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Let f(2) = Z:l frx2" be an entire transcendental function, let ()\,) be a sequence of positive numbers

increasing to 0o, and let the series A(z) = Zoo_l an f (A, 2) beregularly convergentin D = {z: |z| < 1}.

The starlikeness and convexity of the function A are studied. For example, if Zoc_l AT =T < +oo,
_ oo k‘-‘rT o0

I fan] < —eXn, and T KAk + )7 < [AD anka

proved that, under certain conditions on the parameters, the differential equation z2w” + (By22 + B12)w’ +
(7022 + 712 + 72)w = 0 has an entire solution A that is starlike or convex in D.

, then the function A is starlike. It is

(o)
Hexait f(z) = Zk_l frz" — 1ina TpanHcueHaenTHa GyHKILis, (), ) — 3pOcTaroya 10 00 MOCTiI0BHICTh
B o
nomaTHUX uucen i psg A(z) = Z 1anf()\n,z) perynsipHo 30ixHuit y D = {z: |z2| < 1}. BuBueno
n=
o0
3ipKOBiCcTh 1 onmyKimicTh ¢GyHKIii A. Hanpukianm, sKimo Z 1)\777 =T < 400, Inja,| < —eX, i
n=
oo k‘+‘l’ ‘ o0
TY Kl < 1Y ands

Ha mapameTpu qudepeHiiaabie piBHAHHS 22w” + (Boz? + Br2)w’ + (022 + 712 + Y2)w = 0 Mae winuii
pPO3B’SI30K A, SIKWIA € 3ipKOBMM a00 onmyKiauM y .

, To dyHKIIIS A € 3ipKoBoro. JloBemeHo, 110 3a ITEBHIX YMOB

1. Introduction. Let S be a class of functions
g(z) =2+ gr?* (1)
k=2

analytic univalent in D = {z: |z| < 1}. The function g € S is said to be starlike if g(D)
is starlike domain concerning of the origin. It is well known [1, p. 202] that the condition
Re{z¢'(2)/g(z)} > 0, z € D, is necessary and sufficient for the starlikeness of g. A. W. Goodman
[2] pointed out the conditions on the coefficients g,, under which function (1) is starlike. The
concept of the starlikeness of function g € S got the series of generalizations. 1. S. Jack [3] studied
starlike functions of order « € [0, 1), i.e., such functions g € S, for which Re {z¢'(2)/g(2)} > a,
z € D. V. P. Gupta [4] introduced the concept of starlike function of order o € [0,1) and type
B € (0,1]. A function g € S is so named for that |z¢'(z)/g(z) — 1| < B|z¢'(2)/g9(z) + 1 — 2a/| for
all z € D.
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142 MYROSLAV SHEREMETA

An analytic univalentin D = {z: |z| < 1} function
$(2) = ¢n2" )
n=0

is said to be convex if ¢(D) is a convex domain. It is clear that function (2) is convex if and only
if function (1) with g, = ¢,,/¢; is convex. Also it is well known [1, p. 203] that the condition
Re{l+2¢"(2)/¢'(2)} > 0, z € D, is necessary and sufficient for the convexity of ¢. Therefore,
function g € S is convex if and only if Re{l + z¢"(2)/¢'(2)} > 0, z € D, i.e., the function
g1(2) = z¢/(2) is starlike. By virtue of this remark, the function (1) is called [2] convex of order
a € [0,1) and type 8 € (0,1] if |2¢9"(2)/d'(2)| < Blzg"(2)/9'(z) + 2(1 — «)| for all z € D.

Let f(z) = Z:io fx2" be an entire transcendental function, (),) be a sequence of positive
numbers increasing to +oo and the series

A(z) =) anf(Mn2) 3)
n=1

regularly converges in {z: |z| < R[A]}, i.e., for all r € [0, R[A])

o

D lan|My(rin) < oo, My(r) = max{[f(2)|: |z| = r}. “4)

n=1

In the proposed note, we will investigate the conditions, under which function (3) is starlike,
convex or close-to-convex. The results obtained are applicable to the study of the properties of
solutions some differential equation.

2. Preliminary results. At first, we remark that if R[A] > 1, then in view of (4), for each

. 1 1 .
r < R[A], we have |a,|M¢(rA,) < 1 for n > ng(r), i.e., )\—MJT1 (H) > r, whence in view
n QA

of the arbitrariness of r we get

1 1
lim —M;' — ) > R[A] > 1. 5
i 57 () 2 Rl > ®
Consider a Dirichlet series
D(0) =) lanlAg =D lanlexp{pnc}, pin =InAn. (6)
n=1 n=1

From (5) it follows that 1/|a,| > M¢(cA,) for some ¢ > 0 and all n. Therefore,

lm o s g M)
n—oo Un |an| n—00 In )\n
because the function f is transcendental. Therefore, if Inn = O(u,) as n — oo, then series (6)
converges for all o.
Let pu(o) = max{|a,|exp{pnc}: n > 1} be the maximal term of series (6). Denote by
Q a class of positive unbounded on (—oo, +00) functions ® such that the derivative @’ is
positive, continuously differentiable, and increasing to +oco on (—oo, +00). Let ¢ be the function
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ON THE GEOMETRIC PROPERTIES OF SERIES IN SYSTEMS OF FUNCTIONS 143

inverse to & and ¥(z) = x — ®(x)/P'(x) be the function associated with ® in the sense of
Newton. Then [5] in order that In u(o) < ®(o) € Q for all o it is necessary and sufficient that
In |an| < —pn¥(p(py)) for all n. Therefore, if we put p, = In A\, and o = k + 7, then for hence
we obtain
max {|an\)\ﬁ+7 in>2} < e® k47 (7)

provided A, > 1 and In|a,| < —In A\, U(p(In),)) forall n > 2.

3. Starlikeness and convexity. We need the following lemma [2] (see also [6, p. 9].

Lemma 1. If ZZO:Q klgk| < 1, then function (1) is starlike, and if ZZ; E%|gr| < 1, then
Sfunction (1) is convex.

We will further assume that

fz)=fiz+ ) frd" (8)
k=2
and f; Zoo_lan)\n # 0. Also we assume that the sequence (\,,) has a finite convergence index,
i.e., there exist positive numbers 7 and 7" such that

o0

Z%:T<+oo. 9)

n=1""

Hence, it follows that Inn = O(In \,) as n — oc.
Theorem 1. Let R(A) > 1, ® € Q, A\, > 1, Infa,| < —In X\, ¥(p(InN,)) for n > 1 and
f Z“’_l andn £ 0. Suppose that (8) and (9) hold. Then:

G Ty kAl < 1D anh,
) Ty I < A3

Proof. Since

, then function (3) is starlike in D;

, then function (3) is convex in D.

=f1)_andn (z + mﬁ) (10)

whence it follows that function (3) is starlike (convex) if and only if function (1) with

fk = an)\lz
gk:%’ k>2, (11)
fl Zn:l anAn
is starlike (convex). Therefore, if
DR andn| <A ana, (12)
k=2 n=1 n=1
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144 MYROSLAV SHEREMETA
then by Lemma 1 function (3) is starlike, and if
SR fe Y any
k=2 n=1

then function (3) is convex in D.
By condition (9) in view of (7) we have

: (13)

<|fi io: anAp
n=1

N N Jan AR
Z |an| Xy = Z 71)\77” < Tmax{|ap| A7 n > 1} < Te®*+7),
n

i.e., (12) holds provided Ty ™ k| fyle®*+7) < ‘ A an
Ty Al < AT andl:

Theorem 1 is proved.

Let us consider several consequences of Proposition 1. At first, let ®(z) = e* for = > 0.
Then ¥(x) = x — 1, ¢(x) = Inz, and 2V (p(x)) = zln(z/e). Therefore, we get the following
statement.

In A,
Corollary 1. Let (8) and (9) hold. Suppose that )\, > 1 and In|a,| < —In )\, ln< nA )

e

forn =1 If TS k|fylexpl{et7} < ‘fl ST, if
o0 2 k+T1 o0 . .

T Zk:2 E°| fr| exp{e™ "} < ’fl anl an/\n’, then function (3) is convex.

and (13) holds provided

1 1/(p-1)
Now let ®(z) = «P for = > 1, where p > 1. Then ¥(z) = b , x, p(x) = <p> , and

p/(p—1)
x¥(p(z))=(p—1) <i> . Therefore, we get the following statement.

1 n p/(p—1)
Corollary 2. Let(8) and (9) hold. Suppose that \,, > 1 and In|a,| < —(p—l)( nA >

forn =1 TSkl filexp{(k +w)?} < ‘fl ST,
Ty RSl exp{(k+ 7 < D7 andal,

Finally, consider the most interesting case when ®(z) = xInz for x > e. Then ¢(z) = e* 1
and 2V (p(z)) = zp(x) — ®(p(x)) = e*~L. Therefore, we get the following statement.
Corollary 3. Let (8) and (9) hold. Suppose that \, > 1 and In|a,| < —eX, for n > 1.

If TZ k|fk\ (k + 1) }fl :;1 an)\n), then function (3) is starlike, and if

T Z k2|fk| k+ 7)< ‘fl o an)\n‘, then function (3) is convex.
Remark 1. In [2] it is proved that if o € [0,1), 5 € (0, 1], and

then function (3) is convex.

D A0+ B)k —28a — (1 - B)}Hgxl < 26(1 - a),
k=2
then function (1) is starlike of order « and type 3, and if

> k{14 Bk — 280 — (1— ) Hgrl < 28(1 - a),

k=2
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then function (1) is convex of order « and type /. Therefore, as above, we get the following
statement.
Proposition 1. Let a € [0,1), 8 € (0,1], and the conditions of Theorem 1 are fulfilled. If

flzan n

n=1

i

TZ{1+B —2Ba — (1 - B)} fule®* ) < 28(1 - a)

k=2

then function (3) is starlike of order « and type (3, and if

TZk{lJer: 280 — (1 — B)} fle*®+7) < 28(1 — a)

flzan n

n=1

)

then function (3) is convex of order o and type 3.

4. Close-to-convexity. By W. Kaplan [7], function (2) is said to be close-to-convex in D if
there exists a convex in D function F such that Re (¢/(z)/F'(z)) > 0, z € D. Close-to-convex
function ¢ has a characteristic property that the complement G of the domain ¢(ID) can be filled
with rays L which go from 0G and lie in G. Every close-to-convex in D function f is univalent
in D and, therefore, f/(0) # 0. Hence it follows that the function ¢ is close-to-convex in D if
and only if the function (1) with g, = ¢,,/¢; is close-to-convex in D.

For function (1) the following Alexander criterion is valid [8] (see also [6, p. 11]): if

1>2g92>...2 kg > (k+1)gr11 > ... >0, (14)

then function (1) is close-to-convex in D. For coefficients (11) condition (14) is equivalent to
condition

21,3 anA2 ke S anA’“ (k + 1) fra1 ap AT
1> Z= > > Z": +Z >...>0.

flz _1an)\n T flz _lan>\n B flz :lanAn

Therefore, the following statement is true.
Proposition 2. Let (8) holds and either all coefficients f), and a,, are positive or all coeffi-
cients fy and a, are negative. If

A andn =2 anhh > 2k Y andn = (k+ 1) ferr Y andi > .0>0,
n=1 n=1

n=1 n=1

then function (3) close-to-convex in D.
Choosing the function F' appropriately, one can obtain other sufficient conditions for the

1
— then, as in [6, pp. 11, 12],

close-to-convexity of the function g. For example, if F(z) = In .

we have
/ Z o
@) L4+ ((k+ 1)grpr — kgr)z"
k=1
Suppose thatall g;, > 0, kg, /£ < 2as k — oo andput F,(z) = 1—1—2 ((k+1)grs1—kgr) 2"

Then, for all z € D,

n

ReF,(z) > 1— Z((k + Dgrg1 — kgr)2*
k=1
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n

> 1= ((k+ Dgrs1 — kgr) =2 — (n+ 1)gnt1 =2 -6 >0.
k=1

9'(2)
F'(z)
thus, the following statement is proved.

Proposition 3. Let (8) holds and either all coefficients fi, and a,, are positive or all coeffici-

ents fr and a, are negative. If (k‘fk Zoo_l an)\ﬁ)/(fl Zoo_l an)\n) S E<2as k— oo, then
function (3) close-to-convex in D.

S. Shah’s differential equation. S. M. Shah [9] indicated conditions on real parameters [,
B1, Y0, 71, Y2 of the differential equation

Since

= limy, o0 Fy(2), from hence it follows that function (1) is close-to-convex and,

2w’ + (Bo2% + frz)w’ + (107 + 712 +2)w =0, (15)
under which there exists an entire transcendental solution g(z) = Z:o gr2" that together with
its derivatives are close-to-convex in D. It easy to show that ¢ is a solution of (15) if and only if
Y2g0 = 0, (81 +72)g1 + 7190 = 0 and

Bo(k—1)+m Y

T T+ B D+ T k1B —1) + 7

Ge—2, k=2 (16)

If either 9 = 0 or By = 71 = 0, the two-term recurrent formula turns into a one-term recurrent
formula and these cases are studied in [9]. In the general case the existence of solutions that
together with its derivatives are close-to-convex in I was studied in [10, 11]. The convexity of
such solutions was studied in [12].

The question of the existence of a solution (3) to the differential equation (15) is natural and
can be solved in the general case of a two-term recurrent formula for coefficients, but we will
limit ourselves to the case of a special one-term recurrent formula.

We choose By = 81 = 9 = 72 = 0. Then for z # 0 from (15) we obtain zw” + yw = 0

and (16) implies g, = _k(kil—l)gkfl for £ > 2. In view of the equalities 290 = 0 and

(51 4+ 72)91 + 7190 = 0, the coefficients gy and g; may be arbitrary. Choosing gy = 0, g1 = 1,
and g, by using the formula (11), hence we get that the function A is a solution of the differential
equation zw” + ~yyw = 0 if and only if

PV, QEE— - AL > 17
fk;a n k(k_l)fm;a W k> (17)

By using this formula we prove the following theorem.

Theorem 2. Let By = 51 = v = 2 = 0 and v1 # 0. Then Shah’s differential equation (15)
has an integer solution (10) with coefficients satisfying condition (17) and such that if |y1| < 4/5,
then function A is starlike and if |y1| < 8/19, then function A is convex in D.

Proof. If |v1| < 4/5, then from (17) we have

ik fkiankk <Zk h/l fk 1Zan/\k !
k=2 n=1
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= |m| flni:;an)\n +|m|]§2; fkgjlanA,’;
= |m flian)\n + mi’;k fkianxﬁ
< Iml f1ian>\n +|11|ik fkian)\ﬁ
and, thus, - -
<1_ |’71|) ik I Zan < |m| flian/\n 7
whence - )

)

Zk szan n _4Lﬂ71 ‘f Zan n| < flzan)\n
n=1

because |y1| < 4/5, i.e., (12) holds and function (10) is starlike.
If |y1] < 8/19, then similarly

3 oo [ee]
zkﬂ szan <2l S e + S k2] 5 a0
n=1 k=2 n=1
whence
6’71 -
2
Zk sz n —8 3| ‘f Zan n| < flnzz:lan)\nu
1.e., (13) holds and function (10) is convex.
Finally, (17) implies
-1
In . + In k(k )
PSP T Sarw e AT
=1
‘fk—Q anl anAy, ‘ M gl
1 SiG-1)
In = + Zln JY ,
’fl anl anAn j=2 |71|
whence it follows that
1 1
In — 400, k — oo,

1.e., function (10) is entire.
The proof of Theorem 2 is complete.

ISSN 1562-3076. Heniniiini koausannus, 2024, m. 27, Ne 1



148 MYROSLAV SHEREMETA

The author states that there is no conflict of interest. All necessary data are included into the

paper. The author declares no special funding of this work.

References

1. G. M. Golusin, Geometrical theory of functions of complex variables [in Russian], Nauka, Moscow (1966).

2. A.W.Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc., 8, Ne 3, 597 —-601 (1957).
3. 1. S.Jacke, Functions starlike and convex of order «, J. Lond. Math. Soc., 3, 469 —-474 (1971).

4. V.P.Gupta, Convex class of starlike functions, Yokohama Math. J., 32, 55—-59 (1984).

5. M. M. Sheremeta, S. I. Fedynyak, On the derivative of Dirichlet series, Sib. Math. J., 39, Ne 1, 206 —223 (1998).
6. M. M. Sheremeta, Geometric properties of analytic solutions of differential equations, Chyslo, Publisher

~

10.

11.

12.

I. E. Chyzhykov, Lviv (2019).
W. Kaplan, Close-to-convex schlicht functions, Michigan Math. J., 1, Ne 2, 169 — 185 (1952).

J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Math. (2), 17,
12-22 (1915/1916).

S. M. Shah, Univalence of a function f and its successive derivatives when f satisfies a differential equation,
11, J. Math. Anal. Appl., 142, 422 -430 (1989).

Z. M. Sheremeta, Close-to-convexity of entire solutions of a differential equation, Mat. Metodi Fiz.-Mekh.
Polya, 42, Ne 3, 31-35 (1999).

Z. M. Sheremeta, On properties of entire solutions of a differential equation, Differ. Equat., 36, Ne 8, 1-6
(2000).

Z. M. Sheremeta, M. M. Sheremeta, Convexity of entire solutions of a differential equation., Mat. Metodi
Fiz.-Mekh. Polya, 47, Ne 2, 186 — 191 (2004).

Received 29.09.23,
after revision — 23.11.23

ISSN 1562-3076. Heniniiini koausannus, 2024, m. 27, Ne 1



