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ПРИ ДIЇ МИТТЄВОГО ЗОСЕРЕДЖЕНОГО ВЕРТИКАЛЬНОГО
СИЛОВОГО УДАРУ НА ЙОГО ПОВЕРХНI
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An analytical method for solving the dynamic spatial problem of the propagation of elastic waves in an
infinite layer with an instantaneous concentrated vertical force shock Q on its surface is proposed, which
is reduced to the solution of a system of two ordinary linear differential equations of second order.

Запропоновано аналiтичний метод розв’язання динамiчної просторової задачi поширення пружних
хвиль у нескiнченному шарi при миттєвому зосередженому вертикальному силовому ударi Q на
його поверхню, що зводиться до розв’язку системи двох звичайних лiнiйних диференцiальних
рiвнянь другого порядку.

1. Вступ. Розвиток аналiтичних методiв вивчення закономiрностей поширення пружних
хвиль у тiлi за наявностi джерел деформацiї (наприклад, удар) без просторової iдеалi-
зацiї об’єкта становить значний iнтерес у зв’язку з проблемою розшифрування сигналiв
акустичної емiсiї, оскiльки вона пов’язана з розв’язком просторової задачi динамiчної тео-
рiї пружностi та властивостями отриманих нестацiонарних хвильових полiв. У зв’язку з
цим виникла необхiднiсть отримати фундаментальний розв’язок осесиметричної задачi
для шару при миттєвому вертикальному ударi на його поверхнi. У цьому випадку можна
розглядати шар як приймач акустичних сигналiв i знайти умови резонансу в потрiбному
частотному дiапазонi. Таким чином, у цiй статтi вперше запропоновано аналiтичний метод
розв’язання динамiчної просторової задачi поширення пружних хвиль у нескiнченномуша-
рi при миттєвому зосередженому вертикальному силовому ударi Q на його поверхню, що
зводиться до розв’язку системи двох звичайних лiнiйних диференцiальних рiвнянь другого
порядку.

2. Постановка задачi. Розглянемо пружний шар товщини 2h, де в точцi однiєї з його
поверхонь вiдбувся миттєвий зосереджений силовий удар Q. Тобто дiя масових сил XXX на
шар обмежується лише дiєю вертикальної сили XXX \equiv (0, 0,XXXz) (рис. 1).

Оскiльки такий зовнiшнiй вплив на шар можна розглядати як осесиметричний, то зада-
чу про знаходження векторного поля \vec{}U = (Ur, Uz) перемiщень частинок шару розглядаємо
як осесиметричну i розв’язок задачi будуємо в цилiндричнiй системi координат O(r, z) iз
початком у серединнiй площинi шару.
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Рис. 1

З огляду на [1] однозначне й неперервне векторне поле перемiщень частинок шару
\vec{}U(r, z, t) зобразимо у виглядi суми градiєнта скалярного потенцiалу \varphi = \varphi (r, z, t) i ро-
тора векторного потенцiалу \psi = \psi (r, z, t), де векторне поле \vec{}U(Ur, Uz) є однозначним i
неперервним [2]:

Ur =
\partial \varphi 

\partial r
+

\partial 2\psi 

\partial r\partial z
,

Uz =
\partial \varphi 

\partial z
 - 1

r

\partial \psi 

\partial r
 - \partial 2\psi 

\partial r2
.

(1)

Як наслiдок рiвняння рiвноваги Ламе [1] згiдно з (1) матимуть вигляд системи двох
рiвнянь iз частинними похiдними, яка характеризує рух частинок шару:\biggl( 

\nabla 2  - 1

S2
1

\partial 2

\partial t2

\biggr) 
\varphi = 0,

\biggl( 
\nabla 2  - 1

S2
2

\partial 2

\partial t2

\biggr) 
\psi = 0,

(2)

де

\nabla 2 =
\partial 2

\partial r2
+

1

r

\partial 

\partial r
+

\partial 2

\partial z2
,

S1 — швидкiсть розповсюдження поздовжньої хвилi вздовж осi 0r, S2 — швидкiсть
розповсюдження поперечної хвилi вздовж осi 0z,

S1 =

\sqrt{} 
E(1 - \nu )

\rho (1 + \nu )(1 - 2\nu )
, S2 =

\sqrt{} 
E

2(1 + \nu )\rho 
,

\rho —щiльнiсть матерiалу шару, \nu —коефiцiєнт Пуассона, E —модуль пружностi, миттєве
вертикальне навантаження масової сили Xz має вигляд

Xz =  - Q \delta (r)

\pi r
\delta (z  - h)\delta (t),

\delta — функцiя Дiрака.
Систему рiвнянь (2) будемо розв’язувати за таких умов.
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Граничнi умови на поверхнях шару z = \pm h з урахуванням миттєвого вертикального
навантаження сили Q мають такий вигляд [1]:

\sigma zz =  - 2G

\biggl[ 
\partial 2\varphi 

\partial r2
+

1

r

\partial \varphi 

\partial r
+

\partial 

\partial z

\biggl( 
\partial 2\psi 

\partial r2
+

1

r

\partial \psi 

\partial r

\biggr) 
 - 1

2S2
2

\partial 2\varphi 

\partial t2

\biggr] 

=  - Q \delta (r)

\pi r
\delta (z  - h)\delta (t), z = h,

\sigma zz =  - 2G

\biggl[ 
\partial 2\varphi 

\partial r2
+

1

r

\partial \varphi 

\partial r
+

\partial 

\partial z

\biggl( 
\partial 2\psi 

\partial r2
+

1

r

\partial \psi 

\partial r

\biggr) 
 - 1

2S2
2

\partial 2\varphi 

\partial t2

\biggr] 
= 0, z =  - h, (3)

\sigma rz = G
\partial 

\partial r

\biggl( 
2
\partial \varphi 

\partial z
+
\partial 2\psi 

\partial z2
 - \partial 2\psi 

\partial r2
 - 1

r

\partial \psi 

\partial r

\biggr) 
= 0, z = \pm h.

Початковi умови. Упочатковий момент часу t тiло перебуває у ненавантаженому станi:

Ur = Uz =
\partial Ur

\partial t
=
\partial Uz

\partial t
= 0 при t = 0, (4)

де навантаження вiдбувається у момент часу t = 0+.

Таким чином, ми маємо можливiсть застосувати до (1) i граничних умов (3) перетворен-
ня Лапласа, тобто

\=Uz,r =

\infty \int 
0

Uz,re
 - pt dt, \varphi =

\infty \int 
0

\varphi e - pt dt, \psi =

\infty \int 
0

\psi e - pt dt,

\=\sigma zz =

\infty \int 
0

\sigma zze
 - pt dt, \=\sigma rz =

\infty \int 
0

\sigma rze
 - pt dt.

Унаслiдок система (2) має вигляд \left\{   \nabla 2
1 \=\varphi = 0,

\nabla 2
2
\=\psi = 0,

(5)

де \nabla 2
1,2 =

\partial 2

\partial r2
+

1

r

\partial 

\partial r
+

\partial 2

\partial z2
 - p2

S1,2
— оператори д’Аламбера.

Граничнi умови для зображень за Лапласом системи (5) при z = \pm h набувають такого
вигляду:

\=\sigma zz(h) =  - Q \delta (r)

\pi r
,

\=\sigma zz( - h) = 0,
(6)

\=\tau rz(h) = 0,

\=\tau rz( - h) = 0.
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Розв’язок для зображень за Лапласом \=\psi , \=\varphi системи (5) можна шукати у виглядi iнте-
гралiв Ганкеля, оскiльки шар нескiнченних розмiрiв по r, тобто

\varphi =

\infty \int 
0

\alpha J0(\alpha r)f d\alpha ,

\=\psi =

\infty \int 
0

\alpha J0(\alpha r)\chi d\alpha ,

де

f = f(z, \alpha , p),

\chi = \chi (z, \alpha , p),

\delta (r)

r
=

1

2

\infty \int 
0

\alpha J0(\alpha r) d\alpha .

Як наслiдок отримуємо зображення за Лапласом компонент вектора перемiщень (1) у
виглядi

\=Ur =  - 
\infty \int 
0

\alpha 2J1(\alpha r)

\biggl( 
f +

\partial \chi 

\partial z

\biggr) 
d\alpha ,

\=Uz =

\infty \int 
0

\alpha J0(\alpha r)

\biggl( 
df

dz
+ \alpha 2\chi 

\biggr) 
d\alpha ,

(7)

де J0, J1 — функцiї Бесселя нульового та першого порядку.
Далi система рiвнянь iз частинними похiдними (5) завдяки (7) набуває вигляду системи

лiнiйних звичайних диференцiальних рiвнянь другого порядку

d2f

dz2
 - 
\biggl( 
\alpha 2 +

p2

S2
1

\biggr) 
f = 0,

d2\chi 

dz2
 - 
\biggl( 
\alpha 2 +

p2

S2
2

\biggr) 
\chi = 0.

(8)

Оскiльки вiдомо, що загальний розв’язок f, \chi системи (8) шукаємо у виглядi

f = C1 ch b1z + C2 sh b1z,

\chi = C3 ch b2z + C4 sh b2z,
(9)
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то маємо
df

dz
= C1b1 sh b1 z + C2 b1 ch b1 z,

d2f

dz2
= C1 b

2
1 ch b1 z + C2 b

2
1 sh b1 z,

d\chi 

dz
= C3 b2 sh b2 z + C4 b2 ch b2 z,

d2\chi 

dz2
= C3 b

2
2 ch b2 z + C4 b

2
2 sh b2 z,

(10)

де C1, C2, C3, C4 — невiдомi сталi,

b1 =

\sqrt{} 
\alpha 2 +

p2

S2
1

, b2 =

\sqrt{} 
\alpha 2 +

p2

S2
2

.

Таким чином, розв’язок системи диференцiальних рiвнянь (8) з граничними умова-
ми (6) згiдно з (9), (10) зводиться до розв’язку неоднорiдної лiнiйної системи чотирьох
алгебраїчних рiвнянь щодо невiдомих сталих C1, C2, C3, C4 :\left\{                           

\biggl( 
\alpha 2 +

1

2
b22

\biggr) 
f + \alpha 2 d\chi 

dz
=  - Q

2\pi 
, z = h,\biggl( 

\alpha 2 +
1

2
b22

\biggr) 
f + \alpha 2 d\chi 

dz
= 0, z =  - h,

2
df

dz
+
d2\chi 

dz2
+ \alpha 2\chi = 0, z = h,

2
df

dz
+
d2\chi 

dz2
+ \alpha 2\chi = 0, z =  - h.

(11)

Для спрощення розв’язку алгебраїчної системи (11) розбиваємо нашу задачу на двi
частини: симетричну та кососиметричну [2]. Для цього робимо замiну

\delta (z  - h) =
1

2
[\delta (z  - h) - \delta (z + h)] +

1

2
[\delta (z  - h) + \delta (z + h)].

Завдяки цьому розв’язок системи (8) набуває вигляду

f = f c + fk,

\chi = \chi c + \chi k.
(12)

3. Симетричний випадок. Симетрична задача вiдповiдає випадку товщинних коливань
шару, де перемiщення \=U c

r є парною функцiєю координати z, тобто функцiї \=\sigma czz, f
c є

парними, а функцiї \=U c
z , \=\sigma 

c
rz, \chi 

c —непарними функцiями координати z. Як наслiдок у (11)
C1 = C4 = 0, i тому за виконання цих умов симетрiї систему (8) можна записати так:\biggl( 

d2

dz2
 - b21

\biggr) 
f c = 0,

\biggl( 
d2

dz2
 - b22

\biggr) 
\chi c = 0,

(13)
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де розв’язок системи (13) записуємо у виглядi\left\{   f
c = C2 ch b1 z,

\chi c = C3 sh b2 z
(14)

i виконуються спiввiдношення \left\{   \=\sigma czz(h) = \=\sigma czz( - h),

\=\sigma crz(h) =  - \=\sigma crz( - h).
(15)

У цьому випадку система нелiнiйних алгебраїчних рiвнянь (11) завдяки (14) i (15) буде
мати такий вигляд:

C2

\biggl( 
\alpha 2 +

p2

2S2
2

\biggr) 
ch b1 h+ C3\alpha 

2 b2 ch b2 h =  - Q

4\pi 
,

C22b1 sh b1 h+ C3

\bigl( 
b22 + \alpha 2

\bigr) 
sh b2 h = 0.

(16)

Розв’язок системи (16) отримати нескладно:

C2 =
\Delta c

2

\Delta c
, C3 =

\Delta c
3

\Delta c
,

де

\Delta c
2 =  - Q

4\pi 

\bigl( 
b22 + \alpha 2

\bigr) 
sh b2 h,

\Delta c
3 =

Q

2\pi 
b1 sh b1 h,

\Delta c =

\biggl( 
\alpha 2 +

p2

2S2
2

\biggr) \bigl( 
b22 + \alpha 2

\bigr) 
ch b1 h sh b2h - 2b1b2\alpha 

2 sh b1 h ch b2 h,

звiдки

f c =
\Delta c

2

\Delta c
ch b1z, \chi c =

\Delta c
3

\Delta c
sh b2 z. (17)

Отже, згiдно з (7) i (17) зображення за Лапласом симетричних перемiщень матимуть такий
вигляд:

\=U c
r =  - 

\infty \int 
0

\alpha 2J1(\alpha r)
F1

\Delta c
d\alpha , де F1 = \Delta c

2 ch b1z +\Delta c
3 b2 ch b2 z,

\=U c
z =

\infty \int 
0

\alpha J0(\alpha r)
L1

\Delta c
d\alpha , де L1 = \Delta c

2b1 sh b1z + \alpha 2\Delta c
3 sh b2 z.
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4. Кососиметричний випадок. Кососиметрична задача вiдповiдає випадку згинальних
коливаньшару, де перемiщення \=Uk

r є непарноюфункцiєю координати z, тобто функцiї \=\sigma zz,
fk є непарними, а перемiщення \=Uk

z — парною функцiєю координати z, а отже, функцiї
\=\sigma krz, \chi 

k теж парнi. Тому в (10) C2 = C3 = 0.
Таким чином, за виконання умов кососиметрiї система (8) має вигляд\biggl( 

d2

dz2
 - b21

\biggr) 
fk = 0,

\biggl( 
d2

dz2
 - b22

\biggr) 
\chi k = 0,

(18)

її загальний розв’язок можна знайти у виглядi

fk = C1 sh b1 z,

\chi k = C4 ch b2 z
(19)

i виконано спiввiдношення

\=\sigma kzz(h) =  - \=\sigma kzz( - h),

\=\sigma krz(h) = \=\sigma krz( - h),
(20)

де граничнi умови згiдно з (19) i (20) матимуть вигляд такої нелiнiйної алгебраїчної системи
другого порядку:

C1

\biggl( 
\alpha 2 +

p2

2S2
2

\biggr) 
sh b1h+ C4\alpha 

2 b2 sh b2 h =  - Q

4\pi 
,

C1 2b1 ch b1 h+ C4

\bigl( 
b22 + \alpha 2

\bigr) 
ch b2 h = 0.

(21)

Розв’язок системи (21) знайти нескладно. Вiн має вигляд

C1 =
\Delta k

1

\Delta k
, C4 =

\Delta k
4

\Delta k
,

де

\Delta k
1 =

Q

4\pi 

\bigl( 
b22 + \alpha 2

\bigr) 
ch b2 h,

\Delta k
3 =  - Q

4\pi 
2b1 ch b1 h,

\Delta k =

\biggl( 
\alpha 2 +

p2

2S2
2

\biggr) \bigl( 
b22 + \alpha 2

\bigr) 
sh b1 h ch b2 h - 2b1b2 \alpha 

2 ch b1 h sh b2 h.

При виконаннi спiввiдношень (7) i (19) зображення за Лапласом перемiщень для косо-
симетричного випадку можна навести у виглядi

\=Uk
r =  - 

\infty \int 
0

\alpha 2J1(\alpha r)
F2

\Delta k
d\alpha , де F2 = \Delta k

1 sh b1z +\Delta k
4b2 sh b2 z,
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\=Uk
z =

\infty \int 
0

\alpha J0(\alpha r)
L2

\Delta k
d\alpha , де L2 = \Delta k

1 b1 ch b1 z + \alpha 2\Delta k
4 ch b2 z.

Отже, пiдсумовуючи результати, отримуємо зображення за Лапласом компонент векто-
ра перемiщень:

\=Ur = \=UC
r + \=Uk

r =  - 
\infty \int 
0

\alpha 2J1(\alpha r)

\biggl( 
F1

\Delta c
+
F2

\Delta k

\biggr) 
d\alpha ,

\=Uz = \=UC
z + \=Uk

z =

\infty \int 
0

\alpha J0(\alpha r)

\biggl( 
L1

\Delta c
+
L2

\Delta k

\biggr) 
d\alpha .

(22)

Тепер знайдемо оригiнали зображень Лапласа для перемiщень (22). Нехай визначник
системи (16) має вигляд \Delta c = 0, тобто\biggl( 

\alpha 2 +
p2

2S2
2

\biggr) \bigl( 
b22 + \alpha 2

\bigr) 
ch b1 h sh b2 h - 2b1b2\alpha 

2 sh b1 h ch b2 h = 0. (23)

З числовим аналiзом розв’язку рiвнянь \Delta c = 0, \Delta k = 0 можна ознайомитися в робо-
тах [3, 4].

Позначимо через pcn, n = 1, 2, 3, . . . , усi коренi рiвняння (23). Вони будуть простими
комплексно-спряженими полюсами функцiй \=U c

r , \=U c
z , оскiльки

d\Delta c

dp
\not = 0 при p = pcn [5].

Нехай визначник системи (16) має вигляд \Delta k = 0, тобто\biggl( 
\alpha 2 +

p2

2S2
2

\biggr) \bigl( 
b22 + \alpha 2

\bigr) 
sh b1 h ch b2 h - 2b1b2 \alpha 

2 ch b1 h sh b2 h = 0. (24)

Позначимо через pkn, n = 1, 2, 3, . . . , усi коренi рiвняння (24). Вони будуть простими

комплексно-спряженими полюсами функцiй \=Uk
r ,

\=Uk
z , оскiльки

d\Delta k

dp
\not = 0 при p = pkn [5].

Таким чином, функцiї F1

\Delta c
,
F2

\Delta k
,
L1

\Delta c
,
L2

\Delta k
мають простi комплексно-спряженi полюси

pcn = \beta cn \pm i\varsigma cn, pkn = \beta kn \pm i\varsigma kn,

тому лишки згаданих функцiй у цих полюсах i оригiнали зображень (22) будуть дiйсними
функцiями [5].

Отже, тепер ми маємо можливiсть за допомогою формул обернення [5] отримати
розв’язок задачi в явному виглядi:

Ur(r, z, t) =  - 
\infty \int 
0

\alpha 2J1(\alpha r)

m\sum 
n=1

\left(    F1(p
c
m)

d\Delta c

dp
(pcm)

etp
c
m +

F2

\bigl( 
pkm

\bigr) 
d\Delta k

dp
(pkm)

etp
k
m

\right)    d\alpha ,

Uz(r, z, t) =  - 
\infty \int 
0

\alpha 2J1(\alpha r)
m\sum 

n=1

\left(    L1(p
c
m)

d\Delta c

dp
(pcm)

etp
c
m +

L2

\bigl( 
pkm

\bigr) 
d\Delta k

dp
(pkm)

etp
k
m

\right)    d\alpha .
(25)
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Варто зауважити, що розв’язок (25) iснує й для випадку нескiнченної кiлькостi полюсiв,
тобто коли m = \infty [5].

При Q = 1 розв’язок (25) можна розглядати як функцiї Грiна, а завдяки лiнiйностi
нашої задачi отримати розв’язок хвильової задачi для нескiнченного шару при миттєвому
вертикальному ударi, розподiленому за будь-якою його областю, що обмежена регулярною
поверхнею [1].

Отриманий фундаментальний розв’язок задачi про поширення нестацiонарних пруж-
них хвиль у шарi дозволить бiльш детально розкрити механiзм руху пружних хвиль у пла-
стинах i може бути використаний при аналiзi та розшифруваннi сигналiв методу акустичної
емiсiї, який успiшно використовують при розв’язуваннi задач прогнозування залишкового
ресурсу зварних конструкцiй у процесi їхньої експлуатацiї.

Автор заявляє про вiдсутнiсть конфлiкту iнтересiв i спецiального фiнансування цiєї
роботи. Всi необхiднi данi мiстяться в статтi.
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