
DOI: 10.3842/nosc.v26i4.1438
УДК 539.3:534.13

ВIЛЬНI КОЛИВАННЯ ТОНКОСТIННИХ СФЕРИЧНИХ ОБОЛОНОК

Юрiй Троценко

Iнститут математики НАН України
вул. Терещенкiвська, 3, Київ, 01024, Україна
e-mail: trots@imath.kiev.ua

By using the Ritz method, we find the eigenforms and the eigenfrequencies of non-axisymmetric vibrations
of thin-walled isotropic spherical shells. As examples, we give results of calculation of dynamic characteri-
stics for a sphere with different geometric parameters for boundary conditions of free attachment.

Iз застосуванням методу Рiтца знайдено власнi форми i частоти неосесиметричних коливань тон-
костiнних iзотропних сферичних оболонок. Як приклади наведено розрахунки динамiчних ха-
рактеристик для сфери при рiзних геометричних параметрах для граничних умов вiльного
крiплення.

Вступ. Сферичнi оболонки широко використовуються в цивiльних, механiчних, авiацiй-
них, ракетних, морських конструкцiях, а також наноконструкцiях. Багато таких конструк-
цiй в процесi експлуатацiї пiддаються значним динамiчним навантаженням, а отже, спо-
стерiгається постiйний iнтерес до аналiзу їхнiх коливань. При цьому виникає необхiднiсть
у розробцi бiльш точних методiв розрахунку та нових моделей конструкцiй для можливостi
врахування бiльш широкого спектра фiзичних i геометричних параметрiв таких механiч-
них конструкцiй. Основною задачею в усьому розрахунковому комплексi є визначення
динамiчних характеристик сферичної оболонки.

Монографiя [1], одна з перших робiт у цьому напрямi, мiстить точний розв’язок у
рамках теорiї згину оболонок для осесиметричних коливань тонких неглибоких пружних
сферичних оболонок. Зокрема, розв’язки застосовано до дослiдження власних частот вiль-
них осесиметричних коливань сферичних сегментiв оболонки з рiзними крайовими умо-
вами. Проведено порiвняння з ранiше вiдомими результатами для поперечних коливань
неглибоких сферичних оболонок, де знехтувано ефектом поздовжньої iнерцiї.

У роботi [2] аналiз коливань неглибоких сферичних оболонок поширено на: а) частоти
порядку величини першої моди зсуву товщини в нескiнченнiй пластинi та б) оболонки
помiрної товщини. Виведено систему десятого порядку з трьох незв’язаних диференцiаль-
них рiвнянь, якi керують несиметричною динамiчною деформацiєю неглибокої сферичної
оболонки, що пiддається довiльним залежним вiд часу поверхневим навантаженням, i
отримано сепарабельнi розв’язки за допомогою функцiй Бесселя.

Дослiдження [3] стосується як осесиметричних, так i асиметричних коливань тонких
пружних сферичних оболонок. Iз обмеженим осесиметричним рухом без кручення основ-
нi рiвняння для сферичних оболонок класичної теорiї вигину першого наближення Лява
зведено до системи двох пов’язаних диференцiальних рiвнянь щодо нормального перемi-
щення серединної поверхнi та функцiї напруження. Цю систему рiвнянь застосовано до
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вiльних коливань напiвсферичної оболонки з вiльнимкраєм i отримано чисельнi результати
для найменшої власної частоти як функцiї товщини оболонки.

Статтю [4] присвячено теоретичному дослiдженню вiльних коливань довiльних оболо-
нок обертання за допомогою класичної теорiї згину оболонок. Розроблено метод, засто-
совний до обертально-симетричних оболонок iз меридiональними змiнами (включаючи
розриви) модуля Юнга, коефiцiєнта Пуассона, радiусiв кривини та товщини. За допомо-
гою методу з [4] можна отримати власнi частоти та вiдповiднi форми мод осесиметричних
або несиметричних вiльних коливань обертально-симетричних оболонок без обмеження
довжини меридiана оболонки.

У [5] розглянуто реакцiю непологого сферичного сегмента оболонки з простою опорою,
внутрiшня поверхня якого iзольована вiд теплового потоку, який раптово прикладається
до його зовнiшньої поверхнi. Проблему вирiшено за допомогою процедури модального
розширення, i результати наводяться для дiапазону параметрiв, якi мають вiдношення до
перехiдної поведiнки оболонки.

У дослiдженнi [6] метод Хольцера, розроблений для визначення крутильних частот вiб-
рацiйного вала, узагальнено для аналiзу вiльних коливань сферичних оболонок. Зроблено
висновок, що метод Хольцера насправдi є дуже точним методом для визначення частот
i форм сферичних оболонок, однак його не можна застосувати до надзвичайно тонких
оболонок.

У роботi [7] розглянуто осесиметричнi коливання глибоких багатошарових сферичних
оболонок. Оболонка складається з товстого ядра i двох лицьових листiв iз однакового
iзотропного матерiалу однакової товщини.

У [8] диференцiальнi рiвняння вiльних гармонiчних коливань тонких пружних сфе-
ричних оболонок виведено в iнварiантнiй формi разом iз вiдповiдними кiнематичними та
статичними граничними умовами. Наведено розв’язок для осесиметричних i неосесимет-
ричних мод коливань оболонки у формi сферичної зони з двома межами. Як окремий
випадок розглянуто задачу про неосесиметричнi коливання сферичної оболонки з круглим
отвором.

Аналiзу вiльних коливань сферичної оболонки з пружною або жорсткою опорою при-
свячено дослiдження [9]. Перемiщення оболонки записано у ряд добуткiв пов’язаних функ-
цiй Лежандра та тригонометричних функцiй. Метод застосовано до замкнутої сферичної
оболонки, яка спирається на чотири пружнi опори, розташованi вздовж паралелi.

У [10] дослiджено вiльнi коливання тонкої сферичної оболонки, заповненої стисливою
рiдиною. Враховано взаємодiю на межi роздiлу мiж пружною структурою та стисливою
рiдиною. Метою цiєї статтi є розробка гiбридної числової технiки для аналiзу вiльних
коливань проблем взаємодiї звуку та конструкцiї. Для моделювання акустичних збурень
у порожнинi використано метод граничних елементiв, а для моделювання структурної
динамiки оболонки — метод скiнченних елементiв.

Завдяки введенню двох функцiй змiщення неосесиметричнi вiльнi коливання повної
тонкої iзотропної сферичної оболонки, зануреної в стисливе рiдке середовище, розглянуто
у статтi [11]. Виявлено, що iснують два класи вiльних коливань. На перший клас не впливає
навколишня рiдина, а на другий впливає. Доведено, що частотнi рiвняння можна виразити
через полiном.

Тривимiрний метод аналiзу для визначення частот вiльних коливань i форм товстих
оболонок обертання наведено у роботах [12, 13]. Середня поверхня оболонки може мати
довiльну кривину, а товщина стiнки може довiльно змiнюватися. З використанням методу
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Рiтца для перших п’яти частот оболонок продемонстровано збiжнiсть до чотиризначної
точностi. Наведено числовi результати для двох типiв товстих конiчних оболонок i сферич-
них сегментiв оболонки з лiнiйними змiнами товщини та повнiстю вiльними границями.

Дослiдження [14] присвячено виведенню та аналiзу коливань неглибокої сферичної
оболонки, що пiддається поперечному перемiщенню великої амплiтуди. Використано ана-
лог для тонких неглибоких оболонок теорiї фон Кармана для великого прогину пластин.
Дiапазондостовiрностi апроксимацiй оцiнюєтьсяшляхомпорiвняння аналiтичногомодаль-
ного аналiзу з чисельним розв’язком.

У статтi [15] одержано оцiнку частоти сферичних оболонок за допомогою методу уза-
гальненої диференцiальної квадратури (G.D.Q.M.), чисельної процедури, яка вiдноситься
до класу узагальнених методiв колокацiї. Теорiя оболонки, використана в цьому дослiджен-
нi, є теорiєю деформацiї зсуву першого порядку з урахуванням поперечних деформацiй
зсуву та iнерцiї повороту. Отриманi рiвняння оболонки в термiнах перемiщень середин-
ної поверхнi розв’язанi за допомогою G.D.Q.M. Кiлька порiвнянь зроблено з доступними
результатами, що показує надiйнiсть чисельної схеми.

У роботi [16] власнi частоти та форми отримано для осесиметричних i неосесимет-
ричних коливань. Наведено теорiї вiбрацiї повних сферичних оболонок i комп’ютерне
моделювання вiбрацiй на основi скiнченних елементiв iз геометричними дефектами та без
них. Зроблено порiвняння отриманих результатiв iз експериментальними.

У дослiдженнi [17] наведено тривимiрний метод аналiзу для визначення частот вiльних
коливань напiвсферичних оболонок обертання з ексцентриситетом, що мають однакову
товщину. На вiдмiну вiд звичайних теорiй оболонок, якi є математично двовимiрними, цей
метод базується на тривимiрних динамiчних рiвняннях пружностi. Метод Рiтца використа-
но для розв’язання проблеми власних значень. Для перших п’яти частот оболонок обер-
тання продемонстровано збiжнiсть до трьох-чотирьох значущих цифр. Наведено чисельнi
результати для рiзноманiтних напiвсферичних оболонок обертання з ексцентриситетом.

У [18] дослiджено вiльнi осесиметричнi коливання замкненої сферичної нанооболонки
з використанням теорiї нелокальної пружностi Ерiнгена. Рiвняння руху сформульовано
з урахуванням гiпотез тонких оболонок, а розв’язок отримано за допомогою класичного
методу роздiлення змiнних. Вплив нелокального параметра на власнi частоти та форми
коливань порiвнюється з їхнiми локальними аналогами.

Теорiю нелокальної пружностi було розроблено, щоб описати деякi явища, якi не мо-
жуть бути належним чином описанi класичною теорiєю локальної пружностi. Формалiзм
включає в себе дальнi взаємодiї мiж точками в неперервному середовищi. У роботi [19]
сформульовано модель нелокальної сферичної оболонки для застосування до проблеми
вiльних коливань нанооболонок сферичної геометрiї. Достовiрнiсть цiєї моделi перевiря-
ється за допомогою деяких наявних чисельних i експериментальних результатiв.

Статтю [20] присвячено аналiзу характеристик вiльних коливань тонких сферичних
оболонок iз вiльними граничними умовами. Дослiджено властивостi власних коливань для
таких оболонок.

Розвинено варiацiйний метод розв’язування спектральної задачi про вiльнi коливання
незамкнутої в меридiональному напрямку оболонки обертання, який однаково ефективний
як при середнiх, так i малих значеннях вiдносної товщини оболонки, у роботi [21]. Коор-
динатнi системи функцiй будували з урахуванням структури асимптотичних формальних
розкладiв фундаментальної системи розв’язкiв вихiдних рiвнянь. На прикладi розрахунку
частот i форм коливань кругової цилiндричної оболонки показано, що запропонований
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Рис. 1. Основнi параметри сферичної оболонки.

алгоритм розв’язування задачi забезпечує рiвномiрну збiжнiсть розв’язкiв i їхнiх перших
трьох похiдних у всiй областi iнтегрування рiвнянь.

У роботi [22] запропоновано системи координатних функцiй при застосуваннi методу
Рiтца для знаходження власних форм i частот неосесиметричних коливань тонкостiнних
куполоподiбних оболонок обертання. Побудову базисних функцiй здiйснено з урахуванням
iндивiдуальних особливостей спектральної задачi, що забезпечує рiвномiрну збiжнiсть
обчислювального процесу. Як приклад наведено розрахунки динамiчних характеристик
для оболонки у формi сферичного купола.

У цiй роботi розглядаємо вiльнi неосесиметричнi коливання сферичної тонкостiнної
оболонки. Побудова розв’язкiв задачi базується на основi методу Рiтца.

1. Варiацiйне формулювання задачi. Розглянемо тонкостiнну пружну оболонку, сере-
динна поверхня якої є поверхнею обертання (рис. 1).

У такої оболонки лiнiями головних кривин будуть її меридiани i паралелi. Вiдповiдно до
цього, серединну поверхню оболонки вiднесемо до ортогональної системи криволiнiйних
координат s i \varphi , де \varphi — полярний кут, що вiдраховується вiд осi Ox за годинниковою
стрiлкою, якщо дивитися у бiк зростання координати z, s —довжина дуги меридiана, яка
вiдраховується вiд деякої початкової паралелi або полюса для замкненої оболонки.

Проєкцiї перемiщення точок серединної поверхнi на додатнi напрямки меридiана i
паралелi, а також на зовнiшню нормаль до поверхнi оболонки позначимо через u, v i w
вiдповiдно.

Далi будемо вважати, що перемiщення настiльки малi, що можна знехтувати членами
другого i бiльш високого порядкумализни в порiвняннi з лiнiйними. Будемо вважати також,
що для оболонки справедливi гiпотези Кiрхгофа –Лява.

Рiвняння рiвноважного стану оболонки, що знаходиться пiд дiєю сил iнерцiї, можна
отримати з використанням будь-якого варiацiйного принципу механiки. Такий пiдхiд доз-
волить сформулювати варiацiйну постановку задачi, яка буде використана в подальшому
при побудовi її наближеного розв’язку.
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Скористаємося принципом можливих перемiщень, згiдно з яким

\delta \Pi = \delta A, (1)

де \delta \Pi — варiацiя потенцiальної енергiї пружної деформацiї оболонки, \delta A — робота сил
iнерцiї на можливих перемiщеннях, яка може бути наведена у виглядi

\delta A =  - 
\int \int 
\Sigma 

\rho h
\partial 2\vec{}U

\partial t2
\delta \vec{}Ud\Sigma , (2)

де \Sigma , \rho i h —серединна поверхня, густина матерiалу i товщина оболонки вiдповiдно, \vec{}U —
вектор iз компонентами u, v i w.

Варiацiюпотенцiальної енергiї деформацiї серединної поверхнi оболонкиможна подати
у виглядi [23]

\delta \Pi =

\int \int 
\Sigma 

(T1\delta \varepsilon 1 + T2\delta \varepsilon 2 + S\delta \omega +M1\delta \kappa 1 +M2\delta \kappa 2 + 2H\delta \tau )d\Sigma , (3)

де

T1 =
Eh

1 - \nu 2
(\varepsilon 1 + \nu \varepsilon 2), T2 =

Eh

1 - \nu 2
(\varepsilon 2 + \nu \varepsilon 1),

M1 =
Eh3

12(1 - \nu 2)
(\kappa 1 + \nu \kappa 2), M2 =

Eh3

12(1 - \nu 2)
(\kappa 2 + \nu \kappa 1);

S =
Eh

2(1 + \nu )
\omega , H =

Eh3

12(1 + \nu )
\tau ,

(4)

E i \nu — модуль пружностi i коефiцiєнт Пуассона матерiалу оболонки вiдповiдно. Компо-
ненти тензора деформацiй серединної поверхнi оболонки \varepsilon 1, \varepsilon 2, \kappa 1, \kappa 2, \omega , \tau пов’язанi з
компонентами вектора перемiщень спiввiдношеннями [23]

\varepsilon 1 =
\partial u

\partial s
+

w

R1
, \varepsilon 2 =

1

r

\partial v

\partial \varphi 
+

cos\vargamma 

r
u+

sin\vargamma 

r
w,

\omega =
1

r

\partial u

\partial \varphi 
+

\partial v

\partial s
 - cos\vargamma 

r
v, \kappa 1 =  - \partial 2w

\partial s2
+

\partial 

\partial s

\biggl( 
u

R1

\biggr) 
;

\kappa 2 =  - 1

r2
\partial 2w

\partial \varphi 2
+

sin\vargamma 

r2
\partial v

\partial \varphi 
 - cos\vargamma 

r

\partial w

\partial s
+

cos\vargamma 

r

u

R1
,

\tau =  - 1

r

\partial 2w

\partial \varphi \partial s
+

1

r

\partial u

R1\partial \varphi 
 - cos\vargamma sin\vargamma 

r2
v +

cos\vargamma 

r2
\partial w

\partial \varphi 
+

sin\vargamma 

r

\partial v

\partial s
,

(5)

де R1(s) — радiус кривини меридiана оболонки; \vargamma (s) — кут, утворений нормаллю до
серединної поверхнi i вiссю обертання оболонки Oz, r(s) — радiус кола, утвореного пара-
лелями оболонки.

Будемо далi розглядати незамкнену оболонку обертання, обмежену контурами L1 i L2,
як показано на рис. 1.
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Скориставшись формулами iнтегрування за частинами для подвiйних iнтегралiв, пiсля
ряду перетворень iз урахуванням спiввiдношень (2) – (5) варiацiйне рiвняння (1) можна
подати у виглядi\int \int 

\Sigma 

\Biggl[ \biggl( 
 - \partial T1

\partial s
+

cos\vargamma 

r
(T2  - T1) - 

1

r

\partial S

\partial \varphi 
 - 1

rR1

\partial 

\partial s
(M1r) +M2

cos\vargamma 

rR1
 - 2

rR1

\partial H

\partial \varphi 

\biggr) 
\delta u

+

\biggl( 
 - 1

r

\partial T2

\partial \varphi 
 - \partial S

\partial s
 - 2 cos\vargamma 

r
S  - sin\vargamma 

r2
\partial M2

\partial \varphi 
 - 2H

sin\vargamma cos\vargamma 

r2
 - 2

r

\partial 

\partial s
(H sin\vargamma )

\biggr) 
\delta v

+

\biggl( 
T1

R1
+ T2

sin\vargamma 

r
 - 1

r

\partial 2

\partial s2
(M1r) - 

1

r2
\partial 2M2

\partial \varphi 2

+
1

r

\partial 

\partial s
(M2 cos\vargamma ) - 

2

r

\partial 2H

\partial s\partial \varphi 
 - 2 cos\vargamma 

r2
\partial H

\partial \varphi 

\biggr) 
\delta w

\Biggr] 
d\Sigma 

+

\oint 
L2

\Biggl[ \biggl( 
T1 +

M1

R1

\biggr) 
\delta u+

\biggl( 
S + 2H

sin\vargamma 

r

\biggr) 
\delta v

+

\biggl( 
1

r

\partial 

\partial s
(M1r) - M2

cos\vargamma 

r
+

2

r

\partial H

\partial \varphi 

\biggr) 
\delta w  - M1

\partial \delta w

\partial s

\Biggr] 
dL2

 - 
\oint 
L1

\Biggl[ \biggl( 
T1 +

M1

R1

\biggr) 
\delta u+

\biggl( 
S + 2H

sin\vargamma 

r

\biggr) 
\delta v

+

\biggl( 
1

r

\partial 

\partial s
(M1r) - M2

cos\vargamma 

r
+

2

r

\partial H

\partial \varphi 

\biggr) 
\delta w  - M1

\partial \delta w

\partial s

\Biggr] 
dL1

=  - 
\int \int 
\Sigma 

\biggl( 
\partial 2u

\partial t2
\delta u+

\partial 2v

\partial t2
\delta v +

\partial 2w

\partial t2
\delta w

\biggr) 
\rho hrds d\varphi . (6)

Враховуючи незалежнiсть варiацiй \delta u, \delta v i \delta w в областi \Sigma , з варiацiйного рiвняння (6)
отримаємо три рiвняння, якi описують рух оболонки пiд впливом її iнерцiйних сил. Якщо в
цих рiвняннях перейти вiд зусиль до перемiщень згiдно з формулами (4) i (5), то отримаємо
рiвняння щодо перемiщень u, v i w, якi з огляду на їхню достатню громiздкiсть тут не
наводимо. З рiвняння (6) випливають також i граничнi умови задачi. Так, у разi жорсткого
крiплення краю оболонки матимемо

u = v = w =
\partial w

\partial s
= 0. (7)

Вiдповiдно на вiльному краю оболонки повиннi виконуватися граничнi умови

T1 = 0, M1 = 0, S + 2H
sin\vargamma 

r
= 0,

1

r

\partial 

\partial s
(M1r) - M2

cos\vargamma 

r
+

2

r

\partial H

\partial \varphi 
= 0.

(8)
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В iнших випадках крiплення краю оболонки використовуємо лiнiйнi комбiнацiї умов (7)
i (8). Слiд особливо зазначити, що найбiльш складнi силовi граничнi умови (8) є при-
родними граничними умовами для вiдповiдного функцiонала, отриманого за допомогою
принципу можливих перемiщень. Отже, пошук його мiнiмуму можна здiйснювати на класi
функцiй, що задовольняють лише кiнематичнi граничнi умови.

2. Побудова розв’язкiв. Мализна параметрiв руху оболонки i її симетрiя дозволяють
загальний рух розкласти на незалежнi складовi в напрямку i навколо поздовжньої осi, а
також у двох взаємно перпендикулярних площинах Oxz i Oyz. Далi будемо розглядати
поперечнi коливання оболонки в однiй з площин симетрiї, за яку, зокрема, приймемо пло-
щину Oxz. У цьому випадку перемiщення серединної поверхнi оболонки будемо шукати
у виглядi

u(s, \varphi , t) = ei\omega tUn(s) cosn\varphi ,

v(s, \varphi , t) = ei\omega tVn(s) sinn\varphi , (9)

w(s, \varphi , t) = ei\omega tWn(s) cosn\varphi ,

де n — число хвиль у круговому напрямку оболонки.
Перейдемо до безрозмiрних величин, якi пов’язанi з вiдповiдними розмiрними величи-

нами такими спiввiдношеннями:

\{ Un, Vn,Wn\} = R0

\bigl\{ 
\=Un, \=Vn, \=Wn

\bigr\} 
, \{ r, s, R1\} = R0

\bigl\{ 
\=r, \=s, \=R1

\bigr\} 
,

c2 =
h2

12R2
0

, \=\omega 2 =
R2\rho 

\bigl( 
1 - \nu 2

\bigr) 
E

\omega 2,
(10)

де R0 — характерна для оболонки постiйна величина, що має розмiрнiсть довжини, h —
товщина оболонки.

Далi для скорочення запису риску над безрозмiрними величинами будемо опускати.
Тодi варiацiйне рiвняння задачi про усталенi вiльнi коливання оболонки обертання

можна навести у виглядi

\delta I =

s2\int 
s1

\Bigl[ 
\Psi 11(Un, \delta Un) + \Psi 12(Vn, \delta Un) + \Psi 13(Wn, \delta Un)

+ \Psi 12(\delta Vn, Un) + \Psi 22(Vn, \delta Vn) + \Psi 23(Wn, \delta Vn) + \Psi 13(\delta Wn, Un)

+ \Psi 23(\delta Wn, Vn) + \Psi 33(Wn, \delta Wn)
\Bigr] 
r ds

 - \omega 2

s2\int 
s1

(Un\delta Un + Vn\delta Vn +Wn\delta Wn)r ds = 0. (11)

Уведенi тут диференцiальнi оператори \Psi ij(p, q), де p i q — довiльнi функцiї, у випадку
застосування загальної теорiї тонкостiнних оболонокНовожилова [23] мають такий вигляд:
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\Psi 11(p, q) =

\biggl( 
cos2 \vargamma 

r2
+

\nu 1n
2

r2
+

c2 cos2 \vargamma 

r2R2
1

+
2(1 - \nu )c2n2

r2R2
1

\biggr) 
pq

+

\biggl( 
dp

ds
+

\nu cos\vargamma 

r
p

\biggr) 
dq

ds
+

\nu cos\vargamma 

r

\biggl[ 
dp

ds
+

c2

R1

d

ds

\biggl( 
p

R1

\biggr) \biggr] 
q

+ c2
\biggl[ 
d

ds

\biggl( 
p

R1

\biggr) 
+

\nu cos\vargamma 

rR1
p

\biggr] 
d

ds

\biggl( 
q

R1

\biggr) 
,

\Psi 12(p, q) =
n cos\vargamma 

r2

\biggl( 
1 +

c2 sin\vargamma 

rR1

\biggr) 
pq +

\nu n

r

\biggl[ 
dq

ds
+

c2 sin\vargamma 

r

d

ds

\biggl( 
q

R1

\biggr) \biggr] 
p

+

\biggl[ \biggl( 
\nu 1n

r
+

2(1 - \nu )c2n sin\vargamma 

r2R1

\biggr) \biggl( 
cos\vargamma 

r
p - dp

ds

\biggr) \biggr] 
q,

\Psi 13(p, q) =

\biggl( 
1

R1
+

\nu sin\vargamma 

r

\biggr) 
p
dq

ds
+

cos\vargamma 

r

\biggl( 
sin\vargamma 

r
+

\nu 

R1
+

c2n2

r2R1

\biggr) 
pq

 - c2
\biggl( 
d2p

ds2
 - \nu n2

r2
p+

\nu cos\vargamma 

r

dp

ds

\biggr) 
d

ds

\biggl( 
q

R1

\biggr) 
 - c2 cos\vargamma 

rR1

\biggl( 
cos\vargamma 

r

dp

ds
+ \nu 

d2p

ds2

\biggr) 
q

+
2(1 - \nu )c2n2

r2R1

\biggl( 
cos\vargamma 

r
p - dp

ds

\biggr) 
q,

\Psi 22(p, q) =
1

r2

\biggl( 
n2 + \nu 1 cos

2 \vargamma +
c2n2 sin2 \vargamma 

r2

\biggr) 
pq  - \nu 1 cos\vargamma 

r

\biggl( 
dp

ds
q + p

dq

ds

\biggr) 

+ \nu 1
dp

ds

dq

ds
+

2(1 - \nu )c2 sin2 \vargamma 

r2

\biggl[ \biggl( 
cos\vargamma 

r
q  - dq

ds

\biggr) \biggl( 
cos\vargamma 

r
p - dp

ds

\biggr) \biggr] 
,

\Psi 23(p, q) =

\biggl( 
n sin\vargamma 

r2
+

\nu n

rR1
+

c2n3 sin\vargamma 

r4

\biggr) 
pq  - c2n sin\vargamma 

r2

\biggl( 
\nu 
d2p

ds2
+

cos\vargamma 

r

dp

ds

\biggr) 
q

+ 2(1 - \nu )c2
\biggl[ 
n sin\vargamma 

r2

\biggl( 
dp

ds
 - cos\vargamma 

r
p

\biggr) \biggl( 
dq

ds
 - cos\vargamma 

r
q

\biggr) \biggr] 
,

\Psi 33(p, q) = c2

\Biggl[ 
d2p

ds2
d2q

ds2
+

\nu cos\vargamma 

r

\biggl( 
d2p

ds2
dq

ds
+

d2q

ds2
dp

ds

\biggr) 
 - \nu n2

r2

\biggl( 
d2p

ds2
q +

d2q

ds2
p

\biggr) 

+
cos2 \vargamma + 2(1 - \nu )n2

r2
dp

ds

dq

ds
 - n2 cos\vargamma (3 - 2\nu )

r3

\biggl( 
dq

ds
p+

dp

ds
q

\biggr) \Biggr] 

+

\biggl( 
1

R2
1

+
sin2 \vargamma 

r2
+

2\nu sin\vargamma 

rR1
+

c2n4 + 2(1 - \nu )c2n2 cos2 \vargamma 

r4

\biggr) 
pq,

де \nu 1 = (1 - \nu )/2,
У разi застосування технiчної теорiї оболонок Власова [24], замiсть наведених вище

формул слiд скористатися такими виразами для \Psi ij(p, q) :

\Psi 11(p, q) =

\biggl( 
cos2 \vargamma 

r2
+

\nu 1n
2

r2

\biggr) 
pq +

\biggl( 
dp

ds
+

\nu cos\vargamma 

r
p

\biggr) 
dq

ds
+

\nu cos\vargamma 

r

dp

ds
q,
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\Psi 12(p, q) =

\biggl( 
n cos\vargamma 

r2
+

\nu 1n cos\vargamma 

r2

\biggr) 
pq +

\nu n

r
p
dq

ds
 - \nu 1n

r
q
dp

ds
,

\Psi 13(p, q) =

\biggl( 
1

R1
+

\nu sin\vargamma 

r

\biggr) 
p
dq

ds
+

\biggl( 
cos\vargamma sin\vargamma 

r2
+

\nu cos\vargamma 

rR1

\biggr) 
pq,

\Psi 22(p, q) =

\biggl( 
n2

r2
+

\nu 1 cos
2 \vargamma 

r2

\biggr) 
pq +

\biggl( 
\nu 1

dp

ds
 - \nu 1 cos\vargamma 

r
p

\biggr) 
dq

ds
 - \nu 1 cos\vargamma 

r

dp

ds
q,

\Psi 23(p, q) =

\biggl( 
n sin\vargamma 

r2
+

\nu n

rR1

\biggr) 
pq.

Вираз для \Psi 33(p, q) залишено без змiн.
Розв’язки, що задовольняють рiвняння (11), повиннi бути пiдпорядкованi певним гра-

ничним умовам. Наприклад, для випадку жорсткого крiплення торцiв оболонки будемо
мати

Un(s) = Vn(s) = Wn(s) =
dWn(s)

ds

\bigm| \bigm| \bigm| \bigm| 
s=s1

= 0,

Un(s) = Vn(s) = Wn(s) =
dWn(s)

ds

\bigm| \bigm| \bigm| \bigm| 
s=s2

= 0.

(12)

Пошук мiнiмуму функцiонала, варiацiю якого представлено в формi (11), на класi
функцiй,що задовольняють кiнематичнi граничнi умови, будемо здiйснювати за допомогою
методу Рiтца, згiдно з яким компоненти перемiщень оболонки подамо у виглядi скiнченних
рядiв вигляду

Un(s) =

N\sum 
j=1

ajuj(s), Vn(s) =

N\sum 
j=1

bjvj(s), Wn(s) =

N\sum 
j=1

cjwj(s), (13)

де aj , bj i cj — постiйнi, що пiдлягають визначенню.
Будемо розглядати випадок, коли обидва торцi вiльнi; тодi, не обмежуючи перемiщення

оболонки, координатнi функцiї uj(s), vj(s) i wj(s) можна подати у виглядi

uj(s) = vj(s) = wj(s) = Pj

\biggl( 
2(s - s2)

s2  - s1
+ 1

\biggr) 
, j = 1, 2, . . . , N. (14)

Тут Pj(s) — змiщенi на одиницю за iндексом j многочлени Лежандра, обчислення яких i
їхнiх перших двох похiдних можна проводити за допомогою рекурентних спiввiдношень

Pj+2(s) =
1

j + 1
[(2j + 1)sPj+1(s) - jPj(s)],

P
\prime 
j+2(s) = sP

\prime 
j+1(s) + (j + 1)Pj+1(s),

P
\prime \prime 
j+2(s) = sP

\prime \prime 
j+1(s) + (j + 2)P

\prime 
j+1(s),

P1(s) = 1, P2(s) = s, j = 1, 2, . . . , N  - 2.

(15)
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При такому представленнi розклади (13) задовольняють умови вiльного крiплення тор-
цiв оболонки при будь-яких значеннях вектора

\vec{}X = [a1, a2, . . . , aN , b1, b2, . . . , bN , c1, c2, . . . , cN ].

При цьому забезпечується повнота i лiнiйна незалежнiсть функцiй, що входять у розкла-
ди (13).

Компоненти вектора \vec{}X далi визначаємо з умови стацiонарностi вiдповiдного функцiо-
нала I. При цьому вихiдна задача зводиться до розв’язування однорiдної алгебраїчної
системи \bigl( 

A - \omega 2B
\bigr) 
\vec{}XT = 0, (16)

де \vec{}XT — транспонований вектор \vec{}X, A i B — симетричнi матрицi порядку 3N.
Елементи матриць A i B, якi розташованi на головнiй дiагоналi i вище неї, будуть

обчислюватися за такими формулами:

ai,j =

s2\int 
s1

\Psi 11(uj , ui)r ds, ai,j+N =

s2\int 
s1

\Psi 12(vj , ui)r ds,

ai,j+2N =

s2\int 
s1

\Psi 13(wj , ui)r ds, ai+N,j+N =

s2\int 
s1

\Psi 22(vj , vi)r ds,

ai+N,j+2N =

s2\int 
s1

\Psi 23(wj , vi)r ds, ai+2N,j+2N =

s2\int 
s1

\Psi 33(wj , wi)r ds,

bi,j =

s2\int 
s1

ujuir ds, bi,j+N = bi,j+2N = bi+N,j+2N = 0,

bi+N,j+N =

s2\int 
s1

vjvir ds, bi+2N,j+2N =

s2\int 
s1

wjwir ds.

При виведеннi цих виразiв було використано представлення для варiацiї функцiона-
ла \delta I у формi (11), що забезпечило простоту їхнього отримання i значнi зручностi при
програмуваннi пропонованого алгоритму розв’язування цiєї задачi.

3. Деякi результати розрахункiв. Наведенi вище формули справедливi для довiльної
тонкостiнної оболонки обертання. Щоб перейти до сферичної оболонки, покладемо R0 =
R1, r = sin\vargamma i \vargamma = s. Уведемо до розгляду позначення \vargamma 1 = s1, \vargamma 2 = s2, \vargamma 0 = \vargamma 2  - \vargamma 1 i
\delta = R1/h, В усiх наведених розрахунках коефiцiєнт Пуассона \nu = 0.3,

У статтi всi розрахунки проводили з використанням загальної теорiї тонких оболонок
[23]. Для порiвняння отримуваних результатiв також використовували технiчну теорiю
[24], що окремо зазначено у текстi.

У табл. 1 наведено значення перших п’яти безрозмiрних частот \omega i, i = 1, 5, неосеси-
метричних коливань (n = 1) оболонки залежно вiд числа членiв N у розкладах (13) при
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Таблиця 1. Значення перших п’яти частот \omega i коливань оболонки (n = 1)
залежно вiд числа членiв N у розкладах (13) при \vargamma 0 = 180\circ 

N \omega 1 \omega 2 \omega 3 \omega 4 \omega 5

\delta = 100

8 0,70100 0,83043 0,88686 0,91889 1,18323
10 0,70100 0,83037 0,88218 0,90970 0,94241
12 0,70100 0,83037 0,88198 0,90889 0,92806
14 0,70100 0,83037 0,88197 0,90886 0,92655
16 0,70100 0,83037 0,88197 0,90886 0,92646

\delta = 1000

8 0,70094 0,83000 0,88454 0,91062 1,18322
10 0,70094 0,82995 0,88070 0,90578 0,92480
12 0,70094 0,82995 0,88058 0,90548 0,92004
14 0,70094 0,82995 0,88058 0,90547 0,91957
16 0,70094 0,82995 0,88058 0,90547 0,91955

Таблиця 2. Значення функцiй U1, V1, W1 (n = 1) для першої форми коливань оболонки
у точцi \vargamma = 18\circ залежно вiд числа членiв N у розкладах (13) при \vargamma 0 = 180\circ 

N U1 V1 W1

\delta = 100

10 0,43738 –0,51422 0,58779
12 0,43744 –0,51427 0,58790
14 0,43744 –0,51427 0,58789
16 0,43744 –0,51427 0,58789

\delta = 1000

10 0,43736 –0,51417 0,58769
12 0,43743 –0,51423 0,58779
14 0,43743 –0,51423 0,58779
16 0,43743 –0,51423 0,58779

\vargamma 0 = 180\circ , для двох значень параметра \delta . Результати табл. 1 показують, що запропонованi
координатнi функцiї дозволяють розраховувати з високим ступенем точностi нижчi часто-
ти коливань як для оболонок середньої товщини, так i для досить тонких оболонок при
невеликiй кiлькостi наближень у методi Рiтца.

Данi табл. 2 свiдчать про швидку збiжнiсть обчислювального процесу також при визна-
ченнi форм коливань сферичної оболонки. Тут i далi нормування власних форм коливань
оболонки обирали з умови W1,1(\vargamma 0/4) = 1.
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Рис. 2. Першi три форми вiльних коливань сферичної оболонки U1,i, V1,i, W1,i, i = 1, 2, 3, при n = 1,
\delta = 100, \vargamma 0 = 180\circ .

На рис. 2 показано поведiнку перших трьох форм вiльних коливань сферичної оболонки
U1,i, V1,i, W1,i, i = 1, 2, 3, при n = 1, \delta = 100, \vargamma 0 = 180\circ .

Зауважимо, що при обчисленнi iнтегралiв для визначення коефiцiєнтiв матриць A
i B алгебраїчної системи (16) використовували чисельний метод Гауса, що дозволило
проводити iнтегрування безпосередньо вiд 0 до 180\circ , уникаючи при цьому особливостi,
коли r = 0. Також зауважимо, що при n = 1 з розгляду виключено форми коливань, якi
вiдповiдають поступальному та обертальному руху оболонки як твердого тiла.

У табл. 3 наведено значення частот cn,1 = \omega n,1\delta 
\sqrt{} 
2(1 + \nu )/(1 - \nu 2) першої форми ко-

ливань сферичної оболонки, отриманi у цiй роботi (перший рядок), а також обчисленi у
роботi [8] (другий рядок). Порiвняння представлених результатiв вказує на їхню хорошу
узгодженiсть.

У табл. 4 наведено значення нижчих частот першої форми коливань сферичної обо-
лонки при \vargamma 1 = 0\circ , отриманi у цiй роботi за загальною та технiчною теорiями оболонок
(перший та другий рядки). Данi табл. 4 свiдчать, що результати розрахункiв частот за
технiчною теорiєю оболонок можуть бути дещо завищеними.

Висновки. У цiй статтi на основi методу Рiтца запропоновано пiдхiд до розв’язування
задачi про вiльнi неосесиметричнi коливання пружної тонкостiнної сферичної оболонки.
У рамках одного алгоритму проведено розрахунки як з використанням загальної теорiї
тонких пружних оболонок, так i з застосуванням технiчної теорiї. Як i слiд було очiкувати,
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Таблиця 3. Значення частот cn,1 першої форми коливань сферичної оболонки
при \vargamma 1 = 0\circ , отриманi у цiй роботi (перший рядок),

а також обчисленi у роботi [8] (другий рядок)

\vargamma 2 n
\delta 

25 50 100 200

60\circ 

2 3,086 3,145 3,184 3,210
3,085 3,145 3,184 3,210

3 7,650 7,931 8,132 8,267
7,647 7,929 8,132 8,267

4 13,666 14,354 14,902 15,284
13,659 14,350 14,901 15,284

150\circ 

2 6,322 6,991 7,430 7,712
6,315 6,989 7,429 7,710

3 16,831 19,489 21,376 22,651
16,811 19,479 21,372 22,645

4 28,563 34,507 38,925 42,091
28,538 34,489 38,917 42,076

Таблиця 4. Значення перших п’яти частот коливань сферичної оболонки \omega i при n = 1,
\vargamma 1 = 0\circ , \delta = 100 (другий рядок — результати, отриманi з використанням

технiчної теорiї оболонок)

\vargamma 2 \omega 1 \omega 2 \omega 3 \omega 4 \omega 5

30\circ 0,96300 1,13532 1,56813 2,28551 3,19428
0,96378 1,13736 1,57112 2,28895 3,19426

60\circ 0,90000 0,94503 0,99124 1,07782 1,22524
0,90027 0,94561 0,99239 1,07962 1,22763

90\circ 0,83605 0,90919 0,93843 0,96490 1,00292
0,83619 0,90950 0,93896 0,96577 1,00420

120\circ 0,76623 0,87383 0,91304 0,93496 0,95415
0,76632 0,87403 0,91338 0,93547 0,95489

150\circ 0,71748 0,84290 0,89168 0,91696 0,93393
0,71756 0,84306 0,89195 0,91733 0,93444

180\circ 0,70100 0,83037 0,88197 0,90886 0,92646
0,70107 0,83052 0,88223 0,90924 0,92698

використання технiчної теорiї може приводити до отримання дещо завищених частот що-
до загальної теорiї оболонок. Для прийнятих граничних умов вiльного крiплення торцiв
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оболонки вдається частково уникнути вiдомої особливостi, коли радiус кола, утворено-
го паралеллю оболонки r, дорiвнює нулю. Запропонований пiдхiд дозволяє обчислювати
нижчi власнi частоти та форми коливань оболонки при невеликiй кiлькостi наближень у
методi Рiтца. Також показано, що за цих граничних умов товщина оболонки не впливає
на швидкiсть збiжностi обчислювального процесу. Достовiрнiсть отриманих у цiй роботi
результатiв пiдтверджено їх порiвнянням iз результатами з [8].

Автор заявляє про вiдсутнiсть конфлiкту iнтересiв. Усi необхiднi данi мiстяться в стат-
тi. Роботу виконано за часткової фiнансової пiдтримки за проєктом “Математичне мо-
делювання складних динамiчних систем i процесiв, викликаних державною безпекою”,
реєстрацiйний № 0123U100853.
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