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We use harmonic polynomials for determination of approximate solutions of the Stokes – Zhukovskii
potential and the associated inertia tensor for a solid body in the form of a horizontal truncated toroidal
cavity completely filled with an ideal liquid. A variational method for solving the corresponding boundary-
value problem is developed.

Для отримання наближених розв’язкiв потенцiалу Стокса –Жуковського та пов’язаного з ним тен-
зора iнерцiї для твердого тiла у формi зрiзаної горизонтальної тороїдальної порожнини, повнiстю
заповненої iдеальною рiдиною, використано гармонiчнi полiноми. Розроблено варiацiйний метод
розв’язування вiдповiдної крайової задачi.

Вступ. У роботi [1] автором запропоновано наближено-аналiтичний метод розв’язання
задачi про власнi коливання рiдини у тороїдальних областях (задача про власнi часто-
ти та форми). Метою було зробити перший крок у математично та фiзично коректному
моделюваннi коливань мегалiтрових водонапiрних веж iз рiдиною у випадку бакiв торої-
дальної геометрiї. Методологiю побудови математично обґрунтованих модальних моделей,
що описують лiнiйнi та нелiнiйнi коливання тiл iз рiдиною, до класу яких належать баки
мегалiтрових веж, ракет носiїв та iн., детально описано у монографiях [2 – 4]. Вiдповiднi ди-
ференцiальнi рiвняння пов’язують шiсть узагальнених координат, якi вiдповiдають за рух
бака, та нескiнченну кiлькiсть узагальнених координат, що описують збуренi рухи вiльної
поверхнi рiдини. У лiнiйному наближеннi останнi узагальненi координати є розв’язками
лiнiйних диференцiальних (модальних) рiвнянь, гiдродинамiчнi коефiцiєнти яких є iнте-
гралами вiд форм коливання рiдини та їх похiдних. Останнє означає, що гiдродинамiчнi
коефiцiєнти можна визначити за допомогою результатiв з [1]. Аналогiчнi гiдродинамiчнi
коефiцiєнти є в лiнеаризованих виразах для гiдродинамiчних сил i моментiв, що виникають
у шести динамiчних рiвняннях руху бака. Однак формула для гiдродинамiчного моменту
мiстить також тензор iнерцiї, визначення якого пов’язано з так званим потенцiалом Сток-
са –Жуковського.

Задача про потенцiал Стокса –Жуковського не розглядалася у роботi [1]. Побудовi
наближених розв’язкiв цiєї задачi присвячено цю статтю. Для цього адаптовано метод Рiт-
ца – Трефтця за допомогою системи гармонiчних функцiй полiномiального вигляду. Такий
пiдхiд не новий. Ранiше його активно застосовували для розв’язання задачi про потенцiал
Стокса –Жуковського (див., роботи [5, 6]) та iн., а останнiм часом — для розв’язання
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Рис. 1. (а) Геометрiя областi; (б) осьовий меридiональний перерiз областi.

такої задачi для конiчних полостей [7]. Водночас у лiтературi вiдсутнiй аналiз областей
застосування такого методу для тороїдальних порожнин. Такий аналiз буде проведено у
цiй роботi.

1. Постановка задачi. Розглянемо область Q, утворену жорсткою твердою кришкою
кiльцевої форми \Sigma 0 i бiчними стiнками S зрiзаної горизонтальної тороїдальної порожнини.
Порожнина повнiстю заповнена iдеальною нестисливою рiдиною. Початок координат O
помiстимо в центрi зображеної блакитним кольором кришки, як представлено на рис. 1(б).
Неоднорiдна крайова задача Неймана про потенцiал Стокса –Жуковського \bfOmega 0(x, y, z) має
вигляд [6]

\bigtriangleup \bfOmega 0 = 0, \bfr \in Q,
\partial \bfOmega 0

\partial \nu 
= \bfr \times \nu , \bfr \in S +\Sigma 0, (1)

\bfOmega 0(x, y, z) = (\Omega 01,\Omega 02,\Omega 03), \nu — зовнiшня нормаль, S — змочувана бiчна стiнка, яка має
розбиття S = S1

\bigcup 
S2
\bigcup 
S3
\bigcup 

S4, твiрними яких виступають вiдповiдно кривi L1, L2, L3,
L4 iз областi меридiонального перетину G, що являють собою четвертинки твiрного кола
для цього тора (рис. 1(б)). Як вiдомо, загальний вигляд векторного добутку \bfr \times \nu правої
частини (1) має вигляд

\bfr \times \nu = (y cos(\widehat \nu z) - z cos(\widehat \nu y))\bfi 
+ (z cos(\widehat \nu x) - x cos(\widehat \nu z))\bfj + \bigl( x cos \bigl( \widehat \nu y\bigr)  - y cos(\widehat \nu x)\bigr) \bfk ,

де \bfi , \bfj , \bfk —орти координатних осей Ox, Oy, Oz вiдповiдно. Завдяки осьовiй симетрiї цiєї
областi доцiльно перейти до цилiндричної системи координат

x = X + h, y = \xi cos \eta , z = \xi sin \eta .

Зсув уздовж вертикальної осi h пiдiбрано таким чином,щоб початок цилiндричної системи
збiгався з центром незбуреної вiльної поверхнi, кут \alpha 0 —кут, який опирається на катет h з
вершиною у точцi C. Враховуючи, що cos

\bigl( \widehat \nu y\bigr) = cos(\eta ) cos
\bigl( \widehat \nu \xi \bigr) , cos(\widehat \nu z) = sin(\eta ) cos

\bigl( \widehat \nu \xi \bigr) ,
крайовi умови для компонент вектора потенцiалу Стокса –Жуковського набувають вiдпо-
вiдно вигляду
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\partial \Omega 01

\partial \nu 
= g1 \equiv 

\left\{                       

0 на \Sigma 0,

y cos\alpha 0 sin \eta  - z cos \eta cos\alpha 0 на S1,

y cos\alpha 0 sin \eta + z cos \eta cos\alpha 0 на S2,

 - y cos\alpha 0 sin \eta + z cos \eta cos\alpha 0 на S3,

 - y cos\alpha 0 sin \eta  - z cos \eta cos\alpha 0 на S4,

(2a)

\partial \Omega 02

\partial \nu 
= g2 \equiv 

\left\{                       

z на \Sigma 0,

z sin\alpha 0  - x cos\alpha 0 sin \eta на S1,

z sin\alpha 0 + x cos\alpha 0 sin \eta на S2,

 - z sin\alpha 0 + x cos\alpha 0 sin \eta на S3,

 - z sin\alpha 0  - x cos\alpha 0 sin \eta на S4,

(2b)

\partial \Omega 03

\partial \nu 
= g3 \equiv 

\left\{                       

 - y на \Sigma 0,

x cos\alpha 0 cos \eta  - y sin\alpha 0 на S1,

x cos\alpha 0 cos \eta + y sin\alpha 0 на S2,

x cos\alpha 0 cos \eta + y sin\alpha 0 на S3,

x cos\alpha 0 cos \eta + y sin\alpha 0 на S4.

(2c)

Структура крайових умов (1) дозволяє вiдокремити кутову змiнну та представити
розв’язки \Omega 0i, i = 1, 2, 3, у виглядi

\Omega 01(X, \xi , \eta ) = 0, \Omega 02(X, \xi , \eta ) = F0(X, \xi ) sin \eta ,

\Omega 03(X, \xi , \eta ) =  - F0(X, \xi ) cos \eta ,
(3)

де функцiя F0(X, \xi ) визначена у меридiональному перерiзi G (рис. 1(б)) i є розв’язком
такої задачi:

\xi 2
\partial 2F0

\partial X2
+ \xi 

\partial F0

\partial \xi 
+ \xi 2

\partial 2F0

\partial \xi 2
 - F0 = 0 в G, (4a)

\partial F0

\partial X
= \xi при X = 0, (4b)

\partial F0

\partial \nu 
=  - X cos\alpha 0 + \xi sin\alpha 0 при \xi = \zeta +(X), (4c)

\partial F0

\partial \nu 
=  - X cos\alpha 0  - \xi sin\alpha 0 при \xi = \zeta +(X), (4d)

\partial F0

\partial \nu 
= X cos\alpha 0  - \xi sin\alpha 0 при \xi = \zeta  - (X), (4e)
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\partial F0

\partial \nu 
= X cos\alpha 0 + \xi sin\alpha 0 при \xi = \zeta  - (X), (4f)

тут бiчну поверхню задано рiвняннями \zeta \pm (X) = R\pm 
\sqrt{} 

r2  - (X + h)2, а направляючi ко-
синуси cos

\bigl( \widehat \nu \xi \bigr) = 0, cos
\bigl( \widehat \nu X \bigr) = 1 на L0, cos

\bigl( \widehat \nu \xi \bigr) = cos\alpha 0, cos
\bigl( \widehat \nu X \bigr) = sin\alpha 0 на L1,

cos
\bigl( \widehat \nu \xi \bigr) = cos\alpha 0, cos

\bigl( \widehat \nu X \bigr) =  - sin\alpha 0 на L2, cos
\bigl( \widehat \nu \xi \bigr) =  - cos\alpha 0, cos

\bigl( \widehat \nu X \bigr) =  - sin\alpha 0

на L3, cos
\bigl( \widehat \nu \xi \bigr) =  - cos\alpha 0, cos

\bigl( \widehat \nu X \bigr) = sin\alpha 0 на L4.
Розв’язання задачi про потенцiал Стокса –Жуковського необхiдне для розрахунку си-

метричного тензора iнерцiї рiдини [5, 6]

\bfJ 1
0 =

\left(    
\bfJ 1
011 \bfJ 1

012 \bfJ 1
013

\bfJ 1
012 \bfJ 1

022 \bfJ 1
023

\bfJ 1
013 \bfJ 1

023 \bfJ 1
033

\right)    (5)

з елементами

\bfJ 1
0ij = \rho 

\int 
S+\Sigma 0

\Omega 0i
\partial \Omega 0j

\partial \nu 
dS = \rho 

\int 
Q

(\nabla \Omega 0i,\nabla \Omega 0j) dQ, i, j = 1, 2, 3, (6)

де \rho — густина рiдини. Це дозволяє пiдрахувати тензор iнерцiї системи тiло-рiдина як
суму тензора iнерцiї рiдини \bfJ 1

0 i тензора iнерцiї твердого тiла

\bfJ 0 =

\left(    
\bfJ 0
11 \bfJ 0

12 \bfJ 0
13

\bfJ 0
12 \bfJ 0

22 \bfJ 0
23

\bfJ 0
13 \bfJ 0

23 \bfJ 0
33

\right)    =

\left(    
\bfJ xx  - \bfJ xy  - \bfJ xz

 - \bfJ yx \bfJ yy  - \bfJ yz

 - \bfJ zx  - \bfJ zy \bfJ zz

\right)    ,

де

\bfJ xx =

\int 
Qb

\rho s
\bigl( 
y2 + z2

\bigr) 
dQ, \bfJ yy =

\int 
Qb

\rho s
\bigl( 
x2 + z2

\bigr) 
dQ, \bfJ xy =

\int 
Qb

\rho sxy dQ, (7)

\bfJ zz =

\int 
Qb

\rho s
\bigl( 
x2 + y2

\bigr) 
dQ, \bfJ xz =

\int 
Qb

\rho sxz dQ, \bfJ yz =

\int 
Qb

\rho syz dQ. (8)

Тут \rho s = \rho s(x, y, z) — густина твердого тiла, Qb — об’єм твердого тiла.
2. Метод Рiтца – Трефтца. Для визначення наближеного розв’язку задачi (4) застосу-

ємо метод Рiтца – Трефтца [5]. За аналогiєю з методом розв’язання спектральної крайової
задачi на власнi значення [2, 7 – 9] представимо наближений розв’язок F0(X, \xi ) у виглядi
скiнченої суми гармонiйних функцiй з невiдомими множниками b

(m)
k =

\bigl\{ \bigl\{ 
b
(m)
k

\bigr\} 
,
\bigl\{ 
b
\ast (m)
k

\bigr\} \bigr\} 
:

F0(X, \xi ) =

q1\sum 
k=1

b
(m)
k w

(m)
k+m - 1(X, \xi ) +

q2\sum 
k=1

b
\ast (m)
k w

\ast (m)
k+m - 1(X, \xi ), (9)

а як гармонiйний базис використовуємо базис полiномiального типу

w
(m)
k (X, \xi ) =

2(k  - m)!

(k +m)!
Rk P

(m)
k (\mu ),
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w
\ast (m)
k (X, \xi ) =

2(k  - m)!

(k +m)!
RkQ

(m)
k (\mu ),

де R =
\sqrt{} 
X2 + \xi 2 при k \geq m, cos \eta = X/R, k \geq m, P

(m)
k (cos \eta ), Q

(m)
k (cos \eta ) — приєднанi

функцiї Лежандра першого та другого роду.
Використовуємо тойфакт,що розв’язок крайової задачi (4) еквiвалентний знаходженню

мiнiмуму квадратичного функцiоналу (див. детальний висновок i доказ еквiвалентностi
в [6]):

J(F0) =

\int 
G

\Biggl( 
\xi 

\biggl( 
\partial F0

\partial X

\biggr) 2

+ \xi 

\biggl( 
\partial F0

\partial \xi 

\biggr) 2

+
1

\xi 
F 2
0

\Biggr) 
dS  - 2

\int 
L

\xi F0g dS, (10)

де L = L0+L1+L2+L3+L4, g = (\xi \nu X  - X\nu \xi ) являє собою правi частини граничних умов
неоднорiдної крайової задачi (4)

g =

\left\{                       

\xi на L0,

 - X cos\alpha 0 + \xi sin\alpha 0 на L1,

 - X cos\alpha 0  - \xi sin\alpha 0 на L2,

X cos\alpha 0  - \xi sin\alpha 0 на L3,

X cos\alpha 0 + \xi sin\alpha 0 на L4.

(11)

Пiдставляючи розв’язки (9) у функцiонал (10) i використовуючи необхiдну умову мi-
нiмуму

\partial J(F0)

\partial b
(m)
k1

= 0, k1 = 1, 2, . . . , q1,

\partial J(F0)

\partial b
\ast (m)
k2

= 0, k2 = 1, 2, . . . , q2,

зводимо проблему пошуку розв’язкiв системи алгебраїчних рiвняньщодо невiдомих b
(m)
k =\bigl\{ \bigl\{ 

b
(m)
k

\bigr\} 
,
\bigl\{ 
b
\ast (m)
k

\bigr\} \bigr\} 
до системи Рiтца

q\sum 
i,j=1

\alpha 
(m)
ij b

(m)
j = \gamma 

(m)
i , (12)

\bigl\{ 
\alpha 
(m)
ij

\bigr\} 
— симетрична невiд’ємно визначена матриця з елементами [1]

\alpha 
(m)
ij =

\int 
Q

\Bigl( 
\nabla \scrW (m)

i+m - 1,l,\nabla \scrV (m)
j+m - 1,l

\Bigr) 
dQ, (13)

а
\bigl\{ 
\gamma 
(m)
i

\bigr\} 
— q -вимiрний вектор довжини q = q1 + q2 з елементами

\gamma 
(m)
i =

\int 
Q

g\scrW (m)
i+m - 1,l dS. (14)
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Внаслiдок того, що наближенi розв’язки F0(X, \xi ) мають вигляд (9),
\bigl\{ 
\alpha 
(m)
ij

\bigr\} 
i
\bigl\{ 
\gamma 
(m)
ij

\bigr\} 
набу-

вають вигляду

\alpha 
(m)
ij =

\left(  \alpha 
(m)
ij1 \alpha 

(m)
ij2

\alpha 
(m)
ij3 \alpha 

(m)
ij4

\right)  , \gamma 
(m)
i =

\left(  \gamma 
(m)
i1

\gamma 
(m)
i2

\right)  .

Елементи матрицi \{ \alpha (m)
ij \} тодi виглядають так:

\alpha 
(m)
ijl =

R+r0\int 
R - r0

\left(  \xi 
\partial \scrW (m)

i+m - 1,l

\partial X
\scrV (m)
j+m - 1,l

\right)  
X=0

d\xi 

+

0\int 
 - H

\left(  \xi 

\left(  \partial \scrW (m)
i+m - 1,l

\partial \xi 
+ \varsigma (X)

\partial \scrW (m)
i+m - 1,l

\partial X

\right)  \scrV (m)
j+m - 1,l

\right)  
\xi =\zeta +(X)

dX

+

0\int 
 - H

\left(  \xi 

\left(   - 
\partial \scrW (m)

i+m - 1,l

\partial \xi 
+ \varsigma (X)

\partial \scrW (m)
i+m - 1,l

\partial X

\right)  \scrV (m)
j+m - 1,l

\right)  
\xi =\zeta  - (X)

dX.

Елементи правої частини
\bigl\{ 
\gamma 
(m)
i

\bigr\} 
обчислюються за формулами

\gamma 
(m)
il =

R+r0\int 
R - r0

\Bigl( 
\xi 2\scrW (m)

i+m - 1,l

\Bigr) 
X=0

d\xi 

+

0\int 
 - h

\Bigl( 
\xi ( - \varrho  - (X, \xi ))\scrW (m)

i+m - 1,l

\Bigr) 
\xi =\zeta +(X)

dX

+

 - h\int 
 - r - h

\Bigl( 
\xi \varrho +(X, \xi )\scrW (m)

i+m - 1,l

\Bigr) 
\xi =\zeta +(X)

dX

+

 - h\int 
 - r - h

\Bigl( 
\xi \varrho  - (X, \xi )\scrW (m)

i+m - 1,l

\Bigr) 
\xi =\zeta  - (X)

dX

+

0\int 
 - h

\Bigl( 
\xi \varrho +(X, \xi )\scrW (m)

i+m - 1,l

\Bigr) 
\xi =\zeta  - (X)

dX

при
\varsigma (X) =

(X + h)\sqrt{} 
r2  - (X + h)2

, \varrho \pm (X, \xi ) = (X cos\alpha 0 \pm \xi sin\alpha 0),

функцiї \scrW (m)
i+m - 1,l i \scrV (m)

i+m - 1,l складаються з базисних пар w
(m)
i+m - 1,l чи w

\ast (m)
i+m - 1,l (див. де-

тально [1]) для матрицi
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(\scrW i+m - 1,l,\scrV j+m - 1,l) =

\left\{                     

\Bigl( 
w

(m)
i+m - 1, w

(m)
j+m - 1

\Bigr) 
при l = 1,\Bigl( 

w
(m)
i+m - 1, w

\ast (m)
j+m - 1

\Bigr) 
при l = 2,\Bigl( 

w
\ast (m)
i+m - 1, w

(m)
j+m - 1

\Bigr) 
при l = 3,\Bigl( 

w
\ast (m)
i+m - 1, w

\ast (m)
j+m - 1

\Bigr) 
при l = 4

i для вектора

\scrW i+m - 1,l =

\left\{   w
(m)
i+m - 1 при l = 1,

w
\ast (m)
i+m - 1 при l = 2.

Нашою метою є визначення елементiв тензора iнерцiї рiдини \bfJ 1
0. Використовуючи

розв’язки системи Рiтца (12), можна побачити, що елементи тензора iнерцiї рiдини \bfJ 1
0 (6)

щодо початку координат O в системi, пов’язанiй з поверхнею, можна у термiнах функцiй
F0(X, \xi ) записати так:

\bfJ 1
0ij = \pi \rho 

\int 
S0+\Sigma 0

F0i
\partial F0j

\partial \nu 
dS = \pi \rho 

q\sum 
k=1

b
(m)
k \gamma 

(m)
k . (15)

3. Збiжнiсть. Оскiльки задача Неймана розв’язується з точнiстю до множника, нам
необхiдно ввести нормування на розв’язок F0(X, \xi ) на незбуренiй вiльнiй поверхнi при
обчисленнi елементiв тензора iнерцiї рiдини \bfJ 1

0. Нормуючий множник вибираємо з умови
\| F0(0, r0)\| = 1. Тодi розв’язок F0(X, \xi ) набуває вигляду

F0(X, \xi ) =

q1\sum 
k=1

b
(m)
k

\| F0(0, r0)\| 
w

(m)
k+m - 1(X, \xi ) +

q2\sum 
k=1

b
\ast (m)
k

\| F0(0, r0)\| 
w

\ast (m)
k+m - 1(X, \xi ).

Точнiсть наближення потенцiалiв Стокса –Жуковського у слабкому, iнтегральному,
сенсi можна оцiнити по тому, як точно ми наближаємо тензор iнерцiї (15). Таблиця 1 де-
монструє типову збiжнiсть \bfJ 1

022 для рiзних глибин заповнення рiдини при фiксованому
радiусi твiрної тора, рiвному 1 для m = 1. Для практичної демонстрацiї використовуємо
таку геометрiю: r = 1, R = 2. Як можна побачити з табл. 1, вже 15 пар базових функцiй
гарантують iнженерну точнiсть знаходження тензора iнерцiї рiдини. Систематичний ана-
лiз збiжностi всього спектра глибин заповнення показує аналогiчну збiжнiсть. Збiжнiсть
уповiльнюється лише тодi, коли максимальна глибина рiдини значно перевищує лiнiйний
розмiр вiльної поверхнi. Це ситуацiя, близька до повного заповнення порожнини. В цих
точках повiльнiше збiгаються й власнi частоти та спостерiгається незначний розбiг iз екс-
периментом [10]. Для покращення точностi визначення тензора iнерцiї рiдини необхiдно
збiльшувати кiлькiсть базисних функцiй. Однак пiдвищення точностi навiть удвiчi для
такого базису призводить до значного пiдвищення затрат ресурсу машинного обчислен-
ня, а отже, й затраченого часу. Для уникнення таких ситуацiй в подальшому планується
впровадити базис, який буде точно задовольняти крайовi умови на стiнках порожнини для
дослiдження нелiнiйних коливань рiдини в тороїдальних баках.
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Таблиця 1. Збiжнiсть \bfJ 1
022 для тора з геометрiєю r = 1, R = 2

щодо безрозмiрної глибини \=H = H/2r для m = 1

q \=H = 1/6 \=H = 1/3 \=H = 1/2 \=H = 2/3 \=H = 5/6

2 5.610063 15.058098 25.407712 35.757325 45.205360
4 5.943396 15.391432 25.741045 36.090658 45.538694
6 6.010063 15.458098 25.807712 36.157325 45.605360
8 6.060063 15.508098 25.857712 36.207325 45.655360
10 6.076730 15.524765 25.874378 36.223991 45.672027
12 6.085063 15.533098 25.882712 36.232325 45.680360
14 6.090063 15.538098 25.887712 36.237325 45.685360
16 6.095777 15.543813 25.893426 36.243039 45.691074
18 6.098952 15.546987 25.896600 36.246214 45.694249
20 6.100972 15.549007 25.898621 36.248234 45.696269
22 6.102371 15.550406 25.900019 36.249632 45.697668
24 6.103396 15.551432 25.901045 36.250658 45.698694
26 6.104181 15.552216 25.901829 36.251442 45.699478
28 6.104800 15.552835 25.902448 36.252062 45.700097
30 6.105301 15.553336 25.902950 36.252563 45.700598

4. Про тензор iнерцiї “замороженої” рiдини. Крiм повнiстю заповненої рiдиною по-
рожнини деякий порiвняльний iнтерес представляє також порожнина iз “замороженою”
рiдиною. Вона поводиться як тверде тiло, компоненти її тензора iнерцiї ми позначаємо
через \bfJ 0

ij i обчислюємо, як i елементи тензора iнерцiї твердого тiла, за формулами (7),
iнтегруючи за об’ємом рiдини Q при \rho s = 1, a тензор iнерцiї рiдини \bfJ 1

0 визначаємо iз фор-
мули (15). Дослiдимо такi обезрозмiренi залежностi тензорiв iнерцiї рiдини \=\bfJ 1

022 = \bfJ 1
022/\rho r

5
0

i \=\bfJ 0
022 = \bfJ 0

022/\rho r
5
0 щодо геометричних параметрiв системи. Тензор iнерцiї замороженої рi-

дини \bfJ 0
022 повного тора визначаємо за вiдомими формулами

\bfJ 0
022 = \rho 

\int 
Q0

\bigl( 
x2 + z2

\bigr) 
dQ =

\bigl( 
2\pi 2r2R\rho 

\bigr) \biggl( 5

8
r2 +

1

2
R2

\biggr) 
,

а безрозмiрний тензор iнерцiї замороженої рiдини частково заповненого тора — за форму-
лою

\=\bfJ 
(1)
022 =

1

8
\pi 
R

r

\biggl( 
5 + 4

R2

r2

\biggr) \biggl( 
\pi + 2arcsin

\biggl( 
h

r

\biggr) \biggr) 

+
1

4
\pi 
R

r

h

r

\sqrt{} 
1 - h2

r2

\biggl( 
3 + 4

R2

r2
+ 2

h2

r2

\biggr) 
. (16)

З рис. 2 видно, що при збiльшеннi глибини вiд нуля до заповненого тора величи-
на \=\bfJ 1

022 збiльшується вiд нуля до деякого фiксованого значення \^\bfJ 1
022, а величина тен-

зора iнерцiї звичайної рiдини менша за тензор iнерцiї “замороженої” рiдини. Згiдно з
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Рис. 2. Залежнiсть безрозмiрної компоненти тензора iнерцiї рiдини \=\bfJ 022 вiд безрозмiрної глибини заповнення
\=H (суцiльна чорна лiнiя — “заморожена” рiдина, a сiра лiнiя — звичайна рiдина).

обчисленнями встановлено, що ця пропорцiя складає приблизно двi одиницi, тобто тензор
iнерцiї звичайної рiдини удвiчi менший вiд “замороженої” рiдини. Глибина тут знерозмi-
рювалася дiаметром внутрiшньої частини тора за допомогою спiввiдношення \=H = H/2r.

Висновки. Побудовано наближено аналiтичнi потенцiали Стокса –Жуковського як
розв’язки крайової задачi Неймана для областей, утворених зрiзаними горизонтальни-
ми тороїдальними порожнинами. Для їхнього визначення використано варiацiйний метод
i гармонiйний базис полiномiального вигляду, якi дозволяють отримати розв’язки в ана-
лiтичному виглядi. Показано, що метод застосовується для широкого спектру глибин то-
роїдальних порожнин. Показано, що для знаходження потенцiалу Стокса –Жуковського,
як i тензора iнерцiї рiдини, з iнженерною точнiстю достатньо невеликої кiлькостi базо-
вих функцiй. Результати добре узгоджуються з подiбними роботами. Пiдтверджено, що
величина тензора iнерцiї вiльної рiдини менша за тензор iнерцiї “замороженої” рiдини.
Результати роботи передбачається використати для розробки нелiнiйної модальної теорiї
для тороїдального бака.

Автор заявляє про вiдсутнiсть конфлiкту iнтересiв. Усi необхiднi данi мiстяться в статтi.
Роботу виконано за часткової фiнансової пiдтримки за проєктом НФДУ № 2020.01/0089.
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