

ON THE GEOMETRIC PROPERTIES OF SERIES IN SYSTEMS OF FUNCTIONS

ПРО ГЕОМЕТРИЧНІ ВЛАСТИВОСТІ РЯДІВ ЗА СИСТЕМОЮ ФУНКІЙ

Myroslav Sheremeta

*Ivan Franko National University of Lviv
Universytetska St., 1, Lviv, 79000, Ukraine
e-mail: m.m.sheremeta@gmail.com*

Let $f(z) = \sum_{k=1}^{\infty} f_k z^k$ be an entire transcendental function, let (λ_n) be a sequence of positive numbers increasing to $+\infty$, and let the series $A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$ be regularly convergent in $\mathbb{D} = \{z : |z| < 1\}$. The starlikeness and convexity of the function A are studied. For example, if $\sum_{n=1}^{\infty} \lambda_n^{-\tau} = T < +\infty$, $\ln |a_n| \leq -e\lambda_n$, and $T \sum_{k=2}^{\infty} k|f_k|(k+\tau)^{k+\tau} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$, then the function A is starlike. It is proved that, under certain conditions on the parameters, the differential equation $z^2 w'' + (\beta_0 z^2 + \beta_1 z)w' + (\gamma_0 z^2 + \gamma_1 z + \gamma_2)w = 0$ has an entire solution A that is starlike or convex in \mathbb{D} .

Нехай $f(z) = \sum_{k=1}^{\infty} f_k z^k$ — ціла трансцендентна функція, (λ_n) — зростаюча до $+\infty$ послідовність додатних чисел і ряд $A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z)$ регулярно збіжний у $\mathbb{D} = \{z : |z| < 1\}$. Вивчено зірковість і опуклість функції A . Наприклад, якщо $\sum_{n=1}^{\infty} \lambda_n^{-\tau} = T < +\infty$, $\ln |a_n| \leq -e\lambda_n$ і $T \sum_{k=2}^{\infty} k|f_k|(k+\tau)^{k+\tau} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$, то функція A є зірковою. Доведено, що за певних умов на параметри диференціальне рівняння $z^2 w'' + (\beta_0 z^2 + \beta_1 z)w' + (\gamma_0 z^2 + \gamma_1 z + \gamma_2)w = 0$ має цілий розв'язок A , який є зірковим або опуклим у \mathbb{D} .

1. Introduction. Let S be a class of functions

$$g(z) = z + \sum_{k=2}^{\infty} g_k z^k \quad (1)$$

analytic univalent in $\mathbb{D} = \{z : |z| < 1\}$. The function $g \in S$ is said to be starlike if $g(\mathbb{D})$ is starlike domain concerning of the origin. It is well known [1, p. 202] that the condition $\operatorname{Re} \{zg'(z)/g(z)\} > 0$, $z \in \mathbb{D}$, is necessary and sufficient for the starlikeness of g . A. W. Goodman [2] pointed out the conditions on the coefficients g_n under which function (1) is starlike. The concept of the starlikeness of function $g \in S$ got the series of generalizations. I. S. Jack [3] studied starlike functions of order $\alpha \in [0, 1)$, i.e., such functions $g \in S$, for which $\operatorname{Re} \{zg'(z)/g(z)\} > \alpha$, $z \in \mathbb{D}$. V. P. Gupta [4] introduced the concept of starlike function of order $\alpha \in [0, 1)$ and type $\beta \in (0, 1]$. A function $g \in S$ is so named for that $|zg'(z)/g(z) - 1| < \beta|zg'(z)/g(z) + 1 - 2\alpha|$ for all $z \in \mathbb{D}$.

An analytic univalent in $\mathbb{D} = \{z : |z| < 1\}$ function

$$\phi(z) = \sum_{n=0}^{\infty} \phi_n z^n \quad (2)$$

is said to be convex if $\phi(\mathbb{D})$ is a convex domain. It is clear that function (2) is convex if and only if function (1) with $g_n = \phi_n/\phi_1$ is convex. Also it is well known [1, p. 203] that the condition $\operatorname{Re}\{1 + z\phi''(z)/\phi'(z)\} > 0$, $z \in \mathbb{D}$, is necessary and sufficient for the convexity of φ . Therefore, function $g \in S$ is convex if and only if $\operatorname{Re}\{1 + zg''(z)/g'(z)\} > 0$, $z \in \mathbb{D}$, i.e., the function $g_1(z) = zg'(z)$ is starlike. By virtue of this remark, the function (1) is called [2] convex of order $\alpha \in [0, 1]$ and type $\beta \in (0, 1]$ if $|zg''(z)/g'(z)| < \beta|zg''(z)/g'(z) + 2(1 - \alpha)|$ for all $z \in \mathbb{D}$.

Let $f(z) = \sum_{k=0}^{\infty} f_k z^k$ be an entire transcendental function, (λ_n) be a sequence of positive numbers increasing to $+\infty$ and the series

$$A(z) = \sum_{n=1}^{\infty} a_n f(\lambda_n z) \quad (3)$$

regularly converges in $\{z : |z| < R[A]\}$, i.e., for all $r \in [0, R[A]]$

$$\sum_{n=1}^{\infty} |a_n| M_f(r\lambda_n) < +\infty, \quad M_f(r) = \max\{|f(z)| : |z| = r\}. \quad (4)$$

In the proposed note, we will investigate the conditions, under which function (3) is starlike, convex or close-to-convex. The results obtained are applicable to the study of the properties of solutions some differential equation.

2. Preliminary results. At first, we remark that if $R[A] \geq 1$, then in view of (4), for each $r < R[A]$, we have $|a_n| M_f(r\lambda_n) \leq 1$ for $n \geq n_0(r)$, i.e., $\frac{1}{\lambda_n} M_f^{-1}\left(\frac{1}{|a_n|}\right) \geq r$, whence in view of the arbitrariness of r we get

$$\lim_{n \rightarrow \infty} \frac{1}{\lambda_n} M_f^{-1}\left(\frac{1}{|a_n|}\right) \geq R[A] \geq 1. \quad (5)$$

Consider a Dirichlet series

$$D(\sigma) = \sum_{n=1}^{\infty} |a_n| \lambda_n^{\sigma} = \sum_{n=1}^{\infty} |a_n| \exp\{\mu_n \sigma\}, \quad \mu_n = \ln \lambda_n. \quad (6)$$

From (5) it follows that $1/|a_n| \geq M_f(c\lambda_n)$ for some $c > 0$ and all n . Therefore,

$$\lim_{n \rightarrow \infty} \frac{1}{\mu_n} \ln \frac{1}{|a_n|} \geq \lim_{n \rightarrow \infty} \frac{\ln M_f(c\lambda_n)}{\ln \lambda_n} = +\infty,$$

because the function f is transcendental. Therefore, if $\ln n = O(\mu_n)$ as $n \rightarrow \infty$, then series (6) converges for all σ .

Let $\mu(\sigma) = \max\{|a_n| \exp\{\mu_n \sigma\} : n \geq 1\}$ be the maximal term of series (6). Denote by Ω a class of positive unbounded on $(-\infty, +\infty)$ functions Φ such that the derivative Φ' is positive, continuously differentiable, and increasing to $+\infty$ on $(-\infty, +\infty)$. Let φ be the function

inverse to Φ' and $\Psi(x) = x - \Phi(x)/\Phi'(x)$ be the function associated with Φ in the sense of Newton. Then [5] in order that $\ln \mu(\sigma) \leq \Phi(\sigma) \in \Omega$ for all σ it is necessary and sufficient that $\ln |a_n| \leq -\mu_n \Psi(\varphi(\mu_n))$ for all n . Therefore, if we put $\mu_n = \ln \lambda_n$ and $\sigma = k + \tau$, then for hence we obtain

$$\max \{ |a_n| \lambda_n^{k+\tau} : n \geq 2 \} \leq e^{\Phi(k+\tau)} \quad (7)$$

provided $\lambda_n \geq 1$ and $\ln |a_n| \leq -\ln \lambda_n \Psi(\varphi(\ln \lambda_n))$ for all $n \geq 2$.

3. Starlikeness and convexity. We need the following lemma [2] (see also [6, p. 9].

Lemma 1. *If $\sum_{k=2}^{\infty} k|g_k| \leq 1$, then function (1) is starlike, and if $\sum_{k=2}^{\infty} k^2|g_k| \leq 1$, then function (1) is convex.*

We will further assume that

$$f(z) = f_1 z + \sum_{k=2}^{\infty} f_k z^n \quad (8)$$

and $f_1 \sum_{n=1}^{\infty} a_n \lambda_n \neq 0$. Also we assume that the sequence (λ_n) has a finite convergence index, i.e., there exist positive numbers τ and T such that

$$\sum_{n=1}^{\infty} \frac{1}{\lambda_n^{\tau}} = T < +\infty. \quad (9)$$

Hence, it follows that $\ln n = O(\ln \lambda_n)$ as $n \rightarrow \infty$.

Theorem 1. *Let $R(A) \geq 1$, $\Phi \in \Omega$, $\lambda_n \geq 1$, $\ln |a_n| \leq -\ln \lambda_n \Psi(\varphi(\ln \lambda_n))$ for $n \geq 1$ and $f_1 \sum_{n=1}^{\infty} a_n \lambda_n \neq 0$. Suppose that (8) and (9) hold. Then:*

- (i) *if $T \sum_{k=2}^{\infty} k|f_k|e^{\Phi(k+\tau)} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$, then function (3) is starlike in \mathbb{D} ;*
- (ii) *if $T \sum_{k=2}^{\infty} k^2|f_k|e^{\Phi(k+\tau)} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$, then function (3) is convex in \mathbb{D} .*

Proof. Since

$$\begin{aligned} A(z) &= \sum_{n=1}^{\infty} a_n \sum_{k=1}^{\infty} f_k \lambda_n^k z^k = \sum_{k=0}^{\infty} f_k \left(\sum_{n=1}^{\infty} a_n \lambda_n^k \right) z^k \\ &= f_1 \sum_{n=1}^{\infty} a_n \lambda_n z + \sum_{k=2}^{\infty} f_k \left(\sum_{n=1}^{\infty} a_n \lambda_n^k \right) z^k \\ &= f_1 \sum_{n=1}^{\infty} a_n \lambda_n \left(z + \sum_{k=2}^{\infty} \frac{f_k \sum_{n=1}^{\infty} a_n \lambda_n^k}{f_1 \sum_{n=1}^{\infty} a_n \lambda_n} z^k \right), \end{aligned} \quad (10)$$

whence it follows that function (3) is starlike (convex) if and only if function (1) with

$$g_k = \frac{f_k \sum_{n=1}^{\infty} a_n \lambda_n^k}{f_1 \sum_{n=1}^{\infty} a_n \lambda_n}, \quad k \geq 2, \quad (11)$$

is starlike (convex). Therefore, if

$$\sum_{k=2}^{\infty} k \left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right| \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|, \quad (12)$$

then by Lemma 1 function (3) is starlike, and if

$$\sum_{k=2}^{\infty} k^2 \left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right| \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|, \quad (13)$$

then function (3) is convex in \mathbb{D} .

By condition (9) in view of (7) we have

$$\sum_{n=1}^{\infty} |a_n| \lambda_n^k = \sum_{n=1}^{\infty} \frac{|a_n| \lambda_n^{k+\tau}}{\lambda_n^{\tau}} \leq T \max\{|a_n| \lambda_n^{k+\tau} : n \geq 1\} \leq T e^{\Phi(k+\tau)},$$

i.e., (12) holds provided $T \sum_{k=2}^{\infty} k |f_k| e^{\Phi(k+\tau)} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$ and (13) holds provided $T \sum_{k=2}^{\infty} k^2 |f_k| e^{\Phi(k+\tau)} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$.

Theorem 1 is proved.

Let us consider several consequences of Proposition 1. At first, let $\Phi(x) = e^x$ for $x > 0$. Then $\Psi(x) = x - 1$, $\varphi(x) = \ln x$, and $x\Psi(\varphi(x)) = x \ln(x/e)$. Therefore, we get the following statement.

Corollary 1. *Let (8) and (9) hold. Suppose that $\lambda_n > 1$ and $\ln |a_n| \leq -\ln \lambda_n \ln\left(\frac{\ln \lambda_n}{e}\right)$ for $n \geq 1$. If $T \sum_{k=2}^{\infty} k |f_k| \exp\{e^{k+\tau}\} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$, then function (3) is starlike, and if $T \sum_{k=2}^{\infty} k^2 |f_k| \exp\{e^{k+\tau}\} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$, then function (3) is convex.*

Now let $\Phi(x) = x^p$ for $x > 1$, where $p > 1$. Then $\Psi(x) = \frac{p-1}{p}x$, $\varphi(x) = \left(\frac{x}{p}\right)^{1/(p-1)}$, and $x\Psi(\varphi(x)) = (p-1)\left(\frac{x}{p}\right)^{p/(p-1)}$. Therefore, we get the following statement.

Corollary 2. *Let (8) and (9) hold. Suppose that $\lambda_n > 1$ and $\ln |a_n| \leq -(p-1)\left(\frac{\ln \lambda_n}{p}\right)^{p/(p-1)}$ for $n \geq 1$. If $T \sum_{k=2}^{\infty} k |f_k| \exp\{(k+\omega)^p\} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$, then function (3) is starlike, and if $T \sum_{k=2}^{\infty} k^2 |f_k| \exp\{(k+\tau)^p\} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$, then function (3) is convex.*

Finally, consider the most interesting case when $\Phi(x) = x \ln x$ for $x > e$. Then $\varphi(x) = e^{x-1}$ and $x\Psi(\varphi(x)) = x\varphi(x) - \Phi(\varphi(x)) = e^{x-1}$. Therefore, we get the following statement.

Corollary 3. *Let (8) and (9) hold. Suppose that $\lambda_n \geq 1$ and $\ln |a_n| \leq -e\lambda_n$ for $n \geq 1$. If $T \sum_{k=2}^{\infty} k |f_k| (k+\tau)^{k+\tau} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$, then function (3) is starlike, and if $T \sum_{k=2}^{\infty} k^2 |f_k| (k+\tau)^{k+\tau} \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|$, then function (3) is convex.*

Remark 1. In [2] it is proved that if $\alpha \in [0, 1]$, $\beta \in (0, 1]$, and

$$\sum_{k=2}^{\infty} \{(1+\beta)k - 2\beta\alpha - (1-\beta)\} |g_k| \leq 2\beta(1-\alpha),$$

then function (1) is starlike of order α and type β , and if

$$\sum_{k=2}^{\infty} k \{(1+\beta)k - 2\beta\alpha - (1-\beta)\} |g_k| \leq 2\beta(1-\alpha),$$

then function (1) is convex of order α and type β . Therefore, as above, we get the following statement.

Proposition 1. *Let $\alpha \in [0, 1)$, $\beta \in (0, 1]$, and the conditions of Theorem 1 are fulfilled. If*

$$T \sum_{k=2}^{\infty} \{(1+\beta)k - 2\beta\alpha - (1-\beta)\} |f_k| e^{\Phi(k+\tau)} \leq 2\beta(1-\alpha) \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|,$$

then function (3) is starlike of order α and type β , and if

$$T \sum_{k=2}^{\infty} k \{(1+\beta)k - 2\beta\alpha - (1-\beta)\} |f_k| e^{\Phi(k+\tau)} \leq 2\beta(1-\alpha) \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|,$$

then function (3) is convex of order α and type β .

4. Close-to-convexity. By W. Kaplan [7], function (2) is said to be close-to-convex in \mathbb{D} if there exists a convex in \mathbb{D} function F such that $\operatorname{Re}(\phi'(z)/F'(z)) > 0$, $z \in \mathbb{D}$. Close-to-convex function ϕ has a characteristic property that the complement G of the domain $\phi(\mathbb{D})$ can be filled with rays L which go from ∂G and lie in G . Every close-to-convex in \mathbb{D} function f is univalent in \mathbb{D} and, therefore, $f'(0) \neq 0$. Hence it follows that the function ϕ is close-to-convex in \mathbb{D} if and only if the function (1) with $g_n = \phi_n/\phi_1$ is close-to-convex in \mathbb{D} .

For function (1) the following Alexander criterion is valid [8] (see also [6, p. 11]): *if*

$$1 \geq 2g_2 \geq \dots \geq kg_k \geq (k+1)g_{k+1} \geq \dots > 0, \quad (14)$$

then function (1) is close-to-convex in \mathbb{D} . For coefficients (11) condition (14) is equivalent to condition

$$1 \geq \frac{2f_2 \sum_{n=1}^{\infty} a_n \lambda_n^2}{f_1 \sum_{n=1}^{\infty} a_n \lambda_n} \geq \dots \geq \frac{k f_k \sum_{n=1}^{\infty} a_n \lambda_n^k}{f_1 \sum_{n=1}^{\infty} a_n \lambda_n} \geq \frac{(k+1) f_{k+1} \sum_{n=1}^{\infty} a_n \lambda_n^{k+1}}{f_1 \sum_{n=1}^{\infty} a_n \lambda_n} \geq \dots > 0.$$

Therefore, the following statement is true.

Proposition 2. *Let (8) holds and either all coefficients f_k and a_n are positive or all coefficients f_k and a_n are negative. If*

$$f_1 \sum_{n=1}^{\infty} a_n \lambda_n \geq 2f_2 \sum_{n=1}^{\infty} a_n \lambda_n^2 \geq \dots \geq k f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \geq (k+1) f_{k+1} \sum_{n=1}^{\infty} a_n \lambda_n^{k+1} \geq \dots > 0,$$

then function (3) close-to-convex in \mathbb{D} .

Choosing the function F appropriately, one can obtain other sufficient conditions for the close-to-convexity of the function g . For example, if $F(z) = \ln \frac{1}{1-z}$, then, as in [6, pp. 11, 12], we have

$$\frac{g'(z)}{F'(z)} = 1 + \sum_{k=1}^{\infty} ((k+1)g_{k+1} - kg_k) z^k.$$

Suppose that all $g_k > 0$, $kg_k \nearrow \xi < 2$ as $k \rightarrow \infty$ and put $F_n(z) = 1 + \sum_{k=1}^n ((k+1)g_{k+1} - kg_k) z^k$. Then, for all $z \in \mathbb{D}$,

$$\operatorname{Re} F_n(z) \geq 1 - \left| \sum_{k=1}^n ((k+1)g_{k+1} - kg_k) z^k \right|$$

$$\geq 1 - \sum_{k=1}^n ((k+1)g_{k+1} - kg_k) = 2 - (n+1)g_{n+1} \geq 2 - \xi > 0.$$

Since $\frac{g'(z)}{F'(z)} = \lim_{n \rightarrow \infty} F_n(z)$, from hence it follows that function (1) is close-to-convex and, thus, the following statement is proved.

Proposition 3. *Let (8) holds and either all coefficients f_k and a_n are positive or all coefficients f_k and a_n are negative. If $\left(kf_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right) / \left(f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right) \nearrow \xi < 2$ as $k \rightarrow \infty$, then function (3) close-to-convex in \mathbb{D} .*

5. Shah's differential equation. S. M. Shah [9] indicated conditions on real parameters β_0 , β_1 , γ_0 , γ_1 , γ_2 of the differential equation

$$z^2 w'' + (\beta_0 z^2 + \beta_1 z) w' + (\gamma_0 z^2 + \gamma_1 z + \gamma_2) w = 0, \quad (15)$$

under which there exists an entire transcendental solution $g(z) = \sum_{k=0}^{\infty} g_k z^k$ that together with its derivatives are close-to-convex in \mathbb{D} . It easy to show that g is a solution of (15) if and only if $\gamma_2 g_0 = 0$, $(\beta_1 + \gamma_2) g_1 + \gamma_1 g_0 = 0$ and

$$g_k = -\frac{\beta_0(k-1) + \gamma_1}{k(k+\beta_1-1) + \gamma_2} g_{k-1} - \frac{\gamma_0}{k(k+\beta_1-1) + \gamma_2} g_{k-2}, \quad k \geq 2. \quad (16)$$

If either $\gamma_0 = 0$ or $\beta_0 = \gamma_1 = 0$, the two-term recurrent formula turns into a one-term recurrent formula and these cases are studied in [9]. In the general case the existence of solutions that together with its derivatives are close-to-convex in \mathbb{D} was studied in [10, 11]. The convexity of such solutions was studied in [12].

The question of the existence of a solution (3) to the differential equation (15) is natural and can be solved in the general case of a two-term recurrent formula for coefficients, but we will limit ourselves to the case of a special one-term recurrent formula.

We choose $\beta_0 = \beta_1 = \gamma_0 = \gamma_2 = 0$. Then for $z \neq 0$ from (15) we obtain $zw'' + \gamma_1 w = 0$ and (16) implies $g_k = -\frac{\gamma_1}{k(k-1)} g_{k-1}$ for $k \geq 2$. In view of the equalities $\gamma_2 g_0 = 0$ and $(\beta_1 + \gamma_2) g_1 + \gamma_1 g_0 = 0$, the coefficients g_0 and g_1 may be arbitrary. Choosing $g_0 = 0$, $g_1 = 1$, and g_k by using the formula (11), hence we get that the function A is a solution of the differential equation $zw'' + \gamma_1 w = 0$ if and only if

$$f_k \sum_{n=1}^{\infty} a_n \lambda_n^k = -\frac{\gamma_1}{k(k-1)} f_{k-1} \sum_{n=1}^{\infty} a_n \lambda_n^{k-1}, \quad k \geq 2. \quad (17)$$

By using this formula we prove the following theorem.

Theorem 2. *Let $\beta_0 = \beta_1 = \gamma_0 = \gamma_2 = 0$ and $\gamma_1 \neq 0$. Then Shah's differential equation (15) has an integer solution (10) with coefficients satisfying condition (17) and such that if $|\gamma_1| \leq 4/5$, then function A is starlike and if $|\gamma_1| \leq 8/19$, then function A is convex in \mathbb{D} .*

Proof. If $|\gamma_1| \leq 4/5$, then from (17) we have

$$\sum_{k=2}^{\infty} k \left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right| \leq \sum_{k=2}^{\infty} k \frac{|\gamma_1|}{k(k-1)} \left| f_{k-1} \sum_{n=1}^{\infty} a_n \lambda_n^{k-1} \right|$$

$$\begin{aligned}
&= |\gamma_1| \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right| + |\gamma_1| \sum_{k=2}^{\infty} \frac{1}{k} \left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right| \\
&= |\gamma_1| \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right| + |\gamma_1| \sum_{k=2}^{\infty} \frac{1}{k^2} k \left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right| \\
&\leq |\gamma_1| \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right| + \frac{|\gamma_1|}{4} \sum_{k=2}^{\infty} k \left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right|
\end{aligned}$$

and, thus,

$$\left(1 - \frac{|\gamma_1|}{4} \right) \sum_{k=2}^{\infty} k \left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right| \leq |\gamma_1| \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|,$$

whence

$$\sum_{k=2}^{\infty} k \left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right| \leq \frac{4|\gamma_1|}{4 - |\gamma_1|} \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right| \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|,$$

because $|\gamma_1| \leq 4/5$, i.e., (12) holds and function (10) is starlike.

If $|\gamma_1| \leq 8/19$, then similarly

$$\sum_{k=2}^{\infty} k^2 \left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right| \leq 2|\gamma_1| \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right| + \frac{3|\gamma_1|}{8} \sum_{k=2}^{\infty} k^2 \left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right|,$$

whence

$$\sum_{k=2}^{\infty} k^2 \left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right| \leq \frac{16|\gamma_1|}{8 - 3|\gamma_1|} \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right| \leq \left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|,$$

i.e., (13) holds and function (10) is convex.

Finally, (17) implies

$$\begin{aligned}
\ln \frac{1}{\left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right|} &= \ln \frac{1}{\left| f_{k-1} \sum_{n=1}^{\infty} a_n \lambda_n^{k-1} \right|} + \ln \frac{k(k-1)}{|\gamma_1|} \\
&= \ln \frac{1}{\left| f_{k-2} \sum_{n=1}^{\infty} a_n \lambda_n^{k-2} \right|} + \ln \frac{k(k-1)}{|\gamma_1|} + \ln \frac{(k-1)(k-2)}{|\gamma_1|} = \dots \\
&= \ln \frac{1}{\left| f_1 \sum_{n=1}^{\infty} a_n \lambda_n \right|} + \sum_{j=2}^k \ln \frac{j(j-1)}{|\gamma_1|},
\end{aligned}$$

whence it follows that

$$\frac{1}{k} \ln \frac{1}{\left| f_k \sum_{n=1}^{\infty} a_n \lambda_n^k \right|} \rightarrow +\infty, \quad k \rightarrow \infty,$$

i.e., function (10) is entire.

The proof of Theorem 2 is complete.

The author states that there is no conflict of interest. All necessary data are included into the paper. The author declares no special funding of this work.

References

1. G. M. Golusin, *Geometrical theory of functions of complex variables* [in Russian], Nauka, Moscow (1966).
2. A. W. Goodman, *Univalent functions and nonanalytic curves*, Proc. Amer. Math. Soc., **8**, № 3, 597–601 (1957).
3. I. S. Jackc, *Functions starlike and convex of order α* , J. Lond. Math. Soc., **3**, 469–474 (1971).
4. V. P. Gupta, *Convex class of starlike functions*, Yokohama Math. J., **32**, 55–59 (1984).
5. M. M. Sheremeta, S. I. Fedynyak, *On the derivative of Dirichlet series*, Sib. Math. J., **39**, № 1, 206–223 (1998).
6. M. M. Sheremeta, *Geometric properties of analytic solutions of differential equations*, Chyslo, Publisher I. E. Chyzhykov, Lviv (2019).
7. W. Kaplan, *Close-to-convex schlicht functions*, Michigan Math. J., **1**, № 2, 169–185 (1952).
8. J. W. Alexander, *Functions which map the interior of the unit circle upon simple regions*, Ann. of Math. (2), **17**, 12–22 (1915/1916).
9. S. M. Shah, *Univalence of a function f and its successive derivatives when f satisfies a differential equation, II*, J. Math. Anal. Appl., **142**, 422–430 (1989).
10. Z. M. Sheremeta, *Close-to-convexity of entire solutions of a differential equation*, Mat. Metodi Fiz.-Mekh. Polya, **42**, № 3, 31–35 (1999).
11. Z. M. Sheremeta, *On properties of entire solutions of a differential equation*, Differ. Equat., **36**, № 8, 1–6 (2000).
12. Z. M. Sheremeta, M. M. Sheremeta, *Convexity of entire solutions of a differential equation*, Mat. Metodi Fiz.-Mekh. Polya, **47**, № 2, 186–191 (2004).

*Received 29.09.23,
after revision — 23.11.23*