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We study the parabolic initial boundary-value problem for a system of two differential equations with two
different (Dirichlet and Neumann) boundary conditions. In particular, it occurs in the heat-mass transfer
theory. We find sufficient conditions for the generalized solution of the problem to be classical. They are
formulated in terms of the belonging of the problem data to generalized anisotropic Sobolev spaces.

Розглянуто параболiчну початково-крайову задачу для системи двох диференцiальних рiвнянь iз
двома крайовими умовами рiзного порядку (Дiрiхле таНеймана), яка зустрiчається, зокрема, у теорiї
тепломасообмiну. Одержано достатнi умови класичностi узагальненого розв’язку задачi, сформу-
льованi у термiнах належностi даних задачi до узагальнених анiзотропних просторiв Соболєва.

Вступ. При дослiдженнi параболiчних задач важливими є питання регулярностi, зокрема,
класичностi їхнiх узагальнених розв’язкiв. Пiд класичним розумiють неперервно диферен-
цiйовний розв’язок, який задовольняє задачу в термiнах класичних похiдних. Вiдповiдь на
цi питання дають, як правило, шляхом формулювання умов належностi правих частин
задачi до певних функцiональних просторiв. Чим тонше градуйована вибрана шкала функ-
цiональних просторiв, тим точнiший результат буде отримано. До певного часу параболiчнi
задачi вивчалися переважно у функцiональних анiзотропних просторах Соболєва та Гель-
дера [1 – 6], параметризованих числами. В останнi десятирiччя активно розвивається дослi-
дження параболiчних рiвнянь i систем у рiзних iнших шкалах функцiональних просторiв
[7 – 11]. Одними з них є шкали узагальнених анiзотропних просторiв Соболєва [12 – 14].
Вони параметризованi крiм числових показникiв регулярностi ще й додатковим функцiо-
нальним параметром. Тому їхнє використання дозволяє отримати бiльш точнi результати,
нiж це можливо в межах класичних шкал Соболєва i Гельдера. Шкали iзотропних уза-
гальнених просторiв Соболєва знайшли численнi застосування в теорiї елiптичних задач
[15 – 17].

У роботах [18, 19] доведено теореми про iзоморфiзми, дослiджено регулярнiсть i кла-
сичнiсть узагальнених розв’язкiв загальної параболiчної крайової задачi для системи ди-
ференцiальних рiвнянь другого порядку в шкалi узагальнених просторiв Соболєва. При
цьому в означеннi класичного розв’язку не вимагали його неперервностi на лiнiї з’єднання
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основи й бiчної поверхнi цилiндра. Часто зазначену умову неперервностi вважають части-
ною означення класичного розв’язку задачi (див., наприклад, [20, с. 42]). У цьому випадку
класичний розв’язок називатимемо сильно класичним. Цiкаво отримати умови, за яких
узагальнений розв’язок параболiчної задачi для систем рiвнянь буде сильно класичним.
У скалярному випадку такий результат отримано в [21].

Крайовi задачi для параболiчних систем диференцiальних рiвнянь другого порядку є
математичними моделями багатьох прикладних задач. У цiй статтi розглянемо окремий
змiстовний випадок параболiчної задачi. А саме: мiшану задачу для системи двох диферен-
цiальних рiвнянь другого порядку з двома крайовими умовами, одна з яких умова Дiрiхле,
друга — Неймана. Такi задачi виникають, зокрема, в теорiї тепломасообмiну [5] (п. 2.4).
Встановимо новi достатнi умови, за яких узагальнений розв’язок задачi буде сильно класич-
ним, а також конкретизуємо умови iснування класичного розв’язку цiєї задачi на основi
результатiв роботи [19]. Результати сформулюємо в термiнах належностi правих частин
задачi до узагальнених анiзотропних просторiв Соболєва.

2. Постановка задачi. Нехай довiльно заданi цiле число n \geq 2, дiйсне число \tau > 0
i обмежена область G \subset \BbbR n iз нескiнченно гладкою межею \Gamma := \partial G. Позначимо \Omega :=
G \times (0, \tau ) — вiдкритий цилiндр у \BbbR n+1, S := \Gamma \times (0, \tau ) — його бiчна поверхня. Тодi
\Omega := G \times [0, \tau ] i S := \Gamma \times [0, \tau ] є замикання \Omega i S вiдповiдно. Будемо ототожнювати G з
нижньою основою G\times \{ 0\} цилiндра \Omega . Для частинних похiдних функцiї, яка залежить вiд
x = (x1, . . . , xn) \in \BbbR n i t \in \BbbR , будемо використовувати такi позначення: D\alpha 

x := D\alpha 1
1 . . . D\alpha n

n ,
де Dk := \partial /\partial xk i \partial t := \partial /\partial t. Тут \alpha = (\alpha 1, . . . , \alpha n) — мультиiндекс i | \alpha | := \alpha 1 + . . .+ \alpha n.

Розглянемо у цилiндрi \Omega таку систему диференцiальних рiвнянь:

\partial tu1(x, t) =a11\Delta u1(x, t) + a12\Delta u2(x, t) + f1(x, t),

\partial tu2(x, t) =a21\Delta u1(x, t) + a22\Delta u2(x, t) + f2(x, t),
(1)

для всiх (x, t) \in \Omega .

Тут усi коефiцiєнти aij —сталi дiйснi числа, а характеристичнi числа \lambda 1 i \lambda 2 матрицi (aij)
такi, що \lambda 2 > \lambda 1 > 0. Така система є параболiчною за Петровським (див., наприклад, [5],
п. 2.4).

На бiчнiй поверхнi цилiндра задано двi крайовi умови

b11Dnu1(x, t) + b12Dnu2(x, t) = g1(x, t),

b21u1(x, t) + b22u2(x, t) = g2(x, t),
(2)

для всiх (x, t) \in S.

Тут усi коефiцiєнти bij —сталi дiйснi числа такi, що для крайових операторiв виконуються
так званi умови доповнюваностi [5] (п. 2.4), необхiднi для коректної постановки задачi. Цi
умови виконуються, зокрема, якщо b11b22 = 0 або b21b12 = 0, але не одночасно.

На основi цилiндра задано початковi данi Кошi

u1(x, t)
\bigm| \bigm| 
t=0

= h1(x),

u2(x, t)
\bigm| \bigm| 
t=0

= h2(x),
(3)

для всiх x \in G.
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Початково-крайова задача (1) – (3) буде параболiчною за Петровським у цилiндрi \Omega 
(див. означення в [3] (розд. 1, § 1) або [5]). Дiйсно, як зазначили вище, система (1) є
параболiчною за Петровським, а коефiцiєнти крайових операторiв (2) такi, що для останнiх
виконується умова доповнюваностi.

3. Функцiональнi простори. Для зручностi коротко нагадаємо означення узагальнених
анiзотропних просторiв Соболєва, потрiбних для формулювання результатiв. Для викладу
цього пункту скористаємося результатами з [19] (п. 2) i [12] (п. 4).

Через \scrM позначимо клас усiх неперервних функцiй \varphi : [1,\infty ) \rightarrow (0,\infty ) таких, що:
а) \varphi i 1/\varphi обмеженi на кожному вiдрiзку [1, c], де 1 < c < \infty ;
б) \varphi повiльно змiнна за Карамата на нескiнченностi, тобто

lim
r\rightarrow \infty 

\varphi (\lambda r)

\varphi (r)
= 1 для кожного \lambda > 0.

Нехай s \in \BbbR i \varphi \in \scrM . За означенням, комплексний лiнiйний простiр Hs,s/2;\varphi (\BbbR k), де
2 \leq k \in \BbbZ , складається з усiх повiльно зростаючих розподiлiв w \in \scrS \prime (\BbbR k) таких, що їхнє
(повне) перетворення Фур’є \widetilde w є функцiєю, яка локально iнтегровна на \BbbR k за Лебегом i
задовольняє умову

\| w\| Hs,s/2;\varphi (\BbbR k)

=

\left(  \int 
\BbbR k - 1

\int 
\BbbR 

\bigl( 
1 + | \xi | 2 + | \eta | 

\bigr) s
\varphi 2

\bigl( 
(1 + | \xi | 2 + | \eta | )1/2

\bigr) 
| \widetilde w(\xi , \eta )| 2 d\xi d\eta 

\right)  1/2

< \infty , (4)

де \xi \in \BbbR k - 1 i \eta \in \BbbR . Цей простiр гiльбертовий i сепарабельний щодо норми (4). Вiн є окре-
мим випадком просторiв \scrB p,\mu , уведених Хермандером [22] (п. 2.2), а саме: Hs,s/2;\varphi (\BbbR k) =
\scrB p,\mu за умови, що p = 2 i

\mu (\xi , \eta ) \equiv 
\bigl( 
1 + | \xi | 2 + | \eta | 

\bigr) s/2
\varphi 
\bigl( 
(1 + | \xi | 2 + | \eta | )1/2

\bigr) 
.

Гiльбертовий анiзотропний простiр Hs,s/2;\varphi (\Omega ) означено як простiр звужень на \Omega всiх
розподiлiв iз Hs,s/2;\varphi (\BbbR n+1), а гiльбертовий анiзотропний простiр Hs,s/2;\varphi (S) на бiчнiй
поверхнi цилiндра означено за базовим простором Hs,s/2;\varphi (\BbbR n) за допомогою спецiальних
локальних карт на бiчнiй поверхнi цилiндра (див. [23], п. 1). Означення та основнi власти-
востi просторiв Hs,s/2;\varphi (W ), де W \in \{ \Omega , S\} , наведено, наприклад, у [18] (п. 2). Iзотропнi
простори Hs;\varphi (G) i Hs;\varphi (\Gamma ), заданi на основi G цилiндра та лiнiї \Gamma з’єднання основи i
бiчної поверхнi вiдповiдно, означено в [15, пп. 2.1.1, 3.2.1; 17].

Також буде потрiбний простiр правих частин задачi \scrQ s - 2,s/2 - 1;\varphi (див. [18], п. 4). Вiн
утворений такими векторами (f1, f2, g1, g2, h1, h2) з простору\bigl( 

Hs - 2,s/2 - 1;\varphi (\Omega )
\bigr) 2 \oplus Hs - 3/2,s/2 - 3/4;\varphi (S)

\oplus Hs - 1/2,s/2 - 1/4;\varphi (S)\oplus 
\bigl( 
Hs - 1;\varphi (G)

\bigr) 2
,

якi задовольняють природнi умови узгодження правих частин параболiчної задачi (1) – (3).
Нарештi, нагадаємо потрiбнi означення локальних версiй просторiв, про якi йшла мова

вище (див. [12], п. 4). Нехай U — вiдкрита множина в \BbbR n+1 така, що \Omega 0 := U \cap \Omega \not = \varnothing 
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i U \cap \Gamma = \varnothing . Покладемо \Omega \prime := U \cap \partial \Omega , S0 := U \cap S, S\prime := U \cap \{ (x, \tau ) : x \in \Gamma \} i G0 :=

U \cap G. Позначимо через Hs,s/2;\varphi 
loc (\Omega 0,\Omega 

\prime ) лiнiйний простiр усiх розподiлiв u на \Omega таких, що
\chi u \in Hs,s/2;\varphi (\Omega ) для кожної функцiї \chi \in C\infty (\Omega ), яка задовольняє умову supp\chi \subset \Omega 0 \cup \Omega \prime .

Аналогiчно, позначимо через Hs,s/2;\varphi 
loc (S0, S

\prime ) лiнiйний простiр усiх розподiлiв v на S таких,
що \chi v \in Hs,s/2;\varphi (S) для будь-якої функцiї \chi \in C\infty (S), яка задовольняє умову supp\chi \subset 
S0 \cup S\prime . Нарештi, Hs;\varphi 

loc (G0) позначає лiнiйний простiр усiх розподiлiв w на G таких, що
\chi w \in Hs;\varphi (G) для кожної функцiї \chi \in C\infty (G), яка задовольняє умову supp\chi \subset G0.

Якщо \varphi (\cdot ) = 1, то цi простори є соболєвськими. В цьому випадку вилучаємо iндекс \varphi 
у їхнiх позначеннях.

4. Основнi результати. Параболiчнiсть за Петровським задачi (1) – (3) означає її корект-
ну розв’язнiсть у вiдповiдних шкалах узагальнених просторiв Соболєва (див. [18], теоре-
ма 4.1). Це, зокрема, означає, що для будь-якого вектора (f1, f2, g1, g2, h1, h2) правих частин
задачi з соболєвського простору \scrQ 0,0 задача має єдиний розв’язок (u1, u2) \in 

\bigl( 
H2,1(\Omega )

\bigr) 2
.

У нашому випадку простiр \scrQ 0,0 складається з вектор-функцiй (f1, f2, g1, g2, h1, h2), якi
належать простору \bigl( 

H0,0(\Omega )
\bigr) 2 \oplus H1/2,1/4(S)\oplus H3/2,3/4(S)\oplus 

\bigl( 
H1(G)

\bigr) 2
i задовольняють природну умову узгодження на лiнiї \Gamma з’єднання бiчної поверхнi та основи
цилiндра

g2 \upharpoonright \Gamma = (b21h1 + b22h2)\upharpoonright \Gamma . (5)

Отже, для будь-якого вектора (f1, f2, g1, g2, h1, h2) правих частин задачi (1) – (3), що
задовольняє такi умови:

f1, f2 \in H0,0(\Omega ),

g1 \in H1/2,1/4(S), g2 \in H3/2,3/4(S),

h1, h2 \in H1(G),

g2 \upharpoonright \Gamma = (b21h1 + b22h2)\upharpoonright \Gamma ,

задача має єдиний розв’язок u = (u1, u2) \in 
\bigl( 
H2,1(\Omega )

\bigr) 2
. Цей розв’язок називаємо узагаль-

неним розв’язком нашої задачi.
З практичної точки зору важливим є питання, за яких умов на правi частини задачi

її узагальнений розв’язок буде в певному розумiннi класичним. Оскiльки пiд класичним
розумiють такий неперервно диференцiйовний певну кiлькiсть разiв розв’язок u = (u1, u2),
що лiвi частини системи, крайових i початкових умов обчислюються в сенсi класичного
диференцiювання та слiдiв неперервних функцiй u1 i u2. Як зазначали у вступi, часто
однiєю з умов в означеннi класичного розв’язку задачi є умова його неперервностi на лiнiї
\Gamma з’єднання бiчної поверхнi та основи цилiндра. Цю умову буде виконано, якщо розв’язок є
неперервним у замкненому цилiндрi \Omega . У такому випадку будемо вживати термiн “сильно
класичний розв’язок”.

Наведемо точнi означення. Нехай

S\varepsilon := \{ x \in \Omega : dist(x, S) < \varepsilon \} , G\varepsilon := \{ x \in \Omega : dist(x,G) < \varepsilon \} ,

де число \varepsilon > 0.
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Узагальнений розв’язок u = (u1, u2) \in 
\bigl( 
H2,1(\Omega )

\bigr) 2 задачi (1) – (3) називаємо сильно
класичним, якщо вiн i його узагальненi похiднi задовольняють такi умови:

a1) D\alpha 
xu1, D

\alpha 
xu2 при 0 \leq | \alpha | \leq 2 та \partial tu1 i \partial tu2 неперервнi на \Omega ;

б1) D\alpha 
xu1, D

\alpha 
xu2 неперервнi на S\varepsilon \cup S для деякого числа \varepsilon > 0, якщо 0 \leq | \alpha | \leq 1 ;

в1) u1 i u2 неперервнi на \Omega .
Нагадаємо, узагальнений розв’язок u = (u1, u2) \in 

\bigl( 
H2,1(\Omega )

\bigr) 2 задачi (1) – (3) називаємо
класичним (див. [19], п. 3) якщо вiн i його узагальненi похiднi задовольняють умови a1),
б1) i

в2) u1 i u2 неперервнi на G\varepsilon \cup G для деякого числа \varepsilon > 0.
В означеннi класичного розв’язку задачi сформульовано мiнiмальнi умови на вектор-

функцiю u, за яких вона в термiнах класичних похiдних i слiдiв задовольняє рiвняння (1),
крайовi умови (2) i початковi умови (3). Для цього умову в1) неперервностi вектор-функцiї
u в усьому цилiндрi замiнюємо на умову в2) неперервностi лише в деякому малому околi
основи G.

Якщо вектор-функцiя u = u(x, t) = (u1(x, t), u2(x, t)) є класичним розв’язком зада-
чi (1) – (3), то лiвi частини рiвняння, крайових i початкових умов є неперервними функцiя-
ми на вiдповiдних множинах. Зрозумiло, що сильно класичний розв’язок є класичним, але
не навпаки.

Умови, за яких узагальнений розв’язок загальної параболiчної крайової задачi для си-
стеми диференцiальних рiвнянь є класичним, сформульовано в [19] (теорема 4). Наступна
теорема є конкретизацiєю зазначеної теореми для розглядуваної задачi.

Теорема 1. Припустимо, що вектор-функцiя u \in 
\bigl( 
H2,1(\Omega )

\bigr) 2 є узагальненим розв’язком
параболiчної задачi (1) – (3), правi частини якої задовольняють такi умови:

(f1, f2) \in 
\bigl( 
H

1+n/2, 1/2+n/4;\varphi 
loc (\Omega ,\varnothing )

\bigr) 2
\cap 
\bigl( 
H

n/2, n/4;\varphi 
loc (S\varepsilon , S)

\bigr) 2
\cap 
\bigl( 
H

 - 1+n/2, - 1/2+n/4;\varphi 
loc (G\varepsilon , G)

\bigr) 2
, (6)

g1 \in H
n/2+1/2, n/4+1/4;\varphi 
loc (S,\varnothing ), g2 \in H

n/2+3/2, n/4+3/4;\varphi 
loc (S,\varnothing ),

(h1, h2) \in 
\bigl( 
H

n/2;\varphi 
loc (G)

\bigr) 2
з деяким функцiональним параметром \varphi \in \scrM , що задовольняє iнтегральну умову

\infty \int 
1

dr

r \varphi 2(r)
< \infty . (7)

У випадку n = 2 додатково припускаємо, що функцiя \varphi зростає (у нестрогому сенсi). Тодi
розв’язок u = (u1, u2) є класичним.

Теорему 1 отримуємо з [19] (теорема 4) при N = 2, l0 = l1 = 1 i l2 = 0.
Зазначимо, що припущення зростання \varphi при n = 2 необхiдне нам з огляду на те, що

результат про розв’язнiсть задачi (1) – (3) в узагальнених просторах Соболєва [18] (теоре-
ма 4.1) отримано за умови, що її правi частини належать до просторiв, якi вкладаються
у вiдповiднi простори L2(\cdot ). А, наприклад, простiр H0,0;\varphi (\Omega ) для спадної \varphi буде вже
ширший, нiж H0,0(\Omega ) = L2(\Omega ).
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Зауваження 1. Використання узагальнених просторiв Соболєва дає бiльш тонкий ре-
зультат, нiж у випадку просторiв Соболєва. А саме: для того щоб висновок теореми 1
залишився правильним при \varphi = 1 (тут (7) не виконується), треба в (6) збiльшити число-
вi показники регулярностi просторiв на деяке число \delta > 0. Iншими словами, цi умови
замiнити на такi:

(f1, f2) \in 
\bigl( 
H

1+n/2+\delta , 1/2+n/4+\delta /2
loc (\Omega ,\varnothing )

\bigr) 2
\cap 
\bigl( 
H

n/2+\delta , n/4+\delta /2
loc (S\varepsilon , S)

\bigr) 2
\cap 
\bigl( 
H

 - 1+n/2+\delta , - 1/2+n/4+\delta /2
loc (G\varepsilon , G)

\bigr) 2
,

g1 \in H
n/2+1/2+\delta , n/4+1/4+\delta /2
loc (S,\varnothing ), g2 \in H

n/2+3/2+\delta , n/4+3/4+\delta /2
loc (S,\varnothing ),

(h1, h2) \in 
\bigl( 
H

n/2+\delta 
loc (G)

\bigr) 2
.

Останнi умови є бiльш сильними, нiж (6), оскiльки для довiльних s1 > s2 i \varphi \in \scrM 
правильнi вкладання Hs1,s1/2(\cdot ) \lhook \rightarrow Hs2,s2/2;\varphi (\cdot ) [14, c. 22].

Сформулюємо тепер основний результат — умови, за яких розв’язок u = u(x, t) зада-
чi (1) – (3) буде сильно класичним.

Теорема 2. Припустимо, що вектор-функцiя u \in 
\bigl( 
H2,1(\Omega )

\bigr) 2 є узагальненим розв’язком
параболiчної задачi (1) – (3), правi частини якої задовольняють умови

(f1, f2) \in 
\bigl( 
H

1+n/2, 1/2+n/4;\varphi 
loc (\Omega ,\varnothing )

\bigr) 2 \cap \bigl( 
H

n/2, n/4;\varphi 
loc (S\varepsilon , S)

\bigr) 2
, (8)

g1 \in H
n/2+1/2, n/4+1/4;\varphi 
loc (S,\varnothing ), g2 \in H

n/2+3/2, n/4+3/4;\varphi 
loc (S,\varnothing ), (9)

(f1, f2, g1, g2, h1, h2) \in \scrQ  - 1+n/2, - 1/2+n/4;\varphi (10)

з деяким функцiональним параметром \varphi \in \scrM , що задовольняє iнтегральну умову (7). У ви-
падку n = 2 додатково припускаємо, що функцiя \varphi зростає (у нестрогому сенсi). Тодi
розв’язок u = (u1, u2) є сильно класичним.

Зауважимо, для того щоб вказати, до яких просторiв належать правi частини задачi
згiдно з умовою (10), треба скористатись означенням простору \scrQ  - 1+n/2, - 1/2+n/4;\varphi . Вiн має
доволi складну будову [18] (п. 4) завдяки умовам узгодження, накладеним на компоненти
його елементiв. Кiлькiсть i складнiсть цих умов зростає зi зростанням n.

Зауваження 2. У практично важливих випадках n = 2 або n = 3 умова (10) у теоремi 2
еквiвалентна такiй:

(f1, f2) \in 
\bigl( 
H - 1+n/2, - 1/2+n/4;\varphi (\Omega )

\bigr) 2
,

g1 \in Hn/2 - 1/2, n/4 - 1/4;\varphi (S), g2 \in Hn/2+1/2, n/4+1/4;\varphi (S),

(h1, h2) \in 
\bigl( 
Hn/2;\varphi (G)

\bigr) 2
.

(11)

Взагалi, простiр \scrQ  - 1+n/2, - 1/2+n/4;\varphi для n = 2 або n = 3 складається з вектор-функцiй,
що задовольняють одночасно (11) i (5). Для вектор-функцiй (f1, f2, g1, g2, h1, h2) з форму-
лювання теореми 2 виконання (5) випливає з умови теореми u \in 

\bigl( 
H2,1(\Omega )

\bigr) 2
. Дiйсно, тодi
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(f1, f2, g1, g2, h1, h2) \in \scrQ 0,0. За означенням елементи простору \scrQ 0,0 задовольняють (5). При
n \geq 4 простiр \scrQ  - 1+n/2, - 1/2+n/4;\varphi складається з векторiв, якi задовольняють включення (11)
та бiльш складнi, нiж (5), умови узгодження [18] (п. 4).

Зазначимо, що для теореми 2 правильна версiя зауваження 1.
Доведення теореми 2. Покажемо, що функцiї u1 i u2 задовольняють умови a1) – в1)

означення сильно класичного розв’язку. Для умов а1) i б1) використаємо теорему 3 з [19].
Розглядаємо умову а1). Покладемо N = 2, \Omega 0 = \Omega , \Omega \prime = S0 = S\prime = G0 = \varnothing i p = 2.

Далi використовуємо включення

(f1, f2) \in 
\bigl( 
H

1+n/2, 1/2+n/4;\varphi 
loc (\Omega ,\varnothing )

\bigr) 2
з умови (8). Тодi з теореми 3 [19] випливає, що вектор-функцiя u(x, t) = (u1(x, t), u2(x, t))

i кожна її узагальнена частинна похiдна D\alpha 
x\partial 

\beta 
t u(x, t) = (D\alpha 

x\partial 
\beta 
t u1(x, t), D

\alpha 
x\partial 

\beta 
t u2(x, t)), де

| \alpha | + 2\beta \leq 2, неперервнi на множинi \Omega 0 \cup \Omega \prime = \Omega . При \beta = 0 маємо неперервнiсть D\alpha 
xu1

i D\alpha 
xu2 для | \alpha | \leq 2, при | \alpha | = 0 — неперервнiсть \partial tu1 i \partial tu2 вiдповiдно. Таким чином,

виконується умова а1).
Переходимо до умови б1). Покладемо N = 2, \Omega 0 = S\varepsilon , \Omega \prime = S0 = S, S\prime = G0 = \varnothing i

p = 1. Використаємо включення

(f1, f2) \in 
\bigl( 
H

n/2, n/4;\varphi 
loc (S\varepsilon , S)

\bigr) 2
з (8) i включення (9):

g1 \in H
n/2+1/2, n/4+1/4;\varphi 
loc (S,\varnothing ), g2 \in H

n/2+3/2, n/4+3/4;\varphi 
loc (S,\varnothing ).

У цьому випадку з теореми 3 [19] випливає, що вектор-функцiя u(x, t) = (u1(x, t), u2(x, t))

i кожна її узагальнена частинна похiдна D\alpha 
x\partial 

\beta 
t u(x, t) =

\bigl( 
D\alpha 

x\partial 
\beta 
t u1(x, t), D

\alpha 
x\partial 

\beta 
t u2(x, t)

\bigr) 
, де

| \alpha | + 2\beta \leq 1, неперервнi на множинi \Omega 0 \cup \Omega \prime = S\varepsilon \cup S. При \beta = 0 маємо неперервнiсть
D\alpha 

xu1 i D\alpha 
xu2 для | \alpha | \leq 1. Отже, виконується умова б1).

Нарештi, розглянемо умову в1). Використовуючи включення (10)

(f1, f2, g1, g2, h1, h2) \in \scrQ  - 1+n/2, - 1/2+n/4;\varphi 

i [19] (теорема 1) iз s = 1 + n/2, робимо висновок, що

(u1(x, t), u2(x, t)) \in 
\bigl( 
H1+n/2,1/2+n/4;\varphi (\Omega )

\bigr) 2
.

Розглянемо простiр H1+n/2,1/2+n/4;\varphi (\BbbR n+1) iз функцiональним параметром \varphi , який
задовольняє iнтегральну умову (7). З [14] (теорема 1.13(i)) при p = 0 i b = 1 випли-
ває, що всi елементи цього простору є неперервними на \BbbR n+1 функцiями. За означенням,
простiр H1+n/2,1/2+n/4;\varphi (\Omega ) складається зi звужень на \Omega розподiлiв iз простору
H1+n/2,1/2+n/4;\varphi (\BbbR n+1). Тому для u1 i u2 iснують такi w1 i w2 iз простору
H1+n/2,1/2+n/4;\varphi (\BbbR n+1), що u1 = w1 \upharpoonright \Omega i u2 = w2 \upharpoonright \Omega . Це означає, що u1 i u2 є непе-
рервними функцiями на \Omega , тобто виконується умова в1).

Теорему 2 доведено.
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