
DOI: 10.3842/nosc.v27i1.1459
УДК 517.9

МЕТОД ДЕКОМПОЗИЦIЇ АДОМЯНА В ТЕОРIЇ ЗАДАЧ,
ОБЕРНЕНИХ ДО НЕЛIНIЙНИХ КРАЙОВИХ ЗАДАЧ IЗ ЗАПIЗНЕННЯМ

Олександр Бойчук
Iнститут математики НАН України
вул. Терещенкiвська, 3, Київ, 01024, Україна
e-mail: boichuk.aa@gmail.com

Сергiй Чуйко
Донбаський державний педагогiчний унiверситет
вул. Генерала Батюка, 19, Слов’янськ, 84112, Донецька обл., Україна
Iнститут динамiки складних технiчних систем iменi Макса Планка
Магдебург, Нiмеччина
e-mail: chujko-slav@ukr.net, chuiko@mpi-magdeburg.mpg.de, вiдповiдальний за листування

Вiктор Чуйко
Київський нацiональний унiверситет iменi Тараса Шевченка
вул. Володимирська, 64, Київ, 01033, Україна
e-mail: chujko-slav@ukr.net

We investigate a weakly nonlinear boundary-value problem for a system of differential equations with
delay. The initial function of the differential system with delay contains an unknown eigenfunction that
provides the solvability of the weakly nonlinear boundary-value problem. By employing the Adomian
decomposition method, we derive conditions for solvability and develop a new iterative scheme to find
solutions of the weakly nonlinear boundary-value problem for a system of differential equations with delay
as well as its eigenfunction.

Дослiджено слабконелiнiйну крайову задачу для системи диференцiальних рiвнянь iз запiзненням.
Початкова функцiя диференцiальної системи iз запiзненням мiстить невiдому власну функцiю,
яка забезпечує розв’язнiсть слабконелiнiйної крайової задачi. Використовуючи метод декомпозицiї
Адомяна, отримано умови розв’язностi та побудовано нову iтерацiйну технiку для знаходження
розв’язкiв слабконелiнiйної крайової задачi для системи диференцiальних рiвнянь iз запiзненням,
а також її власної функцiї.

Постановка задачi. Дослiджуємо задачу про побудову розв’язку [1, 2]
z(\cdot , \varepsilon ) \in \BbbC 1

\bigl\{ 
[\Delta , T ] \setminus \{ k\Delta \} I

\bigr\} 
, T := (q + 1)\Delta , k = 1, 2, . . . , q + 1, z(t, \cdot ) \in \BbbC [0, \varepsilon 0],

нелiнiйної перiодичної крайової задачi з зосередженим запiзненням
z\prime (t, \varepsilon ) = A(t) z(t, \varepsilon ) +B(t) z(t - \Delta , \varepsilon ) + f(t) + \varepsilon Z(z(t, \varepsilon ), z(t - \Delta , \varepsilon ), t, \varepsilon ),

\ell z(\cdot , \varepsilon ) = \alpha ,
(1)

неперервного в точках t = k\Delta , з початковою функцiєю
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z(t, \varepsilon ) = \varphi (h(\varepsilon ), \varepsilon ),

залежною вiд власного вектора h(\varepsilon ) крайової задачi (1). Розв’язок крайової задачi (1) з
зосередженим запiзненням шукаємо у малому околi розв’язку [1, 3]

z0(t) \in \BbbC 1
\bigl\{ 
[\Delta , T ] \setminus \{ k\Delta \} I

\bigr\} 
, k = 1, 2, . . . , q + 1,

породжуючої нетерової (m \not = n) крайової задачi

z\prime 0(t) = A(t)z0(t) +B(t)z0(t - \Delta ) + f(t), t \in [\Delta , T ] \setminus \{ k\Delta \} I , t \not = k\Delta , \ell z0(\cdot ) = \alpha , (2)

неперервного в точках t = k\Delta , з початковою функцiєю

z0(t) = \varphi (h0, 0), h0 := h(0), t \in [0,\Delta ],

залежного вiд власного вектора h0 \in \BbbR n породжуючої крайової задачi (2). У точках t = k\Delta ,
k = 1, 2, . . . , q, розв’язок крайової задачi (1) з зосередженим запiзненням, можливо, зазнає
обмеженого розриву похiдної [1, 3]. Тут

A(t), B(t) \in \BbbC [\Delta , T ], f(t) \in \BbbC [\Delta , T ], \alpha \in \BbbR m.

Нелiнiйна вектор-функцiя Z(z(t, \varepsilon ), z(t - \Delta , \varepsilon ), t, \varepsilon ) аналiтична за невiдомими z(t, \varepsilon ) i z(t - 
\Delta , \varepsilon ) у малому околi розв’язку породжуючої крайової задачi (2) i функцiї z0(t  - \Delta ). Крiм
того, вектор-функцiя

Z
\bigl( 
z(t, \varepsilon ), z(t - \Delta , \varepsilon ), t, \varepsilon 

\bigr) 
неперервна за малим параметром \varepsilon на вiдрiзку [0, \varepsilon 0], а також неперервна за незалежною
змiнною t на вiдрiзку [\Delta , T ]. Функцiю \varphi (h(\varepsilon ), \varepsilon ) припускаємо лiнiйною за власним векто-
ром h(\varepsilon ) крайової задачi (1) та аналiтичною за малим параметром \varepsilon на вiдрiзку [0, \varepsilon 0] i
в малому околi власного вектора h0 \in \BbbR n породжуючої крайової задачi (2). До того ж,
\ell z(\cdot ) — лiнiйний обмежений векторний функцiонал.

Актуальнiсть вивчення крайової задачi (1) пов’язано з широким застосуванням подiб-
них задач при вивченнi неiзотермiчних хiмiчних реакцiй. Приклади моделювання таких
реакцiй наведено у статтях [4, 5]. У [6, 7] знайдено наближення до розв’язкiв нелiнiйних
крайових задач, зокрема, перiодичних крайових задач. При побудовi розв’язкiв нелiнiйних
крайових задач виникає проблема неможливостi знаходження розв’язкiв у елементарних
функцiях, яка, зi свого боку, призводить до великих похибок розв’язкiв нелiнiйних крайо-
вих задач. Подiбну проблему продемонстровано для перiодичної задачi для рiвняння, яке
визначає рух супутника на елiптичнiй орбiтi, у [8].

Крiм того, побудову розв’язкiв нелiнiйних крайових задач iз використаннямметоду про-
стих iтерацiй [1] значно ускладнюють обчислення похiдних нелiнiйностей. У статтях [6, 7]
прискорення збiжностi iтерацiйних схем досягнуто обчисленням похiдних нелiнiйностей
на кожному кроцi. Враховуючи зазначене, спрощення обчислень похiдних нелiнiйностей
i можливiсть знаходження розв’язкiв нелiнiйних крайових задач, зокрема, перiодичних
крайових задач, у елементарних функцiях можна досягнути з використанням методу де-
композицiї Адомяна [9, 10]. Приклад такого спрощення буде наведено далi.
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2. Умова розв’язностi породжуючої задачi. Функцiю \varphi (h0, 0), лiнiйну щодо вектора h0,
можна подати у виглядi

\varphi 0(h0) := \varphi (h0, 0) = \beta +\Phi 0 h0, \Phi 0 \in \BbbR n\times n, \beta \in \BbbR n.

У статтi [3] доведено iснування єдиного розв’язку

z0(t) = K
\bigl[ 
f(s);\varphi (h0)

\bigr] 
(t) \in \BbbC 1

\bigl\{ 
[\Delta , T ] \setminus \{ k\Delta \} I

\bigr\} 
, k = 1, 2, . . . , q + 1,

породжуючої системи (2) для довiльної неоднорiдностi f(t), матрицi \Phi та вектора \beta , а
також умови розв’язностi лiнiйної нетерової крайової задачi для породжуючої системи (2).
Тут K[f(s);\varphi 0(h0)](t) —оператор Грiна задачi Кошi для породжуючої системи (2) з почат-
ковою функцiєю \varphi (h0). Позначимо матрицю

Q := \ell K
\bigl[ 
0; \Phi 0

\bigr] 
(\cdot ) \in \BbbR m\times n

та її матрицю-ортопроєктор

PQ\ast : \BbbR n \rightarrow \BbbN (Q\ast ).

У некритичному випадку

PQ\ast = 0

— породжуюча крайова задача (2), розв’язна для довiльної неоднорiдностi f(t), матрицi
\Psi та векторiв \alpha , \beta . Функцiю \varphi (h0) принаймнi однозначно визначає власний вектор

h\ast 0 = Q+
\bigl\{ 
\alpha  - \ell K

\bigl[ 
f(s);\beta 

\bigr] 
(\cdot )

\bigr\} 
,

при цьому породжуюча задача (2) має бодай один розв’язок

z0(t, h
\ast 
0) = G

\bigl[ 
f(s);\varphi 0(h

\ast 
0)
\bigr] 
(t), t \in [\Delta , T ].

Тут Q+ — псевдообернена за Муром – Пенроузом матриця [1],

G[f(s);\varphi (h\ast 0)](t) := K
\bigl[ 
f(s);\varphi 0(h

\ast 
0)
\bigr] 
(t)

—узагальнений оператор Грiна породжуючої крайової задачi (2) у некритичному випадку.
Лема. У некритичному випадку PQ\ast = 0 — породжуюча крайова задача (2), розв’язна

для довiльної неоднорiдностi f(t), матрицi \Psi та векторiв \alpha , \beta . Початкову функцiю \varphi (h0)
принаймнi однозначно визначає власний вектор

h\ast 0 = Q+
\bigl\{ 
\alpha  - \ell K

\bigl[ 
f(s);\beta 

\bigr] 
(\cdot )

\bigr\} 
,

при цьому породжуюча задача (2) має бодай один розв’язок

z0(t, h
\ast 
0) = G

\bigl[ 
f(s);\varphi 0(h

\ast 
0)
\bigr] 
(t), t \in [\Delta , T ].
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3. Iтерацiйна схема. Розв’язок нелiнiйної крайової задачi (1) шукаємо у виглядi

z(t, \varepsilon ) := z0(t, h
\ast 
0) + u1(t, \varepsilon ) + . . .+ uk(t, \varepsilon ) + . . . ,

h(\varepsilon ) = h\ast 0 + \xi 1(\varepsilon ) + \xi 2(\varepsilon ) + . . .+ \xi k(\varepsilon ) + . . . .

Нелiнiйна вектор-функцiя Z(z(t, \varepsilon ), z(t - \Delta , \varepsilon ), t, \varepsilon ) аналiтична за невiдомими z(t, \varepsilon ) i z(t - 
\Delta , \varepsilon ) у малому околi розв’язку породжуючої крайової задачi (2) та функцiї z0(t - \Delta ), тому
у зазначеному околi має мiсце розклад [9, c. 502]

Z
\bigl( 
z(t, \varepsilon ), z(t - \Delta , \varepsilon ), t, \varepsilon 

\bigr) 
= Z0

\bigl( 
z0(t, h

\ast 
0), z0(t - \Delta , h\ast 0), t

\bigr) 
+ Z1

\bigl( 
z0(t, h

\ast 
0), u1(t, \varepsilon ), z0(t - \Delta , h\ast 0), u1(t - \Delta , \varepsilon ), t, \varepsilon 

\bigr) 
+ . . .

+ Zk

\bigl( 
z0(t, h

\ast 
0), u1(t, \varepsilon ), . . . , uk(t, \varepsilon ), z0(t - \Delta , h\ast 0),

u1(t - \Delta , \varepsilon ), . . . , uk(t - \Delta , \varepsilon ), t, \varepsilon 
\bigr) 
+ . . . .

Функцiя \varphi (h(\varepsilon )) аналiтична за власним вектором h(\varepsilon ) крайової задачi (1) у малому околi
власного вектора h\ast 0 \in \BbbR n породжуючої крайової задачi (2), тому у зазначеному околi має
мiсце розклад [9, 10]

\varphi (h(\varepsilon ), \varepsilon ) = \varphi 0(h
\ast 
0) + \varphi 1(h

\ast 
0, \xi 1(\varepsilon ), \varepsilon )

+ \varphi 2

\bigl( 
h\ast 0, \xi 1(\varepsilon ), \xi 2(\varepsilon ), \varepsilon 

\bigr) 
+ . . .+ \varphi k

\bigl( 
h\ast 0, \xi 1(\varepsilon ), . . . , \xi k(\varepsilon ), \varepsilon 

\bigr) 
+ . . . .

Перше наближення до розв’язку нелiнiйної крайової задачi (1) у критичному випадку

z1(t, \varepsilon ) := z0(t, h
\ast 
0) + u1(t, \varepsilon ),

u1(t, \varepsilon ) = \varepsilon G
\bigl[ 
Z0(z0(s, h

\ast 
0), z0(s - \Delta , h\ast 0), s);\varphi 0(h

\ast 
0)
\Bigr] 
(t)

визначає розв’язок нелiнiйної крайової задачi першого наближення
du1(t, \varepsilon )

dt
= A(t)u1(t, \varepsilon ) +B(t)\varphi 0(h

\ast 
0) + \varepsilon Z0(z0(t, h

\ast 
0), z0(t - \Delta , h\ast 0), t), \ell u1(\cdot , \varepsilon ) = 0

з початковою функцiєю \varphi 0(h
\ast 
0). Друге наближення до розв’язку нелiнiйної крайової зада-

чi (1) у некритичному випадку

z2(t, \varepsilon ) := z0(t, h
\ast 
0) + u1(t, \varepsilon ) + u2(t, \varepsilon ),

u2(t, \varepsilon ) = \varepsilon G
\Bigl[ 
Z1(z0(s, h

\ast 
0), u1(s, \varepsilon ), z0(s - \Delta , h\ast 0), u1(s - \Delta , \varepsilon ), s);\varphi 1(h

\ast 
0, \xi 1(\varepsilon ), \varepsilon )

\Bigr] 
(t)

визначає розв’язок нелiнiйної крайової задачi другого наближення
du2(t, \varepsilon )

dt
= Au2(t, \varepsilon ) +B(t)\varphi 1(h

\ast 
0, \xi 1(\varepsilon ), \varepsilon )

+ \varepsilon Z1(z0(t, h
\ast 
0), u1(t, \varepsilon ), z0(t - \Delta , h\ast 0), u1(t - \Delta , \varepsilon ), t, \varepsilon ), \ell u2(\cdot , \varepsilon ) = 0

з початковою функцiєю \varphi 1(h
\ast 
0, \xi 1(\varepsilon ), \varepsilon ). Функцiю \varphi (h(\varepsilon ), \varepsilon ), лiнiйну щодо вектора h(\varepsilon ),

можна подати у виглядi

\varphi (h(\varepsilon ), \varepsilon ) = \beta +\Phi (\varepsilon )h(\varepsilon ), \Phi (\varepsilon ) \in \BbbR n\times n.
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Функцiя \varphi (h(\varepsilon ), \varepsilon ) за припущенням аналiтична за малим параметром \varepsilon на вiдрiзку [0, \varepsilon 0],
тому матрицю \Phi (\varepsilon ) наведемо у виглядi

\Phi (\varepsilon ) = \Phi 0 + \varepsilon \Phi 1 + \varepsilon 2\Phi 1 + . . . .

У некритичному випадку крайова задача другого наближення розв’язна для довiльної
нелiнiйностi

Z1

\bigl( 
z0(t, h

\ast 
0), u1(t, \varepsilon ), z0(t - \Delta , h\ast 0), u1(t - \Delta , \varepsilon ), t, \varepsilon 

\bigr) 
;

таким чином, принаймнi однозначно знаходимо вектор

\xi 1(\varepsilon ) =  - \varepsilon Q+\ell K
\Bigl[ 
Z1(z0(s, h

\ast 
0), u1(s, \varepsilon ), z0(s - \Delta , h\ast 0), u1(s - \Delta , \varepsilon ), s, \varepsilon ); 0

\Bigr] 
(\cdot ),

при цьому крайова задача другого наближення має бодай один розв’язок

u2(t, \varepsilon ) = G
\Bigl[ 
\varepsilon Z1(z0(s, h

\ast 
0), u1(s, \varepsilon ), z0(s - \Delta , h\ast 0), u1(s - \Delta , \varepsilon ), s, \varepsilon );\varphi 1(h

\ast 
0, \xi 1(\varepsilon ), \varepsilon )

\Bigr] 
(t)

:= \varepsilon K
\Bigl[ 
Z1(z0(s, h

\ast 
0), u1(s, \varepsilon ), z0(s - \Delta , h\ast 0), u1(s - \Delta , \varepsilon ), s, \varepsilon ),

\Phi 0Q
+\ell K

\Bigl[ 
Z1(z0(s, h

\ast 
0), u1(s, \varepsilon ), z0(s - \Delta , h\ast 0), u1(s - \Delta , \varepsilon ), s, \varepsilon ); 0

\Bigr] 
(\cdot )

\Bigr] 
(t).

Послiдовнiсть наближень до розв’язку нелiнiйної перiодичної крайової задачi (1) у некри-
тичному випадку визначає iтерацiйна схема

z1(t, \varepsilon ) := z0(t, h
\ast 
0) + u1(t, \varepsilon ),

u1(t, \varepsilon ) = \varepsilon G
\bigl[ 
Z0(z0(s, h

\ast 
0), z0(s - \Delta , h\ast 0), s);\varphi 0(h

\ast 
0)
\bigr] 
(t);

z2(t, \varepsilon ) := z0(t, h
\ast 
0) + u1(t, \varepsilon ) + u2(t, \varepsilon ),

u2(t, \varepsilon ) = \varepsilon K
\Bigl[ 
Z1(z0(s, h

\ast 
0), u1(s, \varepsilon ), z0(s - \Delta , h\ast 0), u1(s - \Delta , \varepsilon ), s, \varepsilon );

\Phi 0Q
+\ell K

\bigl[ 
Z1(z0(s, h

\ast 
0), u1(s, \varepsilon ), z0(s - \Delta , h\ast 0), u1(s - \Delta , \varepsilon ), s, \varepsilon ); 0

\bigr] 
(\cdot )

\Bigr] 
(t), . . . ;

zk+1(t, \varepsilon ) := z0(t, h
\ast 
0) + u1(t, \varepsilon ) + . . .+ uk+1(t, \varepsilon ), k = 0, 1, 2, . . . , (3)

uk+1(t, \varepsilon ) = \varepsilon K
\Bigl[ 
Zk(z0(s, h

\ast 
0), . . . , uk(s, \varepsilon ),

z0(s - \Delta , h\ast 0), . . . , uk(s - \Delta , \varepsilon ), s, \varepsilon );

\Phi 0Q
+\ell K

\bigl[ 
Zk(z0(s, h

\ast 
0), . . . , uk(s, \varepsilon ),

z0(s - \Delta , h\ast 0), . . . , uk(s - \Delta , \varepsilon ), s, \varepsilon ); 0
\bigr] 
(\cdot )

\Bigr] 
(t), . . . .

Теорема. У некритичному випадку PQ\ast = 0 —породжуюча крайова задача (2), розв’язна
для довiльної неоднорiдностi f(t), матрицi \Psi та векторiв \alpha , \beta . Початкову функцiю \varphi (h0)
принаймнi однозначно визначає власний вектор

h\ast 0 = Q+
\bigl\{ 
\alpha  - \ell K

\bigl[ 
f(s);\beta 

\bigr] 
(\cdot )

\bigr\} 
,
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при цьому породжуюча задача (2) має хоча б один розв’язок

z0(t, h
\ast 
0) = G

\bigl[ 
f(s);\varphi (h\ast 0)

\bigr] 
(t), t \in [\Delta , T ].

У некритичному випадку у малому околi породжуючого розв’язку z0(t) i в малому околi влас-
ного вектора h\ast 0 \in \BbbR n породжуючої крайової задачi (2) задача (1) має бодай один розв’язок.
Послiдовнiсть наближень до розв’язку нелiнiйної крайової задачi (1) з зосередженим запiзнен-
ням визначає iтерацiйна схема (3). Якщо iснують константи 0 < \gamma < 1 i 0 < \delta < 1, для
яких мають мiсце нерiвностi

\| u1(t, \varepsilon )\| \leq \gamma \| z0(t, h\ast 0)\| , \| uk+1(t, \varepsilon )\| \leq \gamma \| uk(t, \varepsilon )\| , k = 1, 2, . . . , (4)

\| \xi 1(\varepsilon )\| \leq \delta | h\ast 0| , \| \xi k+1(\varepsilon )\| \leq \delta \| \xi k(\varepsilon )\| , k = 1, 2, . . . ,

то iтерацiйна схема (3) збiгається до розв’язку нелiнiйної крайової задачi (1) з зосередженим
запiзненням.

Отримана умова збiжностi iтерацiйної схеми (3) вiдрiзняється вiд аналогiчних оцiнок
з [11, 12] i дозволяє оцiнити промiжок значень малого параметра \varepsilon \in [0, \varepsilon 0], 0 \leq \varepsilon \ast \leq \varepsilon 0,
для яких зберiгається збiжнiсть iтерацiйної схеми (3).

У разi фредгольмової (m = n) крайової задачi (2) матриця Q стає квадратною, при
цьому умова некритичностi PQ\ast = 0 перетворюється на умову невиродженостi матриць Q.
Таким чином, фредгольмова некритична крайова задача (2) має єдиний розв’язок.

Наслiдок. У некритичному випадку detQ \not = 0 — породжуюча фредгольмова (m = n)
крайова задача (2), розв’язна для довiльної неоднорiдностi f(t), матрицi \Psi та векторiв \alpha ,
\beta . Початкову функцiю \varphi (h0) однозначно визначає власний вектор

h\ast 0 = Q - 1
\bigl\{ 
\alpha  - \ell K

\bigl[ 
f(s);\beta 

\bigr] 
(\cdot )

\bigr\} 
,

при цьому породжуюча задача (2) має єдиний розв’язок

z0(t, h
\ast 
0) = G

\Bigl[ 
f(s);\varphi (h\ast 0)

\Bigr] 
(t), t \in [\Delta , T ].

У некритичному випадку у малому околi породжуючого розв’язку z0(t) i в малому околi влас-
ного вектора h\ast 0 \in \BbbR n породжуючої крайової задачi (2) задача (1) має єдиний розв’язок.
Послiдовнiсть наближень до розв’язку нелiнiйної крайової задачi (1) з зосередженим запiзнен-
ням визначає iтерацiйна схема (3). Якщо iснують константи 0 < \gamma < 1 i 0 < \delta < 1, для
яких мають мiсце нерiвностi (4), то iтерацiйна схема (3) збiгається до розв’язку нелiнiйної
крайової задачi (1) iз зосередженим запiзненням.

Приклад. Продемонструємо ефективнiсть доведеного наслiдку на прикладi задачi про
знаходження розв’язкiв

z(\cdot , \varepsilon ) \in \BbbC 1
\bigl\{ 
[0, 3] \setminus \{ k\Delta \} I

\bigr\} 
, T := 3\Delta , k = 1, 2, z(t, \cdot ) \in \BbbC [0, \varepsilon 0]

нелiнiйної крайової задачi

z\prime (t, \varepsilon ) = z(t - 1, \varepsilon ) +
t

12
+ \varepsilon sin z(t, \varepsilon ), t \in [1, 3], t \not = 2, z(3, \varepsilon ) - z(0, \varepsilon ) (5)

з початковою функцiєю

z(t, \varepsilon ) :=
1

12
h(\varepsilon ) (1 + \varepsilon sin \varepsilon ), h(0) := h0.
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Розв’язок перiодичної крайової задачi (5) iз зосередженим запiзненням шукаємо у малому
околi розв’язку

z0(t) \in \BbbC 1
\bigl\{ 
[0, 3] \setminus \{ k\Delta \} I

\bigr\} 
, k = 1, 2,

породжуючої задачi для рiвняння

z\prime 0(t) = z0(t - 1) +
t

12
, t \in [1, 3], t \not = 2,

з початковою функцiєю

z0(t) = \varphi (h0) :=
1

12
+ h0, t \in [0, 1].

Перiодичнi розв’язки нелiнiйного рiвняння (5)

z(t, \varepsilon ) :=

\left\{         
h(\varepsilon ), t \in [0, 1],

x(t, \varepsilon ), t \in [1, 2],

y(t, \varepsilon ), t \in [2, 3]

будемо шукати в околi розв’язку

z0(t, c0) :=

\left\{         
h0, t \in [0, 1],

x0(t), t \in [1, 2],

y0(t), t \in [2, 3]

лiнiйної частини цього рiвняння. Для перiодичної задачi для нелiнiйного рiвняння (5) має
мiсце некритичний випадок

Q =
5

2
\not = 0,

при цьому породжуюча задача для нелiнiйного рiвняння (5) має єдиний:

PQ\ast = PQ = 0

розв’язок

z0(t, h
\ast 
0) = G

\bigl[ 
f(s);\varphi (h\ast 0)

\bigr] 
(t), t \in [0, 1].

Тут

h\ast 0 =  - 43

180
;

крiм того,

G
\bigl[ 
f(s);\varphi (s, h0)

\bigr] 
(t) =

\left\{     
1

360
(15 t2  - 56 t - 15), t \in [1, 2],

1

360
(5 t3  - 28 t2 + 56 t - 107 t - 15), t \in [2, 3].
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Використовуючи iтерацiйну схему (3), отримуємо

z1(t, \varepsilon ) := z0(t, h
\ast 
0) + u1(t, \varepsilon ), \xi 1(\varepsilon ) =

9 142 739 693 269 428 991\varepsilon 

52 295 018 840 064 000 000
,

u1(t, \varepsilon ) = \varepsilon G
\bigl[ 
Z0(z0(s, h

\ast 
0), z0(s - \Delta , h\ast 0), s);\varphi 0(h

\ast 
0)
\bigr] 
(t).

Тут

Z0

\bigl( 
z0(t, h

\ast 
0), z0(t - \Delta , h\ast 0), t, 0

\bigr) 
=

t+ 1

12
+ h\ast 0, t \in [1, 2];

крiм того,

Z0

\bigl( 
z0(t, h

\ast 
0), z0(t - \Delta , h\ast 0), t, 0

\bigr) 
=  - 1

24
(2 + 24h\ast 0(1 - t) - 2 t - t2), t \in [2, 3].

Таким чином, отримуємо

u1(t, \varepsilon ) =
36 166 472 \varepsilon 

343 449 189
+

58 468 570 \varepsilon t

439 034 251
 - 20 242 793 \varepsilon t2

260 490 569
+

6 202 741 \varepsilon t3

441 638 924

+
526 161 \varepsilon t4

5 898 414 008
 - 1 018 972 \varepsilon t5

10 874 007 387
+

2 514 933 \varepsilon t6

111 573 323 632
 - 55 925 \varepsilon t7

34 139 468 751

 - 9401 \varepsilon t8

161 243 136 000
+

6047 \varepsilon t9

386 983 526 400
 - 7 \varepsilon t10

3 583 180 800
+

\varepsilon t11

10 510 663 680
, t \in [1, 2].

Аналогiчно одержуємо

u1(t, \varepsilon ) =
38 147 502 \varepsilon 

85 623 445
 - 39 991 012 \varepsilon t

96 998 419
+

40 908 857 \varepsilon t2

170 989 992
 - 27 665 321 \varepsilon t3

439 535 019

+
9 365 617 \varepsilon t4

1 751 824 081
+

1 855 650 \varepsilon t5

2 763 562 183
 - 736 121 \varepsilon t6

3 778 185 404
+

474 517 \varepsilon t7

11 902 902 157

 - 142 435 \varepsilon t8

25 270 389 627
+

62 553 \varepsilon t9

225 278 094 107
+

20 452 \varepsilon t10

187 615 153 639

 - 28 023 \varepsilon t11

781 858 340 417
+

2 942 \varepsilon t12

428 557 852 157
 - 2 881 \varepsilon t13

2 789 430 326 459

+
11 \varepsilon t14

96 745 881 600
 - 7 \varepsilon t15

870 712 934 400
+

\varepsilon t16

3 715 041 853 440
, t \in [2, 3].

Далi, для скорочення зображення наближень, використовуючи рацiоналiзацiю та роз-
винення нелiнiйностi

sin y \approx  - y3

6
+

y5

120
 - y7

5040
,

за допомогою iтерацiйної схеми (3) маємо

z2(t, \varepsilon ) := z0(t, h
\ast 
0) + u1(t, \varepsilon ) + u2(t, \varepsilon ), \xi 2(\varepsilon ) \approx 

14 305 739 \varepsilon 2

213 563 792
,
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u2(t, \varepsilon ) = \varepsilon K
\Bigl[ 
Z1(z0(s, h

\ast 
0), u1(s, \varepsilon ), z0(s - \Delta , h\ast 0), u1(s - \Delta , \varepsilon ), s, \varepsilon );

\Phi 0Q
+\ell K

\bigl[ 
Z1(z0(s, h

\ast 
0), u1(s, \varepsilon ), z0(s - \Delta , h\ast 0), u1(s - \Delta , \varepsilon ), s, \varepsilon ); 0

\bigr] 
(\cdot )

\Bigr] 
(t).

Таким чином, одержуємо

u2(t, \varepsilon ) \approx  - 43 743 519 \varepsilon 2

294 518 354
 - 18 090 901 \varepsilon 2 t

271 265 350
+

17 307 207 \varepsilon 2 t2

261 482 599
 - 10 076 181 \varepsilon 2 t3

379 775 021

+
1 931 713 \varepsilon 2 t4

558 212 598
+

1404 251 \varepsilon 2 t5

4 450 700 052
 - 1 092 233 \varepsilon 2 t6

7 601 769 733
+

438 741 \varepsilon 2 t7

17 159 383 693

 - 82 787 \varepsilon 2 t8

68 718 818 682
 - 17 640 \varepsilon 2 t9

69 966 504 613
+

18 131 \varepsilon 2 t10

322 875 843 956
 - 8 693 \varepsilon 2 t11

1 474 322 773 235

+
426 \varepsilon 2 t12

4 335 308 293 969
+

211 \varepsilon 2 t13

4 441 878 982 069
 - 3 \varepsilon 2 t14

435 622 788 386
+

\varepsilon 2 t15

2 053 176 156 435

+
\varepsilon 2 t16

901 079 914 625 509
 - \varepsilon 2 t17

292 523 438 365 951
+

\varepsilon 2 t18

2 736 551 797 179 206

 - \varepsilon 2 t19

44 835 247 968 373 028
+

\varepsilon 2 t20

1 673 849 257 485 926 515
, t \in [1, 2].

Аналогiчно отримуємо

u2(t, \varepsilon ) \approx  - 57 939 177 \varepsilon 2

145 833 452
+

627 427 934 \varepsilon 2 t

1 426 449 505
 - 8 705 343 \varepsilon 2 t2

26 229 052
+

13 250 809 \varepsilon 2 t3

111 866 838

 - 15 722 485 \varepsilon 2 t4

1 020 011 003
 - 2 462 114 \varepsilon 2 t5

788 233 527
+

1 152 203 \varepsilon 2 t6

643 247 382
 - 1 659 555 \varepsilon 2 t7

3 795 442 747

+
382 745 \varepsilon 2 t8

5 474 487 171
 - 132 427 \varepsilon 2 t9

42 550 366 996
 - 255 356 \varepsilon 2 t10

116 574 615 463
+

52 156 \varepsilon 2 t11

62 660 316 939

 - 27 589 \varepsilon 2 t12

155 339 339 111
+

12 319 \varepsilon 2 t13

468 874 071 645
 - 15 803 \varepsilon 2 t14

7 176 250 336 633
 - 191 \varepsilon 2 t15

1 299 740 095 803

+
383 \varepsilon 2 t16

4 035 457 284 201
 - 25 \varepsilon 2 t17

1 271 418 451 117
+

8 \varepsilon 2 t18

3 158 551 344 641
 - \varepsilon 2 t19

6 497 163 566 518

 - \varepsilon 2 t20

40129482107149
+

\varepsilon 2 t21

93 658 864 188 164
 - \varepsilon 2 t22

445 974 216 513 309

+
\varepsilon 2 t23

2 871 554 175 394 265
 - \varepsilon 2 t24

23 030 218 492 753 100
+

\varepsilon 2 t25

227 542 066 341 533 372

 - \varepsilon 2 t26

2 858 101 088 663 946 181
+

\varepsilon 2 t27

48 849 292 147 645 537 289

 - \varepsilon 2 t28

1 283 624 997 471 252 806 716
+

\varepsilon 2 t29

69 486 899 863 110 492 959 139
, t \in [2, 3].

Далi, за допомогою iтерацiйної схеми (3) маємо

z3(t, \varepsilon ) := z0(t, h
\ast 
0) + u1(t, \varepsilon ) + u2(t, \varepsilon ) + u3(t, \varepsilon ), \xi 3(\varepsilon ) \approx  - 17 478 713 \varepsilon 3

1 932 114 923
,
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де

u3(t, \varepsilon ) \approx 
17 306 509 \varepsilon 3

105 922 779
+

2 343 285 \varepsilon 3 t

133 006 198
 - 13 696 966 \varepsilon 3 t2

426 533 031
+

8 969 799 \varepsilon 3 t3

384 005 380

 - 5 175 804 \varepsilon 3 t4

73 7581 625
+

560 791 \varepsilon 3 t5

1 956 539 603
+

1 323 127 \varepsilon 3 t6

3 685 782 794
 - 605 111 \varepsilon 3 t7

5 417 144 997

+
1 123 102 \varepsilon 3 t8

74 799 737 939
+

26 735 \varepsilon 3 t9

93 556 702 143
 - 51 875 \varepsilon 3 t10

116 212 471 649
+

21 153 \varepsilon 3 t11

260 873 993 569

 - 5 729 \varepsilon 3 t12

918 936 082 923
 - 1 110 \varepsilon 3 t13

2 554 820 859 653
+

691 \varepsilon 3 t14

4 070 305 346 695
 - 198 \varepsilon 3 t15

9 521 346 026 671

+
2 \varepsilon 3 t16

2 216 669 094 855
+

\varepsilon 3 t17

7 435 250 846 944
 - \varepsilon 3 t18

34 474 126 925 901

+
\varepsilon 3 t19

384 404 855 163 059
 - \varepsilon 3 t20

15 315 211 743 396 069
 - \varepsilon 3 t21

66 068 136 221 073 846

+
\varepsilon 3 t22

427 554 682 208 164 673
 - \varepsilon 3 t23

6 035 906 658 340 674 491

+
\varepsilon 3 t24

325 941 387 387 473 688 329
+

\varepsilon 3 t25

1 432 853 793 622 512 534 120

 - \varepsilon 3 t26

11 149 871 678 089 556 809 010
+

\varepsilon 3 t27

166 829 907 104 797 473 026 404

 - \varepsilon 3 t28

4 133 756 249 166 422 673 272 074
, t \in [1, 2].

Аналогiчно одержуємо

u3(t, \varepsilon ) \approx 
33 799 469 \varepsilon 3

123 978 735
 - 27 671 392 \varepsilon 3 t

103 509 097
+

80 162 802 \varepsilon 3 t2

312 956 417
 - 28 056 097 \varepsilon 3 t3

253 312 720

+
22 042 450 \varepsilon 3 t4

2 211 040 209
+

12 896 725 \varepsilon 3 t5

1 024 904 609
 - 10 976 149 \varepsilon 3 t6

1 507 396 546
+

21 848 386 \varepsilon 3 t7

10 141 251 039

 - 5 267 225 \varepsilon 3 t8

14 018 888 978
+

1 032 821 \varepsilon 3 t9

145 399 989 676
+

3 510 314 \varepsilon 3 t10

165 250 616 937
 - 227 186 \varepsilon 3 t11

26 780 659 903

+
126 261 \varepsilon 3 t12

63 571 836 557
 - 51 118 \varepsilon 3 t13

170 394 688 603
+

8001 \varepsilon 3 t14

490 191 808 469
+

23 623 \varepsilon 3 t15

3 542 702 352 491

 - 4718 \varepsilon 3 t16

1 765 065 219 199
+

908 \varepsilon 3 t17

1 619 229 002 013
 - 203 \varepsilon 3 t18

2 789 001 812 556

+
7 \varepsilon 3 t19

2 840 665 467 363
+

6 \varepsilon 3 t20

3 552 163 657 945
 - \varepsilon 3 t21

1 729 497 427 085

+
\varepsilon 3 t22

8 596 927 988 594
 - \varepsilon 3 t23

61 072 325 759 225
+

\varepsilon 3 t24

716 963 649 032 305

+
\varepsilon 3 t25

27 374 895 560 754 852
 - \varepsilon 3 t26

239 50 030 340 795 176
+

\varepsilon 3 t27

105 750 330 720 736 293
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 - \varepsilon 3 t28

735 127 243 490 392 710
+

\varepsilon 3 t29

8 532 180 647 963 661 964

+
\varepsilon 3 t30

422 175 825 900 356 925 447
 - \varepsilon 3 t31

296 701 984 024 387 928 473

+
\varepsilon 3 t32

1 208 537 605 700 050 636 196
 - \varepsilon 3 t33

7 028 238 206 372 532 628 195

+
\varepsilon 3 t34

50 676 248 520 319 163 720 289
 - \varepsilon 3 t35

435 013 897 462 446 339 954 800

+
\varepsilon 3 t36

4 403 463 330 199 553 236 367 975
, t \in [2, 3].

Вiдзначимо, що на вiдрiзку \varepsilon \in [0, 1] iснують константи

0 < \gamma \approx 0,731 847 < 1, 0 < \delta \approx 0,984 408 < 1,

для яких мають мiсце нерiвностi (4), якi свiдчать про практичну збiжнiсть отриманих
наближень до розв’язку нелiнiйної крайової задачi (5) iз зосередженим запiзненням.

Точнiсть знайдених наближень до розв’язку

z(\cdot , \varepsilon ) \in \BbbC 1
\bigl\{ 
[0, 3] \setminus \{ 1, 2\} I

\bigr\} 
, z(t, \cdot ) \in \BbbC [0, \varepsilon 0]

нелiнiйної крайової задачi (5) визначають нев’язки

\Delta k(\varepsilon ) :=
\bigm\| \bigm\| dzk(t, \varepsilon )/dt - A(t)zk(t, \varepsilon )

 - B(t)zk(t - \Delta , \varepsilon ) - f(t) - \varepsilon Z(zk(t, \varepsilon ), zk(t - \Delta , \varepsilon ), t, \varepsilon )
\bigm\| \bigm\| , k = 0, 1, 2, 3.

Зокрема,

\Delta 0(0,1) \approx 0,0204 111, \Delta 1(0,1) \approx 0,00175 564,

\Delta 2(0,1) \approx 0,000 167 972, \Delta 3(0,1) \approx 0,0000 159 096;

\Delta 0(0,01) \approx 0,00204 111, \Delta 1(0,01) \approx 0,0000 172 743,

\Delta 2(0,01) \approx 1,67 517\times 10 - 7, \Delta 3(0,01) \approx 1,58 339\times 10 - 9.

Вiдзначимо також, що знайденi наближення до розв’язку нелiнiйної крайової зада-
чi (5) задовольняють крайову умову. Запропоновану у статтi схему дослiдження умов
розв’язностi та побудови розв’язкiв наближень до розв’язку крайової задачi (1) iз зосе-
редженим запiзненням може бути перенесено на матричнi крайовi задачi [13 – 15], у тому
числi з зосередженим запiзненням [16, 17]. Зауважимо також, що на вiдмiну вiд результатiв
Г. Адомяна для нелiнiйної системи з запiзненням [18] ми отримали умови розв’язностi та
побудови розв’язкiв наближень до розв’язку нелiнiйної крайової задачi (1) iз зосередженим
запiзненням.

Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв. Усi необхiднi данi мiстяться в статтi. Всi автори зробили рiвномiрний внесок у цю
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роботу. Дослiдження Сергiя Чуйка частково пiдтримано грантом у рамках двосторонньої
угоди мiж Академiєю наук Австрiї та НАН України. Дослiдження Олександра Бойчука та
Вiктора Чуйка частково пiдтримано грантом Вiддiлення цiльової пiдготовки Київського
нацiонального унiверситету iменi Тараса Шевченка при НАН України 3М-2024 “Якiсний
аналiз та керування в нелiнiйних iнтегро-диференцiальних рiвняннях iз iмпульсними та
стохастичними збуреннями”, державний реєстрацiйний номер 0124U002140.

Лiтература
1. A. A. Boichuk, A. M. Samoilenko, Generalized inverse operators and Fredholm boundary-value problems,

2nd ed., De Gruyter, Berlin (2016).
2. Н. В. Азбелев, Н. П.Максимов, Л. Ф. Рахматуллина, Введение в теориюфункционально-дифференциальных

уравнений, Наука, Москва (1991).
3. С. М. Чуйко, Нетеровы краевые задачи с сосредоточенным запаздыванием в случае параметрического

резонанса, Материалы конференции, посвященной 95-летию со дня рождения профессора Н. В. Азбелева
(Пермь, 17 – 19 мая 2017 г.), 287 – 294 (2017).

4. P. Benner, A. Seidel-Morgenstern, A. Zuyev, Periodic switching strategies for an isoperimetric control problem
with application to nonlinear chemical reactions, Appl. Math. Model., 69, 287 – 300 (2019).

5. P. Benner, S. Chuiko, A. Zuyev, A periodic boundary value problem with switchings under nonlinear perturbati-
ons, Bound. Value Probl., 50, 1 – 12 (2023).

6. О. А. Бойчук, С. М. Чуйко, Про наближене розв’язання нелiнiйних крайових задач за методом Ньютона –
Канторовича, Нелiн. коливання, 23, № 2, 162 – 183 (2020); English translation: J. Math. Sci., 258, № 5,
594 – 617 (2021).

7. О.А. Бойчук,С.М.Чуйко, Про наближене розв’язання слабконелiнiйних крайових задачметодомНьютона –
Канторовича, Нелiн. коливання, 23, № 3, 321 – 331 (2020); English translation: J. Math. Sci., 261, № 2,
228 – 240 (2022).

8. А. М. Самойленко, С. М. Чуйко, О. В. Нєсмєлова, Нелiнiйнi крайовi задачi, не розв’язанi вiдносно похiдної,
Укр. мат. журн., 72, № 8, 1106 – 1118 (2020);English translation:Ukr. Math. J., 72, № 8, 1280 – 1293 (2020).

9. G. Adomian, A review of the decomposition method in applied mathematics, J. Math. Anal. Appl., 135, 501 – 544
(1988).

10. С. М. Чуйко, О. С. Чуйко, М. В. Попов, Метод декомпозицiї Адомяна у теорiї нелiнiйних перiодичних
крайових задач, Нелiн. коливання, 25, № 4, 413 – 425 (2022); English translation: J. Math. Sci., 277, № 2,
338 – 351 (2023).

11. О. Б. Лыкова, А. А. Бойчук, Построение периодических решений нелинейных систем в критических случаях,
Укр. мат. журн., 40, № 1, 62 – 69 (1988).

12. С. М. Чуйко, Область збiжностi iтерацiйної процедури для автономної крайової задачi, Нелiн. коливання,
9, № 3, 416 – 432 (2006); English translation: Nonlinear Oscil. (N. Y.), 9, № 3, 405 – 422 (2006).

13. О. А. Бойчук, С. А. Кривошея, Критерiй розв’язностi матричних рiвнянь типу Ляпунова, Укр. мат. журн.,
50, № 8, 1021 – 1026 (1998); English translation: Ukr. Math. J., 50, № 8, 1162 – 1169 (1999).

14. S. Chuiko, Weakly nonlinear boundary value problem for a matrix differential equation, Miskolc Math. Notes,
17, № 1, 139 – 150 (2016).

15. S. M. Chuiko, Nonlinear matrix differential-algebraic boundary value problem, Lobachevskii J. Math., 38(2),
236 – 244 (2017).

16. A. A. Boichuk, J. Diblik, D. Ya. Khusainov, M. Ruzickova, Fredholm’s boundary-value problems for differential
systems with a single delay, Nonlinear Anal., 72, 2251 – 2258 (2010).

17. С. М. Чуйко, Д. В. Сисоєв, Матричнi перiодичнi крайовi задачi з зосередженим запiзненням, Нелiн. коли-
вання, 21, № 2, 273 – 283 (2018); English translation: J. Math. Sci., 243, № 2, 326 – 337 (2019).

18. G. Adomian, R. Rach, Nonlinear stochastic differential delay equations, J. Math. Anal. Appl., 91, № 1, 94 – 101
(1983).

Одержано 03.01.24

ISSN 1562-3076. Нелiнiйнi коливання, 2024, т. 27, № 1


