там бiблiографiї.

Написано багато робiт, де розглянуто рiзноманiтнi питання коректностi постановок,
оптимiзацiї, чисельних методiв для лiнiйних або нелiнiйних диференцiальних та iнтегро-
диференцiальних моделей псевдопараболiчного типу. Це, зокрема, [3 – 14]. Бiльш деталь-
ний огляд цитованих результатiв наведено в [2].

Iнтегро-диференцiальнi рiвняння суттєво вивчено й у роботах українських математикiв.
Так, iдеї та методи теорiї псевдообернених матриць i операторiв, розробленої А. А. Бой-
чуком та А. М. Самойленком у [15], використано в роботах [16 – 18] для дослiдження
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систем iнтегро-диференцiальних рiвнянь iз виродженими ядрами. А розроблену в [15]
технiку та поняття сильного узагальненого розв’язку операторного рiвняння з [19] також
застосовують автори у роботi [20] для дослiдження абстрактного рiвняння Шредiнгера у
гiльбертовому просторi.

У роботах [21 – 23] С. I. Ляшко отримав результати щодо рiзних питань оптимiзацiї,
для моделей псевдопараболiчного типу за допомогою методики апрiорних нерiвностей у
негативних нормах. Оцiнки такого типу вперше отримано в 1950-х роках Ю. М. Березан-
ським при дослiдженнi елiптичних крайових задач [24], а пiзнiше використано в роботах
В. П. Дiденка [25], де встановлено подiбнi нерiвностi для широкого класу диференцiаль-
них операторiв 2-го порядку та методику їх побудови. Основнi положення цього пiдходу та
деякi його застосування описано в монографiї [1] i роботах [19, 26]. Методика, розробле-
на С. I. Ляшком та його учнями, виявилась ефективною для дослiдження рiзноманiтних
питань коректностi постановок, оптимального керування, керованостi систем iз розподi-
леними параметрами. Результатом цих дослiджень стали, зокрема, роботи [23, 27 – 36].

Надалi виявилося, що такий пiдхiд можна успiшно застосовувати до задач Дiрiхле для
iнтегро-диференцiальних рiвнянь iз iнтегральними складовими типу Вольтерри. Основнi
результати для рiзних типiв рiвнянь отримано у роботах [2, 13, 37 – 42].

У цiй статтi розглянемо початково-крайову задачу для лiнiйного псевдопараболiчного
iнтегро-диференцiального рiвняння з iнтегральним оператором типу Вольтерри

a(x)ut  - 
n\sum 

i,j=1

(aij(x)utxj )xi + b(x)u

 - 
n\sum 

i,j=1

(bij(x)uxj )xi +

t\int 
0

n\sum 
i=1

(Ki(x, t, \tau )uxi)xi
d\tau = f(x, t)

з умовами типу Дiрiхле
u| x\in \partial \Omega = 0, u| t=0 = 0.

У роботi [2] для вказаної задачi отримано апрiорнi нерiвностi з негативними нормами,
теореми про коректнiсть постановки та iснування оптимального керування. При цьому на
коефiцiєнти рiвняння накладали певнi обмеження: самоспряженiсть диференцiальної ча-
стини оператора задачi, невiд’ємна визначенiсть матриць коефiцiєнтiв \{ aij\} ni,j=1, \{ bij\} ni,j=1

i невiд’ємнiсть функцiй a, b.

У цiй роботi ми доводимо аналогiчнi до [2] апрiорнi нерiвностi, не використовуючи
при цьому умов невiд’ємної визначеностi матрицi коефiцiєнтiв \{ bij\} ni,j=1 i невiд’ємностi
функцiї b. Умови на \{ aij\} ni,j=1 та a залишаються без змiн. Таким чином, результати щодо
коректностi постановки задачi та iснування оптимального керування, якi наведено у [2],
будуть обґрунтованi за бiльш слабких вимог для коефiцiєнтiв рiвняння. Цi твердження
сформульовано у виглядi теорем 1 i 3.

2.Основнi позначення. Аналогiчно з [2] розглянемоцилiндричну область Q = \Omega \times (0, T ),
де \Omega — обмежена область у \BbbR n iз гладкою межею \partial \Omega , та лiнiйне iнтегро-диференцiальне
рiвняння з iнтегральним оператором типу Вольтерри

\scrL u \equiv LDu+ LIu = f(x, t); (1)
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тут u(x, t) — шукана функцiя, що описує стан системи в областi Q, а оператори LD i LI

задано виразами

LDu \equiv (\scrA u)t + \scrB u, LIu \equiv 
t\int 

0

n\sum 
i=1

(Ki(x, t, \tau )uxi(x, \tau ))xi
d\tau , (2)

де

\scrA u \equiv  - 
n\sum 

i,j=1

\bigl( 
aij(x)uxj

\bigr) 
xi
+ a(x)u, \scrB u \equiv  - 

n\sum 
i,j=1

\bigl( 
bij(x)uxj

\bigr) 
xi
+ b(x)u. (3)

Вважаємо, що для коефiцiєнтiв \{ aij\} ni,j=1, \{ bij\} ni,j=1 \subset C1(\Omega ), a, b \in C(\Omega ), для всiх x \in \Omega 
виконуються спiввiдношення

aij(x) = aji(x), bij(x) = bji(x), a(x) \geq 0 (4)

i для деякої сталої \alpha > 0 коефiцiєнти aij(x) при довiльних x \in \Omega i \xi i \in \BbbR , i = 1, n,
задовольняють умову

n\sum 
i,j=1

aij(x)\xi i\xi j \geq \alpha 
n\sum 

i=1

\xi 2i . (5)

Зазначимо, що на вiдмiну вiд [2] ми не вимагаємо iнших умов для коефiцiєнтiв bij , b.
Також вважаємо, що ядра Ki(x, t, \tau ) є неперервно диференцiйовними. Зокрема, для

деякої сталої M справджується нерiвнiсть | Ki(x, t, \tau )| < M для всiх x \in \Omega i t, \tau \in [0, T ].
Для простоти викладу також вважаємо, що всi коефiцiєнти | aij | , | bij | , a, b в областi \Omega 
мажоруються тiєю ж сталою M.

Областю визначення оператора \scrL вважатимемо простiр, що складається з множини
нескiнченну кiлькiсть разiв диференцiйовних у областi Q функцiй, якi задовольняють
однорiднi початковi й граничнi умови типу Дiрiхле

u| t=0 = 0, (6)

u| x\in \partial \Omega = 0. (7)

Таку множину функцiй позначимо через C\infty 
BR.

Будемо розглядати простiр WBR, що є поповненням C\infty 
BR за нормою

\| u\| W =

\left(   \int 
Q

u2t +
n\sum 

i=1

u2xit dQ

\right)   
1/2

. (8)

Розглянемо також спряжений оператор, що має вигляд \scrL \ast v \equiv L\ast 
Dv + L\ast 

Iv, де

L\ast 
Dv \equiv  - (\scrA v)t + \scrB v, L\ast 

Iv \equiv 
T\int 
t

n\sum 
i=1

(Ki(x, \tau , t) vxi(x, \tau ))xi
d\tau .
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Областю визначення оператора \scrL \ast вважатимемо простiр, який складається з множи-
ни нескiнченно диференцiйовних функцiй в областi Q, якi задовольняють початковi й
граничнi умови

v| t=T = 0, (9)

v| x\in \partial \Omega = 0. (10)

Множину такихфункцiй позначатимемо через C\infty 
BR+ , а черезWBR+ позначимопоповнення

множини C\infty 
BR+ за нормою (8).

Через HBR, HBR+ позначимо поповнення просторiв C\infty 
BR, C

\infty 
BR+ вiдповiдно за нормою

\| u\| H =

\left(   \int 
Q

u2 +
n\sum 

i=1

u2xi
dQ

\right)   
1/2

, (11)

а через W - 
BR, W - 

BR+ , H - 
BR, H - 

BR+ — негативнi простори, побудованi за вiдповiдними
позитивним просторами щодо L2(Q).

3. Задача оптимального керування. Коротко нагадаємо постановку задачi оптимального
керування, яку вивчали в [2]. Розглянемо систему, еволюцiю якої описує лiнiйне iнтегро-
диференцiальне рiвняння

\scrL u = F = f + \scrC h, f \in W - 
BR+ , (12)

де оператор \scrL визначено згiдно з (1) – (3). Тут u(x, t) — функцiя стану, що задовольняє
початково-крайовi умови (6), (7) i залежить вiд керування h, визначеного на допусти-
мiй множинi \scrU простору керувань \scrH , а \scrC — деякий оператор керування. На розв’язках
рiвняння (12) задано деякий функцiонал J(h) = \Phi (u(h)), який необхiдно мiнiмiзувати за
умови h \in \scrU .

Як оператор \scrC можна, наприклад, розглянути

\scrC h =

d\sum 
k=1

\delta (t - tk)\otimes \varphi k(x), t, tk \in [0, T ], \varphi k(x) \in L2(\Omega ), (13)

де
h = \{ (tk, \varphi k(x))\} dk=1, \scrH = ([0, T ]\times L2(\Omega ))

d.

Пiд \scrC h розумiємо функцiонал, що дiє на гладких у Q функцiях у такий спосiб:

(\scrC h)(v) =
d\sum 

k=1

\int 
\Omega 

v(x, tk)\varphi k(x) d\Omega .

Оскiльки норма \| \cdot \| WBR+ мажорує норму \| v\| =

\biggl( \int 
Q
v2 + v2t dQ

\biggr) 1
2

на множинi C\infty 
BR,

то справджуються всi мiркування стосовно оператора \scrC з [1, с. 17 – 20]. Це означає, що
лiнiйний обмежений функцiонал (\scrC h)(\cdot ) можна продовжити на простiр WBR+ , а тому
вказаний оператор \scrC можна розглядати як вiдображення, що дiє з простору керування \scrH у
W - 

BR+ . Таким чином, права частина F = f + \scrC h рiвняння (12) належить простору W - 
BR+ .

Аналогiчно до [2] розв’язок задачi (12) будемо розумiти у сенсi такого означення.

ISSN 1562-3076. Нелiнiйнi коливання, 2024, т. 27, № 4



458 АНДРIЙ АНIКУШИН, ВIКТОРIЯ НАЗАРЧУК

Означення 1. Розв’язком задачi (12) iз правою частиною F = f + \scrC h \in W - 
BR+ назива-

ється функцiя u \in HBR, для якої iснує послiдовнiсть функцiй ui \in C\infty 
BR, i = 1, 2, . . . , таких,

що
\| u - ui\| HBR

 - \rightarrow 
i\rightarrow \infty 

0, \| \scrL ui  - F\| W - 
BR+

 - \rightarrow 
i\rightarrow \infty 

0.

У наступному пунктi ми доведемо апрiорнi нерiвностi

C1\| u\| HBR
\leq \| \scrL u\| W - 

BR+
\leq C2\| u\| WBR

, (14)

C1\| v\| HBR+ \leq \| \scrL \ast v\| W - 
BR

\leq C2\| v\| WBR+ , (15)

якi вiдiграють важливу роль при обґрунтуваннi сформульованих далi результатiв щодо
коректностi постановки початково-крайової задачi та iснування оптимального керування.
Зокрема, використовуючи теорему 3 та лему 3 з [1, с. 8,10], а також враховуючи нерiвно-
стi (14), (15), можемо стверджувати, що справедливе таке твердження.

Теорема 1. Для будь-якої функцiї F \in W - 
BR+ iснує єдиний розв’язок u \in HBR задачi (12) у

сенсi означення 1. Причому для деякої сталої C, що не залежить вiд F, виконується нерiвнiсть

\| u\| HBR
\leq C\| F\| W - 

BR+
.

Для доведення iснування оптимального керування використаємо загальну теорему, до-
ведену в [1, с. 14]. У випадку введених нами просторiв вона буде мати такий вигляд.

Теорема 2. Нехай стан системи визначає розв’язок задачi (12) i виконано такi припу-
щення:

1. Критерiй якостi \Phi (\cdot ) : HBR \rightarrow \BbbR є слабконапiвнеперервним знизу за станом системи
u(x, t, h) та обмеженим знизу.

2. Множина допустимих керувань \scrU \subset \scrH є замкненою, обмеженою та опуклою в \scrH .

3. \scrH — рефлексивний банахiв простiр.
4. \scrC (\cdot ) — слабконеперервний оператор, що дiє з простору керувань \scrH у простiр W - 

BR+ .

5. Для операторiв \scrL , \scrL \ast виконуються нерiвностi (14), (15).
Тодi iснує оптимальне керування системою (12), тобто таке керування h\ast \in \scrU , що

J(h\ast ) = infh\in \scrU J(h).

Зазначимо, що введений вище простiр керувань \scrH є гiльбертовим, що гарантує вико-
нання умови 3. Також, повторюючи мiркування з [1, с. 20 – 23], доводимо, що вказаний у
(13) оператор керування \scrC є слабконеперервним вiдображенням iз \scrH у W - 

BR+ .

Таким чином, враховуючи апрiорнi нерiвностi (14), (15), можемо стверджувати, що
справджується така теорема.

Теорема 3. Нехай стан системи описує розв’язок задачi (12) iз наведеним оператором \scrC 
та вказаним простором керувань \scrH . Припустимо, що множина допустимих керувань \scrU є
замкненою, опуклою та обмеженою в \scrH , а критерiй якостi \Phi (\cdot ) : HBR \rightarrow \BbbR є слабконапiв-
неперервним знизу за станом системи u(x, t, h) та обмеженим знизу. Тодi iснує оптимальне
керування системою (12).

Зауваження 1. Зазначимо, що в роботi [2] сформульовано альтернативнi означення
узагальнених розв’язкiв, теорему про їхню еквiвалентнiсть та iншi приклади операторiв \scrC 
для вказаної задачi оптимального керування, для яких також справджується теорема 3.
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4. Допомiжнi твердження та апрiорнi оцiнки. У цьому пунктi покажемо виконання
нерiвностей (14), (15).

Доведення двох наступних лем не використовує умов невiд’ємностi b або невiд’ємної
визначеностi \{ bij\} ni,j=1 та повнiстю повторює доведення лем 3 i 4 з роботи [2].

Лема 1. Iснує така стала C > 0, що для довiльної функцiї u \in C\infty 
BR виконується нерiв-

нiсть
C\| u\| WBR

\geq \| \scrL u\| W - 
BR+

.

Лема 2. Iснує така стала C > 0, що для довiльної функцiї v \in C\infty 
BR+ виконується

нерiвнiсть
C\| v\| WBR+ \geq \| \scrL \ast v\| W - 

BR
.

Нерiвностi, наведенi у лемах 1 i 2, дозволяють розширити за неперервнiстю оператори
\scrL , \scrL \ast з їхнiх областей визначення на простори WBR, WBR+ . Зберiгаючи за розширеними
операторами їхнi попереднi позначення, зауважимо, що нерiвностi, згаданi в лемах 1 i 2,
будуть виконуватися також для всiх u \in WBR, v \in WBR+ .

Перейдемо до розгляду основного твердження роботи. Для доведення будемо викори-
стовувати допомiжнi нерiвностi, доведенi в роботах [2] i [40].

Лема 3. Нехай f \in C([0, T ]) та для довiльних чисел t, \tau \in [0, T ] виконано нерiвнiсть
| K(t, \tau )| \leq M. Тодi для довiльної сталої c > 0 справджується нерiвнiсть\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

T\int 
0

t\int 
0

K(t, \tau )ec\tau f(\tau ) d\tau f(t) dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq M

\sqrt{} 
T

c

T\int 
0

ectf2(t) dt.

Лема 4. Нехай f \in C1([0, T ]), f(T ) = 0 та для довiльних чисел t, \tau \in [0, T ] виконано
| K(t, \tau )| \leq M. Тодi для довiльної сталої c > 0 справджується нерiвнiсть\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

T\int 
0

t\int 
0

K(t, \tau )ec\tau f \prime (\tau )d\tau f(t) dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq MT

c

T\int 
0

ect
\bigl( 
f \prime (t)

\bigr) 2
dt.

Лема 5. Iснує така стала C > 0, що для довiльної функцiї u \in WBR виконується нерiв-
нiсть

\| \scrL u\| W - 
BR+

\geq C\| u\| HBR
.

Доведення. Розглянемо довiльну функцiю u \in C\infty 
BR. Нехай

v(x, t) =  - ect
t\int 

T

e - 2c\tau u(x, \tau ) d\tau . (16)

Диференцiюючи за змiнною t, упевнюємося, що u(x, t) = u(1)(x, t) + u(2)(x, t), де

u(1)(x, t) =  - ectvt(x, t), (17)

u(2)(x, t) = cectv(x, t), (18)

i, як нескладно бачити, v \in WBR+ . Значення додатної сталої c оберемо пiзнiше. Далi пока-
жемо, що для деякого додатного числа C виконується нерiвнiсть (\scrL u, v)L2(Q) \geq C\| v\| 2WBR+

.
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Спочатку розглянемо скалярний добуток (LDu, v)L2(Q). За допомогою iнтегрування
частинами, використовуючи граничну умову (6) i зважаючи, що функцiя v, визначена
рiвнiстю (16), задовольняє умову v| t=T = 0, отримаємо\int 

Q

autv dQ =

\int 
Q

(auv)t dQ - 
\int 
Q

avtu dQ

=

\int 
\Omega 

T\int 
0

(auv)t dt d\Omega  - 
\int 
Q

auvt dQ

=

\int 
\Omega 

((auv)| t=T  - (auv)| t=0)d\Omega  - 
\int 
Q

auvt dQ

=  - 
\int 
Q

auvt dQ =  - 
\int 
Q

au(1)vt dQ - 
\int 
Q

au(2)vt dQ. (19)

Зважаючи на спiввiдношення (16) та умову (6), отримаємо

n\sum 
i,j=1

\int 
Q

\bigl( 
(aijuxj )xiv

\bigr) 
t
dQ =

n\sum 
i,j=1

\int 
\Omega 

T\int 
0

\bigl( 
(aijuxj )xiv

\bigr) 
t
dt d\Omega 

=
n\sum 

i,j=1

\int 
\Omega 

\bigl( 
(aijuxj | t=T )xiv| t=T  - (aijuxj | t=0)xiv| t=0

\bigr) 
d\Omega = 0.

Тепер, використовуючи формулу Гаусса та враховуючи останню рiвнiсть, маємо

 - 
\int 
Q

n\sum 
i,j=1

\bigl( 
aijuxj

\bigr) 
xit

v dQ =  - 
\int 
Q

n\sum 
i,j=1

\bigl( 
(aijuxj )xiv

\bigr) 
t
dQ+

\int 
Q

n\sum 
i,j=1

\bigl( 
aijuxj

\bigr) 
xi
vt dQ

=  - 
\int 
Q

n\sum 
i,j=1

aijuxjvxit dQ

=  - 
\int 
Q

n\sum 
i,j=1

aiju
(1)
xj

vxit dQ - 
\int 
Q

n\sum 
i,j=1

aiju
(2)
xj

vxit dQ. (20)

Застосовуючи стандартним чином формулу Гаусса до доданкiв iз bij , одержуємо

(LDu, v)L2(Q) =  - 
\int 
Q

n\sum 
i,j=1

aiju
(1)
xj

vxit dQ - 
\int 
Q

n\sum 
i,j=1

aiju
(2)
xj

vxit dQ - 
\int 
Q

au(1)vt dQ

 - 
\int 
Q

au(2)vt dQ+

\int 
Q

n\sum 
i,j=1

biju
(1)
xj

vxi dQ+

\int 
Q

n\sum 
i,j=1

biju
(2)
xj

vxi dQ
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+

\int 
Q

bu(1)v dQ+

\int 
Q

bu(2)v dQ.

Доданок u(1) спiвпадає з функцiєю u з доведення леми 5 роботи [2]. У згаданiй роботi
показано, що

 - 
\int 
Q

avtu
(1)dQ =

\int 
Q

aectv2t dQ \geq 0, (21)

 - 
\int 
Q

n\sum 
i,j=1

aiju
(1)
xj

vxit dQ =

\int 
Q

n\sum 
i,j=1

aije
ctvxjtvxit dQ \geq \alpha 

\int 
Q

n\sum 
i=1

ectv2xit dQ, (22)

\int 
Q

bu(1)v dQ =
1

2

\int 
\Omega 

bv2
\bigm| \bigm| 
t=0

d\Omega +
c

2

\int 
Q

bectv2 dQ, (23)

\int 
Q

n\sum 
i,j=1

biju
(1)
xj

vxi dQ =
1

2

\int 
\Omega 

n\sum 
i,j=1

bijvxj

\bigm| \bigm| 
t=0

vxi | t=0 d\Omega +
c

2

\int 
Q

n\sum 
i,j=1

bije
ctvxjvxi dQ. (24)

Далi в роботi [2] використано умови невiд’ємностi b та невiд’ємної визначеностi
\{ bij\} ni,j=1. Використовуючи iнший пiдхiд, позбавимося цих обмежень. Нехай стала M
мажорує всi коефiцiєнти b, \{ bij\} ni,j=1 в областi \Omega . Використовуючи нерiвностi Пуанкаре i
Кошi, оцiнюємо доданки спiввiдношень (23) i (24):

c

2

\int 
Q

bectv2 dQ \geq  - cM

2

\int 
Q

ectv2 dQ \geq  - cMCp

2

n\sum 
i=1

\int 
Q

ectv2xi
dQ, (25)

1

2

\int 
\Omega 

bv2
\bigm| \bigm| 
t=0

d\Omega \geq  - MCp

2

n\sum 
i=1

\int 
\Omega 

v2xi

\bigm| \bigm| 
t=0

d\Omega , (26)

c

2

\int 
Q

n\sum 
i,j=1

bije
ctvxjvxi dQ \geq  - Mc

2

n\sum 
i,j=1

\int 
Q

ect| vxjvxi | dQ

\geq  - Mc

2

n\sum 
i,j=1

\int 
Q

ect

2

\Bigl( 
v2xj

+ v2xi

\Bigr) 
dQ =  - nMc

2

n\sum 
i=1

\int 
Q

ectv2xi
dQ, (27)

1

2

\int 
\Omega 

n\sum 
i,j=1

bijvxj

\bigm| \bigm| 
t=0

vxi | t=0 d\Omega \geq  - M

2

\int 
\Omega 

n\sum 
i,j=1

\bigm| \bigm| vxj

\bigm| \bigm| 
t=0

vxi | t=0

\bigm| \bigm| d\Omega 
\geq  - M

4

n\sum 
i,j=1

\int 
\Omega 

\Bigl( 
v2xj

\bigm| \bigm| \bigm| 
t=0

+ v2xi

\bigm| \bigm| 
t=0

\Bigr) 
d\Omega 

=  - nM

2

n\sum 
i=1

\int 
\Omega 

v2xi

\bigm| \bigm| 
t=0

d\Omega . (28)

ISSN 1562-3076. Нелiнiйнi коливання, 2024, т. 27, № 4



462 АНДРIЙ АНIКУШИН, ВIКТОРIЯ НАЗАРЧУК

Загалом, враховуючи (21) – (28), для доданкiв iз u(1) отримаємо

 - 
\int 
Q

n\sum 
i,j=1

aiju
(1)
xj

vxit dQ - 
\int 
Q

au(1)vt dQ - 
\int 
Q

n\sum 
i,j=1

\Bigl( 
biju

(1)
xj

\Bigr) 
xi

v dQ+

\int 
Q

bu(1)v dQ

\geq \alpha 

\int 
Q

n\sum 
i=1

ectv2xit dQ - cMCp

2

n\sum 
i=1

\int 
Q

ectv2xi
dQ

 - MCp

2

n\sum 
i=1

\int 
\Omega 

v2xi

\bigm| \bigm| 
t=0

d\Omega  - nMc

2

n\sum 
i=1

\int 
Q

ectv2xi
dQ - nM

2

n\sum 
i=1

\int 
\Omega 

v2xi

\bigm| \bigm| 
t=0

d\Omega . (29)

Перейдемо до доданкiв iз u(2). Використовуючи рiвнiсть (18), проiнтегруємо частинами
другий доданок спiввiдношення (19):

 - 
\int 
Q

avtu
(2)dQ =  - c

\int 
Q

avte
ctv dQ =  - c

2

\int 
Q

\bigl( 
aectv2

\bigr) 
t
dQ+

c2

2

\int 
Q

aectv2 dQ

=  - c

2

\int 
\Omega 

T\int 
0

\bigl( 
aectv2

\bigr) 
t
dt d\Omega +

c2

2

\int 
Q

aectv2 dQ

=  - c

2

\int 
\Omega 

\bigl( 
aecT v2

\bigm| \bigm| 
t=T

 - av2
\bigm| \bigm| 
t=0

\bigr) 
d\Omega +

c2

2

\int 
Q

aectv2 dQ

=
c

2

\int 
\Omega 

av2
\bigm| \bigm| 
t=0

d\Omega +
c2

2

\int 
Q

aectv2 dQ. (30)

Враховуючи умову (4), права частина останньої рiвностi є невiд’ємною.
Для другого доданка спiввiдношення (20), використовуючи iнтегрування частинами,

аналогiчно до перетворень, зроблених у (24), та додатково застосовуючи нерiвнiсть (5),
одержимо

 - c

\int 
Q

n\sum 
i,j=1

aije
ctvxjvxit dQ =

c

2

\int 
Q

n\sum 
i,j=1

\bigl( 
aije

ctvxjvxi

\bigr) 
t
dQ+

c2

2

\int 
Q

n\sum 
i,j=1

aije
ctvxjvxi dQ

=
c

2

\int 
\Omega 

n\sum 
i,j=1

aijvxj

\bigm| \bigm| 
t=0

vxi | t=0 d\Omega +
c2

2

\int 
Q

n\sum 
i,j=1

aije
ctvxjvxi dQ

\geq \alpha c

2

\int 
\Omega 

n\sum 
i=1

v2xi

\bigm| \bigm| 
t=0

d\Omega +
\alpha c2

2

\int 
Q

ect
n\sum 

i=1

v2xi
dQ. (31)

Також, використовуючи нерiвностi Пуанкаре та Кошi, маємо\int 
Q

bu(2)vdQ = c

\int 
Q

bectv2 dQ \geq  - cMCp

n\sum 
i=1

\int 
Q

ectv2xi
dQ (32)
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i

 - 
\int 
Q

n\sum 
i,j=1

\Bigl( 
biju

(2)
xj

\Bigr) 
xi

v dQ =

\int 
Q

n\sum 
i,j=1

biju
(2)
xj

vxidQ

= c

\int 
Q

n\sum 
i,j=1

bije
ctvxjvxi dQ \geq  - nMc

n\sum 
i=1

\int 
Q

ectv2xi
dQ. (33)

Загалом, враховуючи (30) – (33), для доданкiв iз u(2) отримаємо

 - 
\int 
Q

n\sum 
i,j=1

aiju
(2)
xj

vxit dQ - 
\int 
Q

au(2)vt dQ

 - 
\int 
Q

n\sum 
i,j=1

\Bigl( 
biju

(2)
xj

\Bigr) 
xi

v dQ+

\int 
Q

bu(2)v dQ

\geq \alpha c

2

\int 
\Omega 

n\sum 
i=1

v2xi

\bigm| \bigm| 
t=0

d\Omega +
\alpha c2

2

\int 
Q

ect
n\sum 

i=1

v2xi
dQ

 - cMCp

n\sum 
i=1

\int 
Q

ectv2xi
dQ - nMc

n\sum 
i=1

\int 
Q

ectv2xi
dQ. (34)

Таким чином, iз нерiвностей (29), (34) отримаємо

(LDu, v)L2(Q) \geq  - cMCp

2

n\sum 
i=1

\int 
Q

ectv2xi
dQ - cMCp

n\sum 
i=1

\int 
Q

ectv2xi
dQ

 - nMc

2

n\sum 
i=1

\int 
Q

ectv2xi
dQ - nMc

n\sum 
i=1

\int 
Q

ectv2xi
dQ

 - MCp

2

n\sum 
i=1

\int 
\Omega 

v2xi

\bigm| \bigm| 
t=0

d\Omega  - nM

2

n\sum 
i=1

\int 
\Omega 

v2xi

\bigm| \bigm| 
t=0

d\Omega 

+
\alpha c

2

\int 
\Omega 

n\sum 
i=1

v2xi

\bigm| \bigm| 
t=0

d\Omega +
\alpha c2

2

\int 
Q

ect
n\sum 

i=1

v2xi
dQ+ \alpha 

\int 
Q

ect
n\sum 

i=1

v2xit dQ

=
1

2

\bigl( 
\alpha c2  - 3Mc(Cp + n)

\bigr) \int 
Q

ect
n\sum 

i=1

v2xi
dQ

+
1

2
(\alpha c - M(Cp + n))

\int 
\Omega 

n\sum 
i=1

v2xi

\bigm| \bigm| 
t=0

d\Omega + \alpha 

\int 
Q

ect
n\sum 

i=1

v2xit dQ.
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Для достатньо великого c будемо мати

(LDu, v)L2(Q) \geq \alpha 

\int 
Q

ect
n\sum 

i=1

v2xit dQ+
1

2

\bigl( 
\alpha c2  - 3Mc(Cp + n)

\bigr) \int 
Q

ect
n\sum 

i=1

v2xi
dQ. (35)

Тепер розглянемо скалярний добуток (LIu, v)L2(Q). З формули Гаусса та початково-
крайових умов маємо

(LIu, v)L2(Q) =
n\sum 

i=1

\int 
Q

t\int 
0

(Ki(x, t, \tau )uxi(x, \tau ))xi
d\tau v(x, t) dQ

=  - 
n\sum 

i=1

\int 
Q

t\int 
0

Ki(x, t, \tau )uxi(x, \tau ) d\tau vxi(x, t) dQ

=

n\sum 
i=1

\int 
Q

t\int 
0

Ki(x, t, \tau )e
c\tau (vxi\tau (x, \tau ) - cvxi(x, \tau ))d\tau vxi(x, t) dQ. (36)

Скориставшись лемами 3, 4 (як у роботi [2]), у рiвностi (36) для кожного x \in \Omega отри-
маємо \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

n\sum 
i=1

\int 
Q

t\int 
0

Ki(x, t, \tau )e
c\tau vxi\tau (x, \tau ) d\tau vxi(x, t)dQ

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq 
MT

c

\int 
Q

ect
n\sum 

i=1

v2xit dQ, (37)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
n\sum 

i=1

\int 
Q

t\int 
0

Ki(x, t, \tau )e
c\tau cvxi(x, \tau ) d\tau vxi(x, t) dQ

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq Mc

\sqrt{} 
T

c

\int 
Q

ect
n\sum 

i=1

v2xi
dQ

= M
\surd 
Tc

\int 
Q

ect
n\sum 

i=1

v2xi
dQ. (38)

Комбiнуючи (35), (37) i (38), одержимо

(\scrL u, v)L2(Q) = (LDu, v)L2(Q) + (LIu, v)L2(Q)

\geq (LDu, v)L2(Q)  - 
\bigm| \bigm| (LIu, v)L2(Q)

\bigm| \bigm| 
\geq \alpha 

\int 
Q

ect
n\sum 

i=1

v2xit dQ - MT

c

\int 
Q

ect
n\sum 

i=1

v2xit dQ

+
1

2

\bigl( 
\alpha c2  - 3Mc(Cp + n)

\bigr) \int 
Q

ect
n\sum 

i=1

v2xi
dQ - M

\surd 
Tc

\int 
Q

ect
n\sum 

i=1

v2xi
dQ
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=

\biggl( 
\alpha  - MT

c

\biggr) \int 
Q

ect
n\sum 

i=1

v2xit dQ

+
1

2

\Bigl( 
\alpha c2  - 3Mc(Cp + n) - 2M

\surd 
Tc
\Bigr) \int 

Q

ect
n\sum 

i=1

v2xi
dQ.

Обираючи достатньо велике c та зважаючи на нерiвнiсть Пуанкаре, маємо

(\scrL u, v)L2(Q) \geq 
\alpha 

2

\int 
Q

ect
n\sum 

i=1

v2xit dQ \geq C\| v\| 2WBR+
. (39)

Зауважимо, що для u та v справджується нерiвнiсть

\| u\| 2HBR
=

\int 
Q

\Biggl( 
u2 +

n\sum 
i=1

u2xi

\Biggr) 
dQ

=

\int 
Q

\Biggl( \bigl( 
ect(vt  - cv)

\bigr) 2
+

n\sum 
i=1

\bigl( 
ect(vtxi  - cvxi)

\bigr) 2\Biggr) 
dQ

\leq 2

\int 
Q

\Biggl( 
e2ctv2t + c2e2ctv2 +

n\sum 
i=1

e2ctv2xit +

n\sum 
i=1

c2e2ctv2xi

\Biggr) 
dQ

\leq 2e2cT
\int 
Q

\Biggl( 
v2t +

n\sum 
i=1

v2xit + c2v2 +

n\sum 
i=1

c2v2xi

\Biggr) 
dQ

= 2e2cT
\int 
Q

\Biggl( 
v2t +

n\sum 
i=1

v2xit

\Biggr) 
dQ+ 2e2cT c2

\int 
Q

\Biggl( 
v2 +

n\sum 
i=1

v2xi

\Biggr) 
dQ

\leq 2e2cT
\bigl( 
1 + c2Cp

\bigr) \int 
Q

\Biggl( 
v2t +

n\sum 
i=1

v2xit dQ

\Biggr) 

= 2e2cT
\bigl( 
1 + c2Cp

\bigr) 
\| v\| 2WBR+

.

А отже, враховуючи (39) i застосовуючи стандартним чином нерiвнiсть Шварца, отри-
муємо

C1\| u\| HBR
\| v\| WBR+ \leq C\| v\| 2WBR+

\leq (\scrL u, v)L2(Q) \leq \| \scrL u\| W - 
BR+

\| v\| WBR+

для деякої сталої C1. Це й завершує доведення для всiх u \in C\infty 
BR. Твердження леми для

всiх iнших функцiй u \in WBR можна отримати граничним переходом так само, як i при
доведеннi леми 5 iз [2].

Лема 6. Iснує така стала C > 0, що для довiльної функцiї v \in WBR+ виконується
нерiвнiсть

\| \scrL \ast v\| W - 
BR

\geq C\| v\| HBR+ .
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Доведення аналогiчне до доведення леми 5 iз розглядом допомiжної функцiї

u(x, t) = e - ct

t\int 
0

e2c\tau v(x, \tau ) d\tau 

i використанням аналогiв лем 3, 4.
Зауваження 2. За допомогою апрiорних нерiвностей (14), (15), доведених у лемах 1, 2,

5, 6, можна також показати деякi диференцiальнi властивостi критерiю якостi, властивостi
регуляризованої задачi, побудувати та довести збiжнiсть чисельних методiв для пошуку
узагальнених розв’язкiв та оптимального керування тощо.

Зауваження 3. Отриманi результати узагальнюютьдослiдження з роботи [2] для iнтегро-
диференцiального оператора. Зауважимо також, що, покладаючи Ki \equiv 0, маємо, що тi ж
самi оцiнки є правильними вже для суто диференцiального псевдопараболiчного операто-
ра. Таким чином, покращено результат, отриманий у розд. 5 iз [1, с. 161 – 167].

Автори висловлюють подяку фiзико-математичному факультету Карлового унiверси-
тету, Прага, Чехiя, за пiдтримку при написаннi статтi та анонiмному рецензенту за наданi
пропозицiї для покращення роботи.

Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв. Усi необхiднi данi мiстяться в статтi. Всi автори зробили рiвномiрний внесок у
цю роботу, а також заявляють про вiдсутнiсть спецiального фiнансування для її виконання.
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