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Let f(z) =
\sum \infty 

k=1
fkz

k be an entire transcendental function, let (\lambda n) be a sequence of positive numbers
increasing to +\infty , and let the series A(z) =

\sum \infty 

n=1
anf(\lambda nz) be regularly convergent in \BbbD = \{ z : | z| < 1\} .

The starlikeness and convexity of the function A are studied. For example, if
\sum \infty 

n=1
\lambda  - \tau 
n = T < +\infty ,

\mathrm{l}\mathrm{n} | an| \leq  - e\lambda n, and T
\sum \infty 

k=2
k| fk| (k + \tau )k+\tau \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| , then the function A is starlike. It is
proved that, under certain conditions on the parameters, the differential equation z2w\prime \prime +(\beta 0z

2+\beta 1z)w
\prime +

(\gamma 0z
2 + \gamma 1z + \gamma 2)w = 0 has an entire solution A that is starlike or convex in \BbbD .

Нехай f(z) =
\sum \infty 

k=1
fkz

k —цiла трансцендентна функцiя, (\lambda n) —зростаюча до +\infty послiдовнiсть
додатних чисел i ряд A(z) =

\sum \infty 

n=1
anf(\lambda nz) регулярно збiжний у \BbbD = \{ z : | z| < 1\} . Вивчено

зiрковiсть i опуклiсть функцiї A. Наприклад, якщо
\sum \infty 

n=1
\lambda  - \tau 
n = T < +\infty , \mathrm{l}\mathrm{n} | an| \leq  - e\lambda n i

T
\sum \infty 

k=2
k| fk| (k + \tau )k+\tau \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| , то функцiя A є зiрковою. Доведено, що за певних умов
на параметри диференцiальне рiвняння z2w\prime \prime + (\beta 0z

2 + \beta 1z)w
\prime + (\gamma 0z

2 + \gamma 1z + \gamma 2)w = 0 має цiлий
розв’язок A, який є зiрковим або опуклим у \BbbD .

1. Introduction. Let S be a class of functions

g(z) = z +
\infty \sum 
k=2

gkz
k (1)

analytic univalent in \BbbD = \{ z : | z| < 1\} . The function g \in S is said to be starlike if g(\BbbD )
is starlike domain concerning of the origin. It is well known [1, p. 202] that the condition
\mathrm{R}\mathrm{e} \{ zg\prime (z)/g(z)\} > 0, z \in \BbbD , is necessary and sufficient for the starlikeness of g. A.W.Goodman
[2] pointed out the conditions on the coefficients gn under which function (1) is starlike. The
concept of the starlikeness of function g \in S got the series of generalizations. I. S. Jack [3] studied
starlike functions of order \alpha \in [0, 1), i.e., such functions g \in S, for which \mathrm{R}\mathrm{e} \{ zg\prime (z)/g(z)\} > \alpha ,
z \in \BbbD . V. P. Gupta [4] introduced the concept of starlike function of order \alpha \in [0, 1) and type
\beta \in (0, 1]. A function g \in S is so named for that | zg\prime (z)/g(z) - 1| < \beta | zg\prime (z)/g(z) + 1 - 2\alpha | for
all z \in \BbbD .
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142 MYROSLAV SHEREMETA

An analytic univalent in \BbbD = \{ z : | z| < 1\} function

\phi (z) =

\infty \sum 
n=0

\phi nz
n (2)

is said to be convex if \phi (\BbbD ) is a convex domain. It is clear that function (2) is convex if and only
if function (1) with gn = \phi n/\phi 1 is convex. Also it is well known [1, p. 203] that the condition
\mathrm{R}\mathrm{e} \{ 1 + z\phi \prime \prime (z)/\phi \prime (z)\} > 0, z \in \BbbD , is necessary and sufficient for the convexity of \varphi . Therefore,
function g \in S is convex if and only if \mathrm{R}\mathrm{e} \{ 1 + zg\prime \prime (z)/g\prime (z)\} > 0, z \in \BbbD , i.e., the function
g1(z) = zg\prime (z) is starlike. By virtue of this remark, the function (1) is called [2] convex of order
\alpha \in [0, 1) and type \beta \in (0, 1] if | zg\prime \prime (z)/g\prime (z)| < \beta | zg\prime \prime (z)/g\prime (z) + 2(1 - \alpha )| for all z \in \BbbD .

Let f(z) =
\sum \infty 

k=0
fkz

k be an entire transcendental function, (\lambda n) be a sequence of positive
numbers increasing to +\infty and the series

A(z) =

\infty \sum 
n=1

anf(\lambda nz) (3)

regularly converges in \{ z : | z| < R[A]\} , i.e., for all r \in [0, R[A])

\infty \sum 
n=1

| an| Mf (r\lambda n) < +\infty , Mf (r) = \mathrm{m}\mathrm{a}\mathrm{x}\{ | f(z)| : | z| = r\} . (4)

In the proposed note, we will investigate the conditions, under which function (3) is starlike,
convex or close-to-convex. The results obtained are applicable to the study of the properties of
solutions some differential equation.

2. Preliminary results. At first, we remark that if R[A] \geq 1, then in view of (4), for each
r < R[A], we have | an| Mf (r\lambda n) \leq 1 for n \geq n0(r), i.e.,

1

\lambda n
M - 1

f

\biggl( 
1

| an| 

\biggr) 
\geq r, whence in view

of the arbitrariness of r we get

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

\lambda n
M - 1

f

\biggl( 
1

| an| 

\biggr) 
\geq R[A] \geq 1. (5)

Consider a Dirichlet series

D(\sigma ) =

\infty \sum 
n=1

| an| \lambda \sigma 
n =

\infty \sum 
n=1

| an| \mathrm{e}\mathrm{x}\mathrm{p}\{ \mu n\sigma \} , \mu n = \mathrm{l}\mathrm{n}\lambda n. (6)

From (5) it follows that 1/| an| \geq Mf (c\lambda n) for some c > 0 and all n. Therefore,

\mathrm{l}\mathrm{i}\mathrm{m}
n\rightarrow \infty 

1

\mu n
\mathrm{l}\mathrm{n}

1

| an| 
\geq \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

\mathrm{l}\mathrm{n}Mf (c\lambda n)

\mathrm{l}\mathrm{n}\lambda n
= +\infty ,

because the function f is transcendental. Therefore, if \mathrm{l}\mathrm{n}n = O(\mu n) as n \rightarrow \infty , then series (6)
converges for all \sigma .

Let \mu (\sigma ) = \mathrm{m}\mathrm{a}\mathrm{x}\{ | an| \mathrm{e}\mathrm{x}\mathrm{p}\{ \mu n\sigma \} : n \geq 1\} be the maximal term of series (6). Denote by
\Omega a class of positive unbounded on ( - \infty ,+\infty ) functions \Phi such that the derivative \Phi \prime is
positive, continuously differentiable, and increasing to +\infty on ( - \infty ,+\infty ). Let \varphi be the function
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inverse to \Phi \prime and \Psi (x) = x  - \Phi (x)/\Phi \prime (x) be the function associated with \Phi in the sense of
Newton. Then [5] in order that \mathrm{l}\mathrm{n}\mu (\sigma ) \leq \Phi (\sigma ) \in \Omega for all \sigma it is necessary and sufficient that
\mathrm{l}\mathrm{n} | an| \leq  - \mu n\Psi (\varphi (\mu n)) for all n. Therefore, if we put \mu n = \mathrm{l}\mathrm{n}\lambda n and \sigma = k + \tau , then for hence
we obtain

\mathrm{m}\mathrm{a}\mathrm{x}
\bigl\{ 
| an| \lambda k+\tau 

n : n \geq 2
\bigr\} 
\leq e\Phi (k+\tau ) (7)

provided \lambda n \geq 1 and \mathrm{l}\mathrm{n} | an| \leq  - \mathrm{l}\mathrm{n}\lambda n\Psi (\varphi (\mathrm{l}\mathrm{n}\lambda n)) for all n \geq 2.
3. Starlikeness and convexity. We need the following lemma [2] (see also [6, p. 9].
Lemma 1. If

\sum \infty 

k=2
k| gk| \leq 1, then function (1) is starlike, and if

\sum \infty 

k=2
k2| gk| \leq 1, then

function (1) is convex.
We will further assume that

f(z) = f1z +

\infty \sum 
k=2

fkz
n (8)

and f1
\sum \infty 

n=1
an\lambda n \not = 0. Also we assume that the sequence (\lambda n) has a finite convergence index,

i.e., there exist positive numbers \tau and T such that
\infty \sum 
n=1

1

\lambda \tau 
n

= T < +\infty . (9)

Hence, it follows that \mathrm{l}\mathrm{n}n = O(\mathrm{l}\mathrm{n}\lambda n) as n \rightarrow \infty .
Theorem 1. Let R(A) \geq 1, \Phi \in \Omega , \lambda n \geq 1, \mathrm{l}\mathrm{n} | an| \leq  - \mathrm{l}\mathrm{n}\lambda n\Psi (\varphi (\mathrm{l}\mathrm{n}\lambda n)) for n \geq 1 and

f1
\sum \infty 

n=1
an\lambda n \not = 0. Suppose that (8) and (9) hold. Then:

(i) if T
\sum \infty 

k=2
k| fk| e\Phi (k+\tau ) \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| , then function (3) is starlike in \BbbD ;

(ii) if T
\sum \infty 

k=2
k2| fk| e\Phi (k+\tau ) \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| , then function (3) is convex in \BbbD .
Proof. Since

A(z) =
\infty \sum 
n=1

an

\infty \sum 
k=1

fk\lambda 
k
nz

k =
\infty \sum 
k=0

fk

\Biggl( \infty \sum 
n=1

an\lambda 
k
n

\Biggr) 
zk

= f1

\infty \sum 
n=1

an\lambda nz +

\infty \sum 
k=2

fk

\Biggl( \infty \sum 
n=1

an\lambda 
k
n

\Biggr) 
zk

= f1

\infty \sum 
n=1

an\lambda n

\left(  z +
\infty \sum 
k=2

fk
\sum \infty 

n=1
an\lambda 

k
n

f1
\sum \infty 

n=1
an\lambda n

zk

\right)  , (10)

whence it follows that function (3) is starlike (convex) if and only if function (1) with

gk =
fk
\sum \infty 

n=1
an\lambda 

k
n

f1
\sum \infty 

n=1
an\lambda n

, k \geq 2, (11)

is starlike (convex). Therefore, if
\infty \sum 
k=2

k

\bigm| \bigm| \bigm| \bigm| \bigm| fk
\infty \sum 
n=1

an\lambda 
k
n

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\bigm| \bigm| \bigm| \bigm| \bigm| f1

\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| , (12)
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then by Lemma 1 function (3) is starlike, and if
\infty \sum 
k=2

k2

\bigm| \bigm| \bigm| \bigm| \bigm| fk
\infty \sum 
n=1

an\lambda 
k
n

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\bigm| \bigm| \bigm| \bigm| \bigm| f1

\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| , (13)

then function (3) is convex in \BbbD .
By condition (9) in view of (7) we have

\infty \sum 
n=1

| an| \lambda k
n =

\infty \sum 
n=1

| an| \lambda k+\tau 
n

\lambda \tau 
n

\leq T \mathrm{m}\mathrm{a}\mathrm{x}\{ | an| \lambda k+\tau 
n : n \geq 1\} \leq Te\Phi (k+\tau ),

i.e., (12) holds provided T
\sum \infty 

k=2
k| fk| e\Phi (k+\tau ) \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| and (13) holds provided

T
\sum \infty 

k=2
k| fk| e\Phi (k+\tau ) \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| .
Theorem 1 is proved.
Let us consider several consequences of Proposition 1. At first, let \Phi (x) = ex for x > 0.

Then \Psi (x) = x  - 1, \varphi (x) = \mathrm{l}\mathrm{n}x, and x\Psi (\varphi (x)) = x \mathrm{l}\mathrm{n}(x/e). Therefore, we get the following
statement.

Corollary 1. Let (8) and (9) hold. Suppose that \lambda n > 1 and \mathrm{l}\mathrm{n}| an| \leq  - \mathrm{l}\mathrm{n}\lambda n \mathrm{l}\mathrm{n}

\biggl( 
\mathrm{l}\mathrm{n}\lambda n

e

\biggr) 
for n \geq 1. If T

\sum \infty 

k=2
k| fk| \mathrm{e}\mathrm{x}\mathrm{p}\{ ek+\tau \} \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| , then function (3) is starlike, and if

T
\sum \infty 

k=2
k2| fk| \mathrm{e}\mathrm{x}\mathrm{p}\{ ek+\tau \} \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| , then function (3) is convex.

Now let \Phi (x) = xp for x > 1, where p > 1. Then \Psi (x) =
p - 1

p
x, \varphi (x) =

\biggl( 
x

p

\biggr) 1/(p - 1)

, and

x\Psi (\varphi (x)) = (p - 1)

\biggl( 
x

p

\biggr) p/(p - 1)

. Therefore, we get the following statement.

Corollary 2. Let (8) and (9) hold. Suppose that \lambda n > 1 and \mathrm{l}\mathrm{n} | an| \leq  - (p - 1)

\biggl( 
\mathrm{l}\mathrm{n}\lambda n

p

\biggr) p/(p - 1)

for n \geq 1. If T
\sum \infty 

k=2
k| fk| \mathrm{e}\mathrm{x}\mathrm{p}\{ (k + \omega )p\} \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| , then function (3) is starlike, and

if T
\sum \infty 

k=2
k2| fk| \mathrm{e}\mathrm{x}\mathrm{p}\{ (k + \tau )p\} \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| , then function (3) is convex.
Finally, consider the most interesting case when \Phi (x) = x \mathrm{l}\mathrm{n}x for x > e. Then \varphi (x) = ex - 1

and x\Psi (\varphi (x)) = x\varphi (x) - \Phi (\varphi (x)) = ex - 1. Therefore, we get the following statement.
Corollary 3. Let (8) and (9) hold. Suppose that \lambda n \geq 1 and \mathrm{l}\mathrm{n} | an| \leq  - e\lambda n for n \geq 1.

If T
\sum \infty 

k=2
k| fk| (k + \tau )k+\tau \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| , then function (3) is starlike, and if

T
\sum \infty 

k=2
k2| fk| (k + \tau )k+\tau \leq 

\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| , then function (3) is convex.
Remark 1. In [2] it is proved that if \alpha \in [0, 1), \beta \in (0, 1], and

\infty \sum 
k=2

\{ (1 + \beta )k  - 2\beta \alpha  - (1 - \beta )\} | gk| \leq 2\beta (1 - \alpha ),

then function (1) is starlike of order \alpha and type \beta , and if
\infty \sum 
k=2

k
\bigl\{ 
(1 + \beta )k  - 2\beta \alpha  - (1 - \beta )

\bigr\} 
| gk| \leq 2\beta (1 - \alpha ),
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then function (1) is convex of order \alpha and type \beta . Therefore, as above, we get the following
statement.

Proposition 1. Let \alpha \in [0, 1), \beta \in (0, 1], and the conditions of Theorem 1 are fulfilled. If

T

\infty \sum 
k=2

\bigl\{ 
(1 + \beta )k  - 2\beta \alpha  - (1 - \beta )

\bigr\} 
| fk| e\Phi (k+\tau ) \leq 2\beta (1 - \alpha )

\bigm| \bigm| \bigm| \bigm| \bigm| f1
\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| ,
then function (3) is starlike of order \alpha and type \beta , and if

T
\infty \sum 
k=2

k
\bigl\{ 
(1 + \beta )k  - 2\beta \alpha  - (1 - \beta )

\bigr\} 
| fk| e\Phi (k+\tau ) \leq 2\beta (1 - \alpha )

\bigm| \bigm| \bigm| \bigm| \bigm| f1
\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| ,
then function (3) is convex of order \alpha and type \beta .

4. Close-to-convexity. By W. Kaplan [7], function (2) is said to be close-to-convex in \BbbD if
there exists a convex in \BbbD function F such that \mathrm{R}\mathrm{e} (\phi \prime (z)/F \prime (z)) > 0, z \in \BbbD . Close-to-convex
function \phi has a characteristic property that the complement G of the domain \phi (\BbbD ) can be filled
with rays L which go from \partial G and lie in G. Every close-to-convex in \BbbD function f is univalent
in \BbbD and, therefore, f \prime (0) \not = 0. Hence it follows that the function \phi is close-to-convex in \BbbD if
and only if the function (1) with gn = \phi n/\phi 1 is close-to-convex in \BbbD .

For function (1) the following Alexander criterion is valid [8] (see also [6, p. 11]): if

1 \geq 2g2 \geq . . . \geq kgk \geq (k + 1)gk+1 \geq . . . > 0, (14)

then function (1) is close-to-convex in \BbbD . For coefficients (11) condition (14) is equivalent to
condition

1 \geq 
2f2

\sum \infty 

n=1
an\lambda 

2
n

f1
\sum \infty 

n=1
an\lambda n

\geq . . . \geq 
kfk

\sum \infty 

n=1
an\lambda 

k
n

f1
\sum \infty 

n=1
an\lambda n

\geq 
(k + 1)fk+1

\sum \infty 

n=1
an\lambda 

k+1
n

f1
\sum \infty 

n=1
an\lambda n

\geq . . . > 0.

Therefore, the following statement is true.
Proposition 2. Let (8) holds and either all coefficients fk and an are positive or all coeffi-

cients fk and an are negative. If

f1

\infty \sum 
n=1

an\lambda n \geq 2f2

\infty \sum 
n=1

an\lambda 
2
n \geq . . . \geq kfk

\infty \sum 
n=1

an\lambda 
k
n \geq (k + 1)fk+1

\infty \sum 
n=1

an\lambda 
k+1
n \geq . . . > 0,

then function (3) close-to-convex in \BbbD .
Choosing the function F appropriately, one can obtain other sufficient conditions for the

close-to-convexity of the function g. For example, if F (z) = \mathrm{l}\mathrm{n}
1

1 - z
, then, as in [6, pp. 11, 12],

we have
g\prime (z)

F \prime (z)
= 1 +

\infty \sum 
k=1

((k + 1)gk+1  - kgk)z
k.

Suppose that all gk > 0, kgk \nearrow \xi < 2 as k \rightarrow \infty and put Fn(z) = 1+
\sum n

k=1
((k+1)gk+1 - kgk)z

k.

Then, for all z \in \BbbD ,

\mathrm{R}\mathrm{e}Fn(z) \geq 1 - 

\bigm| \bigm| \bigm| \bigm| \bigm| 
n\sum 

k=1

((k + 1)gk+1  - kgk)z
k

\bigm| \bigm| \bigm| \bigm| \bigm| 
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\geq 1 - 
n\sum 

k=1

((k + 1)gk+1  - kgk) = 2 - (n+ 1)gn+1 \geq 2 - \xi > 0.

Since g\prime (z)

F \prime (z)
= \mathrm{l}\mathrm{i}\mathrm{m}n\rightarrow \infty Fn(z), from hence it follows that function (1) is close-to-convex and,

thus, the following statement is proved.
Proposition 3. Let (8) holds and either all coefficients fk and an are positive or all coeffici-

ents fk and an are negative. If
\Bigl( 
kfk

\sum \infty 

n=1
an\lambda 

k
n

\Bigr) 
/
\Bigl( 
f1
\sum \infty 

n=1
an\lambda n

\Bigr) 
\nearrow \xi < 2 as k \rightarrow \infty , then

function (3) close-to-convex in \BbbD .
5. Shah’s differential equation. S. M. Shah [9] indicated conditions on real parameters \beta 0,

\beta 1, \gamma 0, \gamma 1, \gamma 2 of the differential equation

z2w\prime \prime + (\beta 0z
2 + \beta 1z)w

\prime + (\gamma 0z
2 + \gamma 1z + \gamma 2)w = 0, (15)

under which there exists an entire transcendental solution g(z) =
\sum \infty 

k=0
gkz

k that together with
its derivatives are close-to-convex in \BbbD . It easy to show that g is a solution of (15) if and only if
\gamma 2g0 = 0, (\beta 1 + \gamma 2)g1 + \gamma 1g0 = 0 and

gk =  - \beta 0(k  - 1) + \gamma 1
k(k + \beta 1  - 1) + \gamma 2

gk - 1  - 
\gamma 0

k(k + \beta 1  - 1) + \gamma 2
gk - 2, k \geq 2. (16)

If either \gamma 0 = 0 or \beta 0 = \gamma 1 = 0, the two-term recurrent formula turns into a one-term recurrent
formula and these cases are studied in [9]. In the general case the existence of solutions that
together with its derivatives are close-to-convex in \BbbD was studied in [10, 11]. The convexity of
such solutions was studied in [12].

The question of the existence of a solution (3) to the differential equation (15) is natural and
can be solved in the general case of a two-term recurrent formula for coefficients, but we will
limit ourselves to the case of a special one-term recurrent formula.

We choose \beta 0 = \beta 1 = \gamma 0 = \gamma 2 = 0. Then for z \not = 0 from (15) we obtain zw\prime \prime + \gamma 1w = 0

and (16) implies gk =  - \gamma 1
k(k  - 1)

gk - 1 for k \geq 2. In view of the equalities \gamma 2g0 = 0 and
(\beta 1 + \gamma 2)g1 + \gamma 1g0 = 0, the coefficients g0 and g1 may be arbitrary. Choosing g0 = 0, g1 = 1,
and gk by using the formula (11), hence we get that the function A is a solution of the differential
equation zw\prime \prime + \gamma 1w = 0 if and only if

fk

\infty \sum 
n=1

an\lambda 
k
n =  - \gamma 1

k(k  - 1)
fk - 1

\infty \sum 
n=1

an\lambda 
k - 1
n , k \geq 2. (17)

By using this formula we prove the following theorem.
Theorem 2. Let \beta 0 = \beta 1 = \gamma 0 = \gamma 2 = 0 and \gamma 1 \not = 0. Then Shah’s differential equation (15)

has an integer solution (10) with coefficients satisfying condition (17) and such that if | \gamma 1| \leq 4/5,
then function A is starlike and if | \gamma 1| \leq 8/19, then function A is convex in \BbbD .

Proof. If | \gamma 1| \leq 4/5, then from (17) we have

\infty \sum 
k=2

k

\bigm| \bigm| \bigm| \bigm| \bigm| fk
\infty \sum 
n=1

an\lambda 
k
n

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\infty \sum 
k=2

k
| \gamma 1| 

k(k  - 1)

\bigm| \bigm| \bigm| \bigm| \bigm| fk - 1

\infty \sum 
n=1

an\lambda 
k - 1
n

\bigm| \bigm| \bigm| \bigm| \bigm| 
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= | \gamma 1| 

\bigm| \bigm| \bigm| \bigm| \bigm| f1
\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| + | \gamma 1| 
\infty \sum 
k=2

1

k

\bigm| \bigm| \bigm| \bigm| \bigm| fk
\infty \sum 
n=1

an\lambda 
k
n

\bigm| \bigm| \bigm| \bigm| \bigm| 
= | \gamma 1| 

\bigm| \bigm| \bigm| \bigm| \bigm| f1
\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| + | \gamma 1| 
\infty \sum 
k=2

1

k2
k

\bigm| \bigm| \bigm| \bigm| \bigm| fk
\infty \sum 
n=1

an\lambda 
k
n

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq | \gamma 1| 

\bigm| \bigm| \bigm| \bigm| \bigm| f1
\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| + | \gamma 1| 
4

\infty \sum 
k=2

k

\bigm| \bigm| \bigm| \bigm| \bigm| fk
\infty \sum 
n=1

an\lambda 
k
n

\bigm| \bigm| \bigm| \bigm| \bigm| 
and, thus, \biggl( 

1 - | \gamma 1| 
4

\biggr) \infty \sum 
k=2

k

\bigm| \bigm| \bigm| \bigm| \bigm| fk
\infty \sum 
n=1

an\lambda 
k
n

\bigm| \bigm| \bigm| \bigm| \bigm| \leq | \gamma 1| 

\bigm| \bigm| \bigm| \bigm| \bigm| f1
\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| ,
whence

\infty \sum 
k=2

k

\bigm| \bigm| \bigm| \bigm| \bigm| fk
\infty \sum 
n=1

an\lambda 
k
n

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 4| \gamma 1| 
4 - | \gamma 1| 

\bigm| \bigm| \bigm| \bigm| \bigm| f1
\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\bigm| \bigm| \bigm| \bigm| \bigm| f1

\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| ,
because | \gamma 1| \leq 4/5, i.e., (12) holds and function (10) is starlike.

If | \gamma 1| \leq 8/19, then similarly
\infty \sum 
k=2

k2

\bigm| \bigm| \bigm| \bigm| \bigm| fk
\infty \sum 
n=1

an\lambda 
k
n

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 2| \gamma 1| 

\bigm| \bigm| \bigm| \bigm| \bigm| f1
\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| + 3| \gamma 1| 
8

\infty \sum 
k=2

k2

\bigm| \bigm| \bigm| \bigm| \bigm| fk
\infty \sum 
n=1

an\lambda 
k
n

\bigm| \bigm| \bigm| \bigm| \bigm| ,
whence

\infty \sum 
k=2

k2

\bigm| \bigm| \bigm| \bigm| \bigm| fk
\infty \sum 
n=1

an\lambda 
k
n

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 16| \gamma 1| 
8 - 3| \gamma 1| 

\bigm| \bigm| \bigm| \bigm| \bigm| f1
\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| \leq 
\bigm| \bigm| \bigm| \bigm| \bigm| f1

\infty \sum 
n=1

an\lambda n

\bigm| \bigm| \bigm| \bigm| \bigm| ,
i.e., (13) holds and function (10) is convex.

Finally, (17) implies

\mathrm{l}\mathrm{n}
1\bigm| \bigm| \bigm| \bigm| fk \infty \sum 

n=1
an\lambda k

n

\bigm| \bigm| \bigm| \bigm| = \mathrm{l}\mathrm{n}
1\bigm| \bigm| \bigm| fk - 1

\sum \infty 

n=1
an\lambda 

k - 1
n

\bigm| \bigm| \bigm| + \mathrm{l}\mathrm{n}
k(k  - 1)

| \gamma 1| 

= \mathrm{l}\mathrm{n}
1\bigm| \bigm| \bigm| fk - 2

\sum \infty 

n=1
an\lambda 

k - 2
n

\bigm| \bigm| \bigm| + \mathrm{l}\mathrm{n}
k(k  - 1)

| \gamma 1| 
+ \mathrm{l}\mathrm{n}

(k  - 1)(k  - 2)

| \gamma 1| 
= . . .

= \mathrm{l}\mathrm{n}
1\bigm| \bigm| \bigm| f1\sum \infty 

n=1
an\lambda n

\bigm| \bigm| \bigm| +
k\sum 

j=2

\mathrm{l}\mathrm{n}
j(j  - 1)

| \gamma 1| 
,

whence it follows that
1

k
\mathrm{l}\mathrm{n}

1\bigm| \bigm| \bigm| fk\sum \infty 

n=1
an\lambda 

k
n

\bigm| \bigm| \bigm| \rightarrow +\infty , k \rightarrow \infty ,

i.e., function (10) is entire.
The proof of Theorem 2 is complete.
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