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Problems of the dynamics of a rigid body with internal degrees of freedom always are of theoretical and
practical interests. The complexity of the research of these objects is caused first by the necessity of the
study of the system behavior in the combined statement. Special problems appear in the case where internal
degrees of freedom are defined by components having a continuum structure. Moreover, for the description
of the system behavior, it is necessary to use a mathematical model of an inhomogeneous mathematical
structure (a system of ordinary differential equations for the motion of the rigid body and a partial dif-
ferential equation for the description of the continuum component), which is sufficiently complicated.
Additional complexities appear in the case of the motion of rigid bodies with a liquid because the motion
of the rigid body is described in the Lagrange variables whereas the motion of a liquid is described in the
Euler variables. Moreover, the problem of determination of forces of interaction between components is
also complex. In the present paper, we study the problem of motion of a carrying body with a liquid with
a free surface, which is one of the important theoretical and practical problems. The main attention is paid
to the cases of motion of the mechanical system in the form of a cylindrical reservoir — a liquid with
a free surface in the nonlinear range of perturbations of the free surface of the liquid for a considerable
manifestation of the combined character of motion and for the angular motion of the carrying body. On
the basis of performed research, we obtain specific features of development of resonance processes in
the system. For vibrations of the system in a pendulum suspension, we establish that a decrease in the
suspension length leads to a change in the priority of location on normal modes in the ascending order
of eigenfrequencies. For all types of resonances, we show the absence of the passage of the system in a
steady mode of motion in the classical sense, which is confirmed by experimental results.

Задачi динамiки твердого тiла з внутрiшнiми степенями свободи завжди викликали теоретичний i
практичний iнтерес. Складнiсть дослiдження таких об’єктiв обумовлено, перш за все, необхiднi-
стю проводити вивчення поведiнки системи у сумiснiй постановцi. Особливi проблеми виникають
у випадках, коли внутрiшнi степенi свободи визначають компоненти, якi мають континуальну
структуру. При цьому для опису поведiнки системи буде потрiбно використовувати математичну
модель неоднорiдної математичної структури (система звичайних диференцiальних рiвнянь для
руху твердого тiла i рiвняння з частинними похiдними для опису континуальної складової), що є
достатньо складним. Додатковi складнощi виникають у випадку руху твердих тiл iз рiдиною, коли
рух твердого тiла описують з лагранжовими змiнними, а рух рiдини — з ейлеровими. Крiм того,
складною проблемою є також визначення сил взаємодiї мiж компонентами. Однiєю з важливих у
теоретичному i практичному планах є задача про рух тiла-носiя з рiдиною з вiльною поверхнею,
яку дослiджуємо у цiй роботi. Головну увагу придiлено випадкам, коли рух механiчної системи
цилiндричний резервуар – рiдина з вiльною поверхнею вiдбувається у нелiнiйному дiапазонi збу-
рень вiльної поверхнi рiдини при значному проявi фактора сумiсностi руху i при кутових рухах
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тiла-носiя. На основi проведених дослiджень показано особливостi розвинення резонансних про-
цесiв у системi. При дослiдженнi коливань системи на маятниковому пiдвiсi встановлено, що при
зменшеннi довжини пiдвiсу в системi вiдбувається змiна черговостi розташування форм коливань
при їхньому розмiщеннi в порядку зростання власних частот. Для всiх типiв резонансiв показано,
що виходу системи у класичному сенсi на усталений режим коливань взагалi не вiдбувається, i це
пiдтверджено експериментальними результатами.

Вступ. Розглядаємо задачi нелiнiйної динамiки сумiсного руху цилiндричного резервуара
та рiдини, що частково заповнює його, при кутових рухах тiла-носiя. У динамiцi конструк-
цiй з рiдиною з вiльною поверхнею найбiльш складнi режими поведiнки систем спосте-
рiгаємо у випадку значних проявiв сумiсностi руху конструкцiї-носiя i рiдини з вiльною
поверхнею. Особливi складнощi виникають при розглядi режимiв поведiнки систем у не-
лiнiйному дiапазонi збурень. Додатковi ускладнення вносить кутовий рух таких систем,
який для бiльшостi практичних випадкiв є домiнуючим. Саме кутовi рухи конструкцiй з
рiдиною є головними в задачах морської хитавицi, керування польотами космiчних i по-
вiтряних апаратiв, при сейсмiчних збуреннях систем зберiгання i транспортування рiдини
тощо. Одночасно для таких систем притаманний значний прояв фактора сумiсностi руху
конструкцiї i рiдини. В той же час у бiльшостi сучасних дослiджень у галузi динамiки тiл з
рiдиною розглядають випадки поступального руху конструкцiї-носiя при нехтуваннi сумi-
снiстю рухiв складових компонент. Для задач нелiнiйної динамiки конструкцiй з рiдиною
створено ефективнi пiдходи для дослiдження перехiдних i резонансних процесiв. Вiдра-
зу зазначимо, що методи, основанi на лiнiйних моделях, є ефективними лише в малому
дiапазонi змiни динамiчних параметрiв системи i в переважнiй бiльшостi дають неповну
iнформацiю про реальну поведiнку конструкцiй з рiдиною [1 – 5]. Iснуючi нелiнiйнi методи
дослiдження задач динамiки конструкцiй з рiдиною можна умовно подiлити на три групи.

Перша група: методи, що ґрунтуються на iдеях методiв збурень iз зведенням вихiдної
нелiнiйної задачi до розв’язання послiдовностi неоднорiдних крайових задач. Це насампе-
ред методи, розглянутi в [4, 5]. Використання таких методiв включає елементи, якi важко
алгоритмiзувати. Такi методи активно розвивалися до кiнця 80-х рокiв минулого сторiччя
i зараз дослiджень такими методами практично не виконують.

Друга група: методи дослiдження, якi ґрунтуються на сумiсному використаннi варiа-
цiйних пiдходiв i методу модальної декомпозицiї [6 – 8]). Цi методи активно розвиваються
з другої половини 70-х рокiв минулого сторiччя i дотепер. Саме цi методи поєднують
можливостi аналiтичних пiдходiв нелiнiйної механiки з можливостями сучасних методiв
апроксимацiї розв’язкiв допомiжних задач енергетичними методами математичної фiзи-
ки. Всi головнi результати дослiдження резонансних i перехiдних процесiв у динамiцi
конструкцiй з рiдиною одержано саме на основi таких методiв.

Третю групу методiв, яка активно розвивається, основано на iдеях поточкової апрокси-
мацiї просторових залежностей. Таких методiв iснує достатньо багато. Переважну увагу
в них зосереджено на дослiдженнi перехiдних процесiв. Задачi динамiки сумiсного руху
конструкцiй з рiдиною практично не розглядалися. Важливою особливiстю цих методiв
є вiдсутнiсть глибокого аналiзу похибок алгоритмiв, що використовуються, з подальшим
аналiзом впливу цих похибок на остаточнi результати, вiдсутнiсть загальних якiсних ви-
сновкiв щодо поведiнки таких динамiчних систем [5, 9].

Виходячи з аналiзу iснуючих методiв дослiдження нелiнiйних задач динамiки сумiсно-
го руху, в цiй роботi будемо використовувати саме метод другої групи. Такi методи, як
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Рис. 1. Загальна схема поступального i кутового рухiв резервуара з рiдиною.

правило, ґрунтуються на варiацiйному формулюваннi задачi динамiки системи, методах
нелiнiйної механiки i варiацiйних методах математичної фiзики для розв’язання (пред-
ставлення розв’язкiв) просторових задач.

1. Математична модель системи. Розглянемо задачу про рух системи конструкцiя –
рiдина з вiльною поверхнею. Вважаємо, що конструкцiя має порожнину цилiндричної
форми кругового перерiзу, частково заповнену рiдиною. Конструкцiю розглядаємо як аб-
солютно тверде тiло, що здiйснює поступальний i обертальний рухи пiд дiєю активних
зовнiшнiх сил i моментiв, а також за наявностi кiнематичних збурень. Покладаємо, що рi-
дина є iдеальною, нестисливою, однорiдною, а її початковий рух є безвихровим. Оскiльки
для бiльшостi практичних задач число Рейнольдса лежить у межах 104 \leq Re \leq 106, то при
моделюваннi властивостей в’язкостi можна обмежитися припущенням теорiї примежового
шару i звести дiю сил в’язкостi до узагальненої дисипацiї за методикою з [3]. Розв’язок
задачi будуємо за методом iз [6, 10], який пройшов багатобiчну апробацiю для задач ди-
намiки конструкцiй з рiдиною при силовому i моментному збудженнi руху i порiвняння з
якiсними результатами теоретичних робiт i експериментiв [5, 8, 9].

Математична модель системи є об’єктом неоднорiдної математичної структури. Рух
рiдини описують диференцiальнi рiвняння з частинними похiдними, а рух конструкцiї —
система звичайних диференцiальних рiвнянь.

За припущення безвихрового початкового руху баротропної рiдини, за умови потенцi-
альностi зовнiшнiх сил i згiдно з теоремою Лагранжа абсолютний рух рiдини i надалi буде
потенцiальним. Переносний рух будемо задавати в системi координат, незмiнно зв’язанiй з
резервуаром, причому вiсь Oz направлена вздовж осi цилiндра вгору. При цьому резервуар
здiйснює поступальний рух зi швидкiстю \.\vec{}\varepsilon i обертальний рух iз кутовою швидкiстю \vec{}\omega . На
рис. 1 показано загальну схему сумiсного руху резервуара з рiдиною для поступального (лi-
воруч) i кутового (праворуч) руху тiла-носiя. Введенi так званi лiтаковi кути, що докладно
описано в [6]. Тут i далi \vec{}r — радiус-вектор точок областi \tau у зв’язанiй системi коорди-
нат, причому початок системи координат обираємо в центрi незбуреної вiльної поверхнi
рiдини. Тодi

\vec{}va = \vec{}\nabla \Phi , \vec{}vr = \vec{}\nabla \Phi  - \vec{}\omega \times \vec{}r  - \.\vec{}\varepsilon . (1)
Оскiльки область, яку займає рiдина, має вiльну поверхню i ця область при вiдносно

малих збуреннях рiдини є цилiндричною, введемо до розгляду рiвняння вiльної поверхнi
рiдини з цилiндричними координатами (t — час)
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z = \xi (r, \theta , t).

Потенцiал швидкостей для такого класу задач зручно зобразити у виглядi

\Phi = \varphi + \.\vec{}\varepsilon \cdot \vec{}r + \vec{}\omega \cdot \vec{}\Omega . (2)

Тут перший доданок вiдповiдає потенцiалу швидкостей хвильового руху рiдини, другий—
потенцiалу швидкостей, обумовленому поступальним рухом резервуара, а третiй— потен-
цiалу швидкостей, що викликаний обертальним рухом резервуара. Зауважимо, що на вiд-
мiну вiд швидкостi поступального руху, яка може бути довiльного порядку малостi, кутова
швидкiсть руху резервуара i кути його нахилу мають бути малими, оскiльки їхнi скiнченнi
значення неодмiнно приведуть до скiнченних значень збурень вiльної поверхнi рiдини.

Зi спiввiдношення (2) видно, що при наявностi обертального руху тiла-носiя до матема-
тичного формулювання задачi введено три новi невiдомi скалярнi функцiї — компоненти
\vec{}\Omega , для яких до того ж крайовi задачi формулюються в бiльш складнiй формi, нiж для
скалярної компоненти потенцiалу \varphi .

Математичне формулювання задачi про рух системи резервуар – рiдина з вiльною по-
верхнею можна звести до сукупностi обмежень кiнематичного характеру, динамiчних рiв-
нянь i початкових умов. З точки зору загальних властивостей опису механiчних систем на
основi варiацiйного принципу Гамiльтона –Остроградського кiнематичнi умови слiд роз-
глядати як механiчнi в’язi, що накладають обмеження на варiацiї невiдомих. Такi ж за ха-
рактером обмеження накладає умова нерозривностi потоку рiдини i умова розв’язуваностi
крайових задач. Надалi динамiчнi граничнi умови одержуємо з варiацiйного принципу
Гамiльтона –Остроградського як природнi.

Сукупнiсть кiнематичних обмежень задачi за прийнятих позначень набуває такої фор-
ми. З умов неперервностi потоку i умов розв’язностi задачi випливає (S i S0 — вiдповiдно
збурена i незбурена вiльна поверхня рiдини)

\Delta \varphi = 0, \Delta \vec{}\Omega = 0 у \tau ,

\int 
S0

\xi dS = 0, (3)

умова неперетiкання на межi контакту резервуар – рiдина \Sigma з одиничною зовнiшньою
нормаллю \vec{}n

\partial \varphi 

\partial n
= 0 на \Sigma ;

\partial \Omega 

\partial n
= \vec{}r \times \vec{}n на \Sigma + S0, (4)

i умова неперетiкання через вiльну поверхню рiдини
\partial \xi 

\partial t
+ \vec{}\nabla \xi \cdot 

\Bigl[ 
\vec{}\nabla \varphi + \vec{}\nabla 

\bigl( 
\vec{}\omega \cdot \vec{}\Omega 

\bigr) 
 - \.\vec{}\varepsilon  - \vec{}\omega \times \vec{}r

\Bigr] 
=
\partial \varphi 

\partial z
+ \vec{}\omega \cdot \partial 

\vec{}\Omega 

\partial z
 - \.\varepsilon z  - (\vec{}\omega \times \vec{}r)| z на S\xi . (5)

Найбiльш ефективно варiацiйний принцип Гамiльтона –Остроградського використо-
вують у випадку, коли всi кiнематичнi обмеження задачi задовольняються до чисельної
реалiзацiї варiацiйної задачi. Якщо прийняти представлення шуканих змiнних у виглядi
розкладiв за формами коливань лiнiйної задачi

\xi =
\sum 
n

an(t)\psi n(r, \theta ), (6)
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\varphi =
\sum 
n

bn(t)\psi n(r, \theta )
ch\kappa n(z +H)

\kappa n sh\kappa nH
, (7)

\vec{}\Omega = \vec{}\Omega 0 +
\sum 
n

\vec{}qn(t)\psi n(r, \theta )
ch\kappa n(z +H)

\kappa n sh\kappa nH
, (8)

то всi кiнематичнi обмеження задовольняються заздалегiдь окрiм кiнематичної граничної
умови на вiльнiй поверхнi рiдини, яка задовольняється лише в рамках лiнiйних обмежень.

Тут \psi n(x, y) — повна ортогональна система функцiй в областi S0, яку можна знайти
з розв’язання крайової задачi Неймана з параметром \kappa n. При цьому L0 — контур, що
обмежує S0;

\Delta \psi k + \kappa 2k\psi k = 0 на S0;
\partial \psi k

\partial n
= 0 на L0. (9)

Рiвняння цiєї задачi є наслiдком крайової задачi (3), а гранична умова — наслiдком спiв-
вiдношення (4). Вектор-функцiя \vec{}\Omega 0 є потенцiалом Стокса –Жуковського, яку одержують
як розв’язок крайової задачi Неймана для рiвняння Лапласа

\Delta \vec{}\Omega 0 = 0;
\partial \vec{}\Omega 0

\partial n
= \vec{}r \times \vec{}n на S0 +\Sigma .

При такому виборi координатних функцiй \psi n умова збереження об’єму рiдини, яка є еквi-
валентною умовi розв’язуваностi вихiдної крайової задачi, виконується для кожної коор-
динатної функцiї, а отже, й для всього розкладу (6). Цю крайову задачу Неймана докладно
дослiджено в [1], де побудовано алгоритми розв’язання для рiзних форм порожнин.

Одним iз найбiльш складних у побудовi математичної моделi резервуара з рiдиною
з вiльною поверхнею є виключення нелiнiйної кiнематичної граничної умови на вiльнiй
поверхнi рiдини (5). Проблема виключення цiєї умови є типовою при дослiдженнi задач
динамiки резервуарiв iз рiдиною з вiльною поверхнею i є складовою частиною практично
всiх iснуючих методiв розв’язання задач такого класу, особливо методiв, якi базуються на
застосуваннi потенцiалу швидкостей рiдини в аналiтичнiй формi. Таку проблему можна
розв’язати на основi методу Фур’є [4, 5], методу Гальоркiна i варiацiйного методу [5 – 8] iз
застосуванням iдей нелiнiйної механiки. При цьому задачу про виключення кiнематичної
граничної умови на вiльнiй поверхнi рiдини можна розв’язувати як незалежно вiд вивчення
задачi динамiки [5, 6, 10], так i як складову частину її розв’язання у випадку, коли кiнема-
тична гранична умова є природною для варiацiйного формулювання задачi [5, 7, 8, 11] на
основi принципу Бейтмена). Найбiльш ефективно таку задачу можна розв’язати у випадку,
коли координатнi функцiї ортогональнi та задовольняють кiнематичнi граничнi умови на
стiнках резервуара. Це вказує на доцiльнiсть використання форм вiльних коливань, якi
одержують на основi розв’язання вiдповiдної лiнiйної задачi, як координатних функцiй.

Розглянемо спосiб виключення нелiнiйної кiнематичної граничної умови на вiльнiй
поверхнi рiдини, який базується на методi Гальоркiна i основах нелiнiйної механiки. Для
наближеного виключення цiєї умови необхiдно здiйснити вибiр базових параметрiв си-
стеми, за допомогою яких надалi будемо виражати залежнi параметри. Як випливає з
теореми: безвихровий рух iдеальної однорiдної нестисливої рiдини повнiстю визначається
рухом її границь, число степенiв свободи руху всього об’єму рiдини з вiльною поверх-
нею дорiвнює числу степенiв свободи руху самої вiльної поверхнi i бiчних стiнок рiдини.
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Виходячи з цього за базовi параметри системи, якi характеризують рух вiльної поверхнi
рiдини, доцiльно обрати змiнну \xi , а \varphi i \Omega слiд вважати залежними. З розкладiв (6) – (8)
вибiр незалежних параметрiв реалiзуємо таким чином: сукупнiсть амплiтудних параметрiв
розкладу збурень вiльної поверхнi в ряд за формами вiльних коливань рiдини розглядаємо
як незалежну, а параметри розкладiв у ряд скалярної \varphi i векторної \vec{}\Omega складових потенцi-
алу швидкостей, вiдповiдно bi i \vec{}qi , розглядаємо як залежнi вiд ai параметри. При цьому
сукупнiсть амплiтудних параметрiв ai вичерпно характеризує кiнематику рiдини з вiльною
границею.

Для визначення конкретної форми залежностi bi i \vec{}qi вiд ak скористаємося кiнематич-
ною граничною умовою на вiльнiй поверхнi (5). Оскiльки кiнематична гранична умова має
виконуватися для довiльних законiв руху резервуара, умова (5) розпадається на такi чотири
умови на поверхнi S (при z = \xi ):

L(0)(\xi , \varphi ) =
\partial \xi 

\partial t
+ \vec{}\nabla \xi \cdot \vec{}\nabla \varphi  - \partial \varphi 

\partial z
= 0, (10)

L(k)(\xi ,\Omega 0) = \vec{}\nabla \xi \cdot \vec{}\nabla \Omega k  - 
\partial \Omega k

\partial z
+\vec{}ik \cdot 

\bigl( 
\vec{}i3 \times \vec{}r

\bigr) 
, k = 1, 2, 3. (11)

Тут позначено через \Omega k компоненти векторної складової потенцiалу швидкостей \vec{}\Omega , а
через L(i)(f, g) — диференцiальнi оператори i = 0, 1, 2, 3.

Отже, з точки зору механiчних параметрiв ai кiнематична гранична умова являє собою
одну непроiнтегровану за часом (10) i три голономнi (11) механiчнi в’язi.

Додатково пояснимо можливiсть розкладу умови (5) на чотири незалежних (10), (11),
оскiльки одержання з однiєї скалярної умови чотирьох нових умов виглядає незвичним.
З одного боку, як це наведено вище, з вимоги виконання умови для довiльних законiв
руху резервуара (а те, що форма кiнематичної умови для рiдини не повинна залежати вiд
закону руху як рiдини, так i резервуара, випливає з самого визначення кiнематичної в’язi)
випливає, що при розглядi почергово вiдмiнних вiд нуля компонент \vec{}\omega , а також випадку,
коли \vec{}\omega = 0, одержимо чотири умови для реалiзацiї згаданої властивостi кiнематичної
в’язi. З другого боку, як було показано вище, рух рiдини повнiстю визначено рухом її меж.
Тому змiннi \varphi i \Omega k залежать лише вiд однiєї змiннної \xi . Проте, одне спiввiдношення (5)
дозволить визначити лише одну залежнiсть, тому три iншi залежностi можуть бути обранi
довiльним чином. Доцiльно обрати їх iз мiркувань максимального спрощення форми цих
залежностей. Такою формою, яка забезпечує розщеплення умов для \Omega k на незалежнi, саме
i є умови (11).

Подальшупроцедуру визначення залежностi параметрiв bi i \vec{}qi вiд амплiтудних парамет-
рiв ai проводимо на основi методу Гальоркiна. Для цього пiдставляємо розклади (6) – (8) у
диференцiальнi оператори L(i)(f, g), помножуємо на систему функцiй \psi k та iнтегруємо по
областi S0 : \int 

S0

L(i)

\biggl( 
\xi ,

\varphi 

\Omega k

\biggr) \bigm| \bigm| \bigm| \bigm| 
S

\psi k dS = 0, i = 0, 1, 2, 3, k = 1, 2, . . . . (12)

При цьому безпосереднє обчислення значень диференцiальних операторiв L(i) на наперед
невiдомiй вiльнiй поверхнi S, тобто при z = \xi , виконано шляхом перенесення цього
оператора на поверхню S0 iз використанням методiв теорiї збурень.
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Особливою рисою запропонованого пiдходу є те, що система функцiй \psi i, яку вико-
ристовують як координатнi функцiї, є ортогональною на S0. Це приводить до найбiльш
простої форми переходу вiд континуальної структури граничної умови (5) до її дискретно-
го аналога з параметрами ai, bi, \vec{}qi, що обумовлює можливiсть одержання аналiтичного
розв’язку задачi визначення взаємозалежностi bi i \vec{}qi вiд ai у явному виглядi. Зазначимо,
що згiдно з роботами [7, 8, 11] за координатнi функцiї прийнято неортогональну на вiльнiй
поверхнi систему \Phi k(x, y, \xi ) = \psi k(x, y)

ch\kappa k(\xi +H)

\kappa k sh\kappa kH
, яку одержано як результат знесення

ортогональної на S0 системи функцiй \phi k(x, y, 0) на збурену вiльну поверхню S (знесен-
ня зроблено на основi методiв теорiї збурень). Як наслiдок, одержана на основi методiв
робiт [7, 8, 11] система рiвнянь для визначення залежностей bi i \vec{}qi вiд ak є бiльш склад-
ною, зокрема, не приводить до одиничної матрицi при старших похiдних невiдомих, що
ускладнює пошук аналiтичної форми розв’язку.

Зауважимо також, що якщо за вихiднi прийняти розклади змiнних \xi , \varphi 0 i \vec{}\Omega , то згiдно
з роботами [4, 5] процедура виконання (5) приводить до розв’язання сукупностi лiнiйних
однорiдних крайових задач для фiксованої областi, якi одержано [4] на основi диферен-
цiального пiдходу. На ранньому етапi розвинення варiацiйних методiв це було одним iз
методiв перевiрки алгоритмiв.

Конкретно виключення кiнематичної граничної умови (5) (або сукупностi умов (10) i
(11)) робили так. Пiдставляємо розклади змiнних (6) – (8) в умови (10) i (11), помножуємо
одержанi вирази на \psi p та iнтегруємо одержане спiввiдношення по S0. При цьому гiпербо-
лiчнi функцiї розкладаємо в ряд по \xi в околi \xi = 0, далi виконуємо iнтегрування. Пiсля
виконання такої процедури спiввiдношення (12) можна привести до вигляду

bi = \.ai +
\sum 
n,m

\.anam\gamma 
w
nmi +

\sum 
n,m,l

\.anamal\delta 
w
nmli +

\sum 
n,m,l,k

\.anamalakh
w
nmlki, (13)

\vec{}qp =
\sum 
j

aj \vec{}\beta 
u
jp +

\sum 
j,k

ajakak\vec{}\gamma 
u
jkp +

\sum 
j,k,l

ajakal\vec{}\delta 
u
jklp. (14)

Коефiцiєнти зi спiввiдношення (13), (14) є квадратурами вiд функцiй \psi i i \vec{}\Omega 0, якi обчислено
по областi S0, або є певними виразами вiд цих квадратур. Конкретну форму для них
наведено в [6]. Усi залежностi коефiцiєнтiв для bi i \vec{}qp вiд ai i \.aj одержано в аналiтичному
виглядi з точнiстю до величин, якi гарантують одержання рiвнянь руху з точнiстю до
нелiнiйних членiв третього порядку малостi включно для довiльного числа амплiтудних
параметрiв.

У результатi застосування розкладiв шуканих величин по формах коливань вiдповiдної
лiнiйної задачi з попереднiм задоволенням нелiнiйної кiнематичної граничної умови на
вiльнiй поверхнi рiдини побудовано розклади шуканих величин, якi тотожно задовольня-
ють вимоги нерозривностi потоку в областi \tau (3), умови розв’язуваностi задачi, кiнематичнi
граничнi умови на твердiй межi областi \tau (4) i з точнiстю до величин третього порядку
малостi кiнематичну граничну умову на вiльнiй поверхнi рiдини (5). Зауважимо, що за
цiєю методикою нелiнiйну кiнематичну граничну умову на вiльнiй поверхнi рiдини мож-
на задовольнити з будь-якою наперед заданою точнiстю. Таку процедуру реалiзовано для
довiльних поступальних i малих кутових рухiв резервуара.

В основу постановки задачi прийнято варiацiйне формулювання у формi варiацiйного
принципу Гамiльтона –Остроградського в класичному виглядi
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\delta I = 0, I =

t2\int 
t1

Ldt, L = T  - \Pi .

Тут T i \Pi — вiдповiдно кiнетична й потенцiальна енергiя системи. Тепер, беручи до уваги
задоволення всiх кiнематичних в’язiв, можна побудувати функцiю Лагранжа системи, яка
вже буде вiдповiдати вiльнiй системi, а система параметрiв ai, \alpha i, \varepsilon i — сукупнiсть неза-
лежних змiнних, якi повнiстю характеризують поведiнку механiчної системи резервуар –
рiдина з вiльною поверхнею. Згiдно iз загальними властивостями варiацiйного принципу
Гамiльтона –Остроградського на основi незалежних змiнних ai, \alpha i, \varepsilon i отримаємо динамiч-
нi граничнi умови та рiвняння руху резервуара, якi будуть наслiдком технiки варiювання
функцiї Лагранжа. При цьому побудована модель буде мiнiмальною за розмiрнiстю, оскiль-
ки число невiдомих задачi дорiвнює числу степенiв свободи системи. Це вiдрiзняє пiдхiд на
основi принципу Гамiльтона –Остроградського вiд пiдходiв на основi принципу Бейтмена,
де розмiрнiсть значно вище.

Запишемо функцiю Лагранжа у виглядi [6]

L =
1

2
\rho 

\int 
\tau 

\Bigl[ 
\vec{}\nabla \varphi + \.\vec{}\varepsilon \cdot \vec{}r + \vec{}\nabla 

\bigl( 
\vec{}\omega \cdot \vec{}\Omega 

\bigr) \Bigr] 2
d\tau +

1

2
Mr

\Bigl( 
\.\vec{}\varepsilon 
\Bigr) 2

+
1

2
Iijres\omega i\omega j

 - (Mr +Ml)g\varepsilon z + \rho g(cos\alpha 1 sin\alpha 2 cos\alpha 3  - sin\alpha 1 sin\alpha 3)

\times 
\int 
S0

r cos \theta (\xi +H) dS  - \rho g(sin\alpha 1 cos\alpha 3 + cos\alpha 1 sin\alpha 2 sin\alpha 3)

\times 
\int 
S0

r sin \theta (\xi +H) dS  - 1

2
\rho g cos\alpha 1 cos\alpha 2

\times 
\int 
S0

\xi 2 dS  - (Mlhl +Mrhr) (1 - cos\alpha 1 cos\alpha 2)

 - \sigma 

\int 
S0

\sqrt{} 
1 +

\Bigl( 
\vec{}\nabla \xi 
\Bigr) 2
dS  - \sigma cos \theta 1

\int 
L0

\xi dl + \vec{}F \cdot \vec{}\varepsilon + \vec{}M\vec{}\chi . (15)

У спiввiдношеннi (15) використано такi позначення: \rho —густина рiдини, g —прискорення
вiльного падiння, H —рiвень заповнення, Mr i Ml —маси резервуара та рiдини, hl i hr —
змiщення центрiв ваги рiдини та резервуара щодо площини незбуреної вiльної поверхнi S0,
L0 = S0

\bigcap 
\Sigma — контур трифазного контакту резервуар – вiльна поверхня – газ над вiльною

поверхнею, \sigma — поверхневий натяг на вiльнiй поверхнi рiдини, \theta 1 — контактний кут,
Iijres —тензор iнерцiї резервуара, визначений стосовно точки O, \vec{}F i \vec{}M —головний вектор
i головний момент зовнiшнiх сил щодо точки O, якi дiють на резервуар (представлення
потенцiалiв зовнiшнiх сил i моментiв умовнi), \vec{}\chi = \{ \alpha 1, \alpha 2, \alpha 3\} — умовне представлення
кутiв повороту резервуара стосовно умовно нерухомої системи вiдлiку.

Вiдразу вiдзначимо громiздкiсть через введення трьох додаткових потенцiалiв (це най-
бiльш вiдчутно проявляється в обчисленнi кiнетичної енергiї системи). Рiвняння руху си-
стеми тепер одержуємо як рiвняння Лагранжа другого роду, виходячи з форми функцiї
Лагранжа з незалежними параметрами ai, \alpha i, \varepsilon i [6].
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З перетвореної функцiї Лагранжа вiльної системи можемо одержати такi рiвняння
Лагранжа другого роду:

\sum 
i

\"ai

\left(  \delta ir +\sum 
j

ajA
3
rij +

\sum 
j,k

ajakA
4
rijk

\right)  

+
1

\alpha v
r

\"\vec{}\varepsilon \cdot 

\left(  \vec{}B1
r +

\sum 
i

ai \vec{}B
2
ri +

\sum 
i,j

aiaj \vec{}B
3
rij +

\sum 
i,j,k

aiajak \vec{}B
4
rijk

\right)  

+
1

2\alpha v
r

3\sum 
s=1

\"\alpha s

\left[  3\sum 
p=1

\partial \omega p

\partial \.\alpha s

\left(  E1\ast 
pr +

\sum 
i

aiE
2\ast 
pri +

\sum 
i,j

aiajE
3\ast 
prij

\right)  \right]  
=  - kr \.ar +

\sum 
i,j

\.ai \.ajC
3
ijr +

\sum 
i,j,k

\.ai \.ajakC
4
ijkr

1

2\alpha v
r

3\sum 
p,s=1

\omega p\omega s

\Biggl( 
E2

psr + 2
\sum 
i

aiE
3
psir

\Biggr) 

+
1

2\alpha v
r

3\sum 
p=1

\omega p

\left[  \sum 
i

\.ai
\bigl( 
E2\ast 

pir  - E2\ast 
pri

\bigr) 
+ 2

\sum 
i,j

\.aiaj
\bigl( 
E3\ast 

pijr  - E3\ast 
prij

\bigr) \right]  
+

1

2\alpha v
r

3\sum 
p=1

\omega (k)
p

\Biggl( 
E1\ast 

pr +
\sum 
i

aiE
2\ast 
pri

\Biggr) 

+ \.\vec{}\varepsilon \cdot 

\left(  \sum 
i

\.ai \vec{}D
2
ir +

\sum 
i,j

\.aiaj \vec{}D
3
ijr +

\sum 
i,j,k

\.aiajak \vec{}D
4
ijkr

\right)  

+
1

2\alpha v
r

\.\vec{}\varepsilon 

3\sum 
p=1

\omega p

\left(  \vec{}F 2
pr + 2

\sum 
i

ai \vec{}F
3
pir + 3

\sum 
i,j

aiaj \vec{}F
4
pijr

\right)  
 - \alpha s

r

\alpha v
r

g(sin\alpha 1 sin\alpha 3  - cos\alpha 1 sin\alpha 2 cos\alpha 3)

 - \alpha s
r

\alpha v
r

g(sin\alpha 1 cos\alpha 3 + cos\alpha 1 sin\alpha 2 sin\alpha 3) - 
Nr

\alpha v
r

arg cos\alpha 1 cos\alpha 2

 - \sigma 

\rho \alpha v
r

\left[  \lambda cos \theta 1 + \kappa 2rNrar  - 
1

4

\sum 
i,j,k

\bigl( 
\delta 4ijkr + \delta 4rijk

\bigr) 
ai aj ak

\right]  , (16)

\rho 

Mr +Ml

\sum 
i

\"ai

\left(  \vec{}B1
i +

\sum 
j

aj \vec{}B
2
ij +

\sum 
j,k

ajak \vec{}B
3
ijk

\right)  + \"\vec{}\varepsilon 

+
\rho 

Mr +Ml

3\sum 
s=1

\"as

\left[  3\sum 
p=1

\partial \omega p

\partial \.\alpha s

\left(  \vec{}F 1
p +

\sum 
i

ai \vec{}F
2
pi +

\sum 
i,j

aiaj \vec{}F
3
pij

\right)  \right]  
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=
\vec{}\scrF 

Mr +Ml
+ \vec{}g  - \rho 

Mr +Ml

\left(  \sum 
i,j

\.ai \.aj \vec{}B
2
ij + 2

\sum 
i,j,k

\.ai \.ajak \vec{}B
3
ijk

\right)  

 - \rho 

Mr +Ml

\left[  3\sum 
p=1

\omega p

\left(  \sum 
i

\.ai \vec{}F
2
pi + 2

\sum 
i,j

\.aiaj \vec{}F
3
pij + 3

\sum 
i,j,k

\.aiajak \vec{}F
4
pijk

\right)  \right]  
+

\rho 

Mr +Ml

3\sum 
p=1

\omega (k)
p

\Biggl( 
\vec{}F 1
p +

\sum 
i

ai \vec{}F
2
pi

\Biggr) 
, (17)

\sum 
i

\"ai

\left[  3\sum 
p=1

\partial \omega p

\partial \.\alpha r

\left(  E1\ast 
pi +

\sum 
j

ajE
2\ast 
pij +

\sum 
i,k

ajakE
3\ast 
pijk

\right)  \right]  

+ 2\"\vec{}\varepsilon \cdot 
3\sum 

p=1

\partial \omega p

\partial \.\alpha r

\left(  \vec{}F 1
p +

\sum 
i

ai \vec{}F
2
pi +

\sum 
i,j

aiaj \vec{}F
3
pij +

\sum 
i,j,k

aiajak \vec{}F
4
pijk

\right)  

+
3\sum 

n=1

\"\alpha n

\left[  2 3\sum 
p,s=1

\partial \omega p

\partial \.\alpha r

\partial \omega s

\partial \.\alpha n

\left(  1

\rho 
Ipsres + E2

ps +
\sum 
i

aiE
2
psi +

\sum 
i,j

aiajE
3
psij

\right)  \right]  
= 2

3\sum 
p,s=1

\biggl( 
\omega \ast 
p,r\omega s + \omega (k)

p

\partial \omega s

\partial \.\alpha r

\biggr) 

\times 

\left(  1

\rho 
Ipsres + E2

ps +
\sum 
i

aiE
2
psi +

\sum 
i,j

aiajE
3
psij

\right)  

+
3\sum 

p=1

\omega \ast 
p,r

\left(  \sum 
i

\.aiE
1\ast 
pi +

\sum 
ij

\.aiajE
2\ast 
pij +

\sum 
i,j,k

\.aiajakE
3\ast 
pijk

\right)  

+ 2 \.\vec{}\varepsilon \cdot 
3\sum 

p=1

\omega \ast 
p,r

\left(  \vec{}F 1
p +

\sum 
i

ai \vec{}F
2
pi +

\sum 
i,j

aiaj \vec{}F
3
pij

\right)  

 - 2

3\sum 
p,s=1

\partial \omega p

\partial \.\alpha r

\left(  \sum 
i

aiE
2
psi + 2

\sum 
i,j

\.aiajE
3
psij  - 

\sum 
i,j

aiajE
3
psij

\right)  

 - 
3\sum 

p=1

\partial \omega p

\partial \.\alpha r

\left(  \sum 
i,j

\.ai \.ajE
2\ast 
pij + 2

\sum 
i,j,k

\.ai \.ajakE
3\ast 
pijk

\right)  

 - 2 \.\vec{}\varepsilon \cdot 
3\sum 

p=1

\partial \omega p

\partial \.\alpha r

\left(  \sum 
i

\.ai \vec{}F
2
pi + 2

\sum 
i,j

\.aiaj \vec{}F
3
pij

\right)  
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+ 2q
\partial 

\partial \alpha r

\Biggl[ 
(cos\alpha 1 sin\alpha 2 cos\alpha 3  - sin\alpha 1 sin\alpha 3)

\Biggl( \sum 
i

ai\alpha 
c
i +Hlc

\Biggr) \Biggr] 

 - (cos\alpha 1 sin\alpha 2 sin\alpha 3 + sin\alpha 1 cos\alpha 3)

\Biggl( \sum 
i

ai\alpha 
s
i +Hls

\Biggr) 

+
2g

\rho 
(Mrhr +Mlhl)

\partial 

\partial \alpha r
(cos\alpha 1 cos\alpha 2) +

2Mr

\rho 
. (18)

Систему рiвнянь руху з параметрами ai, \varepsilon i, \alpha i доповнено узагальненими дисипатив-
ними силами, визначеними на основi результатiв робiт [2, 3]. При цьому в рiвняннях
величини \varepsilon i вважаємо скiнченними, а \alpha i i ai утримано з точнiстю до величин третього
порядку малостi включно. Система складається з N +6 рiвнянь другого порядку, де N —
число прийнятих до розгляду форм коливань вiльної поверхнi рiдини, при наявностi шести
степенiв вiльностi резервуара як тiла-носiя.

У рiвняннях (16) – (18) позначено через \delta ij символ Кронекера,

\omega (k)
p =  - 

3\sum 
n=1

\.\alpha n
\partial \omega p

\partial \alpha n
, \omega \ast 

p,k =
\partial \omega p

\partial \alpha k
 - d

dt

\biggl( 
\partial \omega p

\partial \.\alpha k

\biggr) 
.

Iндекснi коефiцiєнти, що входять у цi рiвняння, є квадратурами вiд виразiв, якi включають
\psi i i \vec{}\Omega 0, їхнiх добуткiв i певних похiдних. Повну форму цих коефiцiєнтiв рiвнянь наведено
в [6].

Сукупнiсть рiвнянь (16) – (18) можна розглядати як дискретну модель системи резер-
вуар – рiдина з вiльною поверхнею. Нагадаємо, що при побудовi цiєї нелiнiйної моделi
використано такi припущення.

1. Припускали, що рiдина iдеальна однорiдна нестислива i в початковий момент часу
її вихровий рух вiдсутнiй, тому при потенцiальностi зовнiшнiх сил рух рiдини i надалi буде
потенцiальним.

2. Область, яку займає рiдина, має цилiндричну форму i основний рух вiдбувається в
околi вертикального розташування цилiндричного резервуара (вимог на геометрiю попе-
речного перерiзу цилiндра не накладено).

3. Кутовий рух резервуара (кути i кутовi швидкостi) є малим.
4. Амплiтуднi параметрируху вiльної поверхнi рiдини вважалималими i в розв’язуючих

рiвняннях утримувалися члени до третього порядку малостi включно.
При виконаннi наведенихприпущень рiвняння (16) – (18) є найбiльш загальноюформою

динамiчної моделi руху системи резервуар – рiдина з вiльною поверхнею, якi використо-
вують для опису поведiнки рiдини коефiцiєнти розкладiв у ряд збурень вiльної поверх-
нi рiдини за формами вiльних коливань рiдини (амплiтуднi параметри) i полiномiальне
представлення нелiнiйностей. Вказаний перелiк обмежень є типовим при використаннi
аналiтичних методiв дослiдження задач цього класу.

У межах цього методу для коефiцiєнтiв рiвнянь збуреного руху вдається побудувати
явнi аналiтичнi вирази через квадратури вiд функцiй \psi i i \vec{}\Omega 0 для довiльної кiлькостi
форм коливань рiдини, що створює значнi переваги для комп’ютерної реалiзацiї алгорит-
му. Зауважимо, що рiвень вимог до обчислювальної технiки при реалiзацiї цього методу
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в порiвнюваних випадках на декiлька порядкiв нижчий, нiж при використаннi методiв
поточкової дискретизацiї за просторовими вимiрами.

Об’єкт дослiдження. Розглянемо цилiндричний резервуар кругового поперечного пе-
рерiзу, який частково заповнений рiдиною. Вважаємо, що резервуар закрiплений на маят-
никовому пiдвiсi довжиною l. Ставимо задачу дослiдити прояв рiзних резонансiв у такiй
системi. При обчисленнi коефiцiєнтiв динамiчної моделi (16) – (18) використовували такi
координатнi функцiї i потенцiал Стокса –Жуковського [1, 6]:

\psi n(r, \theta ) = Jn

\Biggl( 
\kappa 
(m)
n

R
r

\Biggr) 
sin

cos
n\theta , n = 0, 1, 2, . . . , m = 1, 2, . . . ,

\Omega 0x =  - A sin \theta , \Omega 0y = A cos \theta , \Omega 0z = 0,

A = 4R2
\infty \sum 
n=1

\biggl[ 
ch
\kappa nz

R
 - ch

\kappa n(z +H)

R

\biggr] 
J1

\Bigl( \kappa nr
R

\Bigr) 
\kappa n(\kappa 2n  - 1) sh

\kappa nH

R
J1(\kappa n)

.

Для подальшого вивчення динамiчних процесiв у системi резервуар – рiдина при ку-
тових рухах тiла-носiя в режимi сумiсного руху складових системи спочатку дослiдимо
як сумiснiсть впливає на частоти. Для цього запишемо рiвняння сумiсного руху системи
межах лiнiйної моделi з утриманням у рiвняннях лише першої антисиметричної форми
коливань рiдини. Зауважимо одразу, що на лiнiйному рiвнi лише антисиметричнi форми
коливань (коловий номер n = 1) беруть участь у взаємодiї з рухомим тiлом. Форми коли-
вань iз iншими коловими номерами в такiй взаємодiї участi не беруть, оскiльки збудження
руху за цими формами не приводить до змiни розташування центру мас рiдини. Для цього
запишемо лiнеаризовану систему рiвнянь:

\"a1 +
1

\alpha v
1

\"\varepsilon xB
1
1x +

1

\alpha v
1

\"\alpha 2E
1\ast 
11 + \omega 2

1 = 0,

\rho 

Mr +Ml
\"a1B

1
1x + \"\varepsilon x +

\rho 

Mr +Ml
\"\alpha 2F

1
2 = 0,

\"a1E
1\ast 
11 + 2\"\varepsilon xF

1
2 + 2\"\alpha 2

\biggl( 
1

\rho 
J22
res + E2

11

\biggr) 
+ \alpha 2

2g

\rho 

\biggl[ 
Mr

\biggl( 
l +

H

4

\biggr) 
+Ml

\biggl( 
l +

H

2

\biggr) \biggr] 
= 0.

Якщо припустити, що в системi рух вiдбувається без врахування сумiсностi руху скла-
дових, то можна одержати наступнi парцiальнi частоти коливань (послiдовно для рiдини,
поступального руху резервуара i кутового руху резервуара):

\omega p
a =

\sqrt{} 
\kappa 1g

R
tanh

\kappa 1H

R
, \omega p

\varepsilon = 0, \omega p
\alpha =

\sqrt{} 
Mrhr +Mlhl

J11
res

.

Проте для визначення власних частот коливань системи в режимi сумiсного руху ре-
зервуара i рiдини слiд використовувати таке характеристичне рiвняння для визначення
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Таблиця 1

1 2 3 4 5

l = R 4,14431 2,47842
2,24312
6,69986

2,26729
16,63085

l = 2R 4,14431 1,96189
1,85304
6,10821

1,86112
12,45135

l = 8R 4,14431 1,07442
1,05895
5,52733

1,05934
9,75099

власних частот \lambda , яке випливає з лiнеаризованої системи\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

\lambda 2  - \omega p2
1

1

\alpha v
1

B1
1x\lambda 

2 1

\alpha v
1

E1\ast 
22\lambda 

2

\rho 

Mr +Ml
B1

1x\lambda 
2 \lambda 2

\rho 

Mr +Ml
F 1
2 \lambda 

2

E1\ast 
22\lambda 

2 2F 1
2 \lambda 

2 R\alpha 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
= 0,

де
R\alpha = 2

\biggl( 
1

\rho 
J22
res + E2

11

\biggr) 
+

2g

\rho 

\biggl[ 
Mr

\biggl( 
l +

H

4

\biggr) 
+Ml

\biggl( 
l +

H

2

\biggr) \biggr] 
.

У випадку лише поступального руху резервуара частота резонансу збiльшується згiдно
з формулою (вираз у знаменнику завжди бiльше нуля i менше одиницi), де \omega i \omega 0 —
вiдповiдно власна i парцiальна частоти

\omega 2 =
\omega 2
0

1 - 
\rho 
\bigl( 
B1

1x

\bigr) 2
\alpha x
1(Ml +Mr)

.

Наведемо деякi числовi результати визначення частот сумiсних коливань, якi одержано
для випадкуMr = 0,1Ml для рiзних довжинмаятникового пiдвiсу резервуара i при R = 1 м.

В табл. 1 по колонках наведено: 1— значення довжини пiдвiсу резервуара, 2— частота
парцiальних коливань по першiй антисиметричнiй формi, 3 — парцiальна частота маятни-
кових коливань резервуара для нерухомої точки пiдвiсу, 4 — частоти сумiсних коливань
резервуара i рiдини для випадку точки пiдвiсу маятника, що рухається за заданим законом
(верхнє значення вiдповiдає руху, близькому до маятникових коливань, а нижнє — близь-
кому до коливань вiльної поверхнi рiдини), 5 — частоти для повнiстю зв’язаної задачi у
випадку, коли рух точки пiдвiсу наперед не задається (як i в попередньому випадку, верхнє
значення вiдповiдає руху близькому до маятникових коливань, нижнє — близькому до
коливань вiльної поверхнi рiдини).

Як свiдчать числовi данi частоти сумiсних коливань системи для маятникових коливань
мають тенденцiю до незначного зменшення, а частоти коливань рiдини сильно збiльшу-
ються (вiд 23% до 400%), що вiдповiдає результатам теореми про змiну частот у механiчних
системах при переходi до сумiсних коливань (частоти коливань системи в сумiсному русi
мають знаходитися поза межами або на межi вiдрiзка, утвореного парцiальними часто-
тами). Така суттєва змiна частот коливань рiдини в режимi зв’язаних коливань у системi
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αi m = 1 m = 1 m = 0

Рис. 2. Схема розташування парцiальних i власних частот.

показує, що iгнорування фактора сумiсностi коливань складових системи є некоректним.
На лiнiйному рiвнi буде вiдбуватися змiна лише для частот коливань, якi вiдповiдають
антисиметричним (коловий номер n = 1) формам. Водночас частоти коливань рiдини за
формами з коловим номером, вiдмiнним вiд 1, не будуть змiнюватися при переходi до режи-
му сумiсного руху системи. Тому значна змiна частот сумiсних коливань антисиметричних
форм може привести до змiни порядку розташування форм коливань у режимi сумiсних
коливань при порiвняннi з випадком заданого руху резервуара, якщо розташувати форми
коливань у порядку зростання частот. В пiдсумку це призведе до змiни прiоритетностi
прояву окремо взятих резонансiв, оскiльки в основному iнтенсивнiсть прояву резонансiв
суттєво спадає зi зростанням частот (у резонансах iз меншими резонансними частотами
зосереджується бiльше енергiї). Покажемо це на рис. 2, де для випадку заданого руху точки
пiдвiсу i довжини маятникового пiдвiсу наведено тенденцiю змiни частот вiд парцiальних
до сумiсних iз вiдображенням їхнього розташування на числовiй осi.

Характерною особливiстю розвинення процесiв в околi резонансних частот маятнико-
вих коливань резервуара для резервуарiв iз рiдиною є рiзне розвинення процесiв для частот,
не значно менших за резонанснi, для частот у безпосередньому околi резонансу i частот, якi
перевершують резонанснi. Такi явища спостерiгали для випадку поступального i кутового
руху при маятниковому пiдвiсi з фiксованою точкою пiдвiсу при силовому збудженнi коли-
вань. Наведемо тепер результати при заданому кiнематичному збуреннi руху точки пiдвiсу
в горизонтальному напрямку. Результати показано на рис. 3 – 5, де наведено змiну амплiтуд
коливань рiдини на стiнцi резервуара. Загальна тенденцiя поведiнки системи не змiнилася
у порiвняннi з маятниковим пiдвiсом iз фiксованою точкою пiдвiсу i випадком посту-
пального руху тiла-носiя. Так, у дорезонансному дiапазонi з’являються дрейф середнього
значення коливань, значний прояв вищих гармонiк спектра, практично вiдсутня модуляцiя
коливань. У бiлярезонансному режимi в додаток до ефектiв у дорезонансному режимi ще
виникає прояв модуляцiї. У зарезонансному режимi прояв дрейфу середнього значення
практично вiдсутнiй, прояв модуляцiї пiдсилюється. Прояв вищих гармонiк стає слабшим.
Загальна тенденцiя розвинення коливань у випадку маятникового пiдвiсу в порiвняннi з
чисто поступальним рухом проявляється у зменшеннi збудження осесиметричних форм,
що в пiдсумку послаблює ефект перевершення горбiв хвиль над глибиною впадини. При
розташуваннi частот за зростанням цей резонанс є першим i такий, що найбiльш гостро
проявляється i найшвидше розвивається при початковому збуреннi системи.

За степенем зростання частот другим є резонанс за формою n = 2. Такий резонанс є
нелiнiйним, оскiльки в лiнiйнiй моделi такий резонанс вiдсутнiй. Проте на частотi форми,
яка вiдповiдає n = 2, розвивається резонанс, у якому ця форма вiдiграє фактично роль
каталiзатора або каналу провiдника енергiї вiд коливань резервуара через форму n = 2
до антисиметричної форми n = 1 (рис. 6). При цьому при такому резонансi в прикладах
розрахункiв амплiтуди хвиль за формою n = 2 не перевершують 0,05R, саме тодi як ко-
ливання за формою n = 1 вiдбуваються на рiвнi 0,3R. Такий канал поширення енергiї
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Рис. 3. Збурення вiльної поверхнi рiдини в дорезонансному випадку.
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Рис. 4. Збурення вiльної поверхнi рiдини в бiлярезонансному випадку.
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Рис. 5. Збурення вiльної поверхнi рiдини в зарезонансному випадку.

обумовлений нелiнiйними членами в рiвняннях руху. Важливо вiдзначити, що такий ре-
зонанс спостерiгаємо приблизно до довжин пiдвiсу l > 8R, i при подальшому зростаннi
довжини пiдвiсу форма n = 2 поступається формi n = 1 в розташуваннi на другому
мiсцi.
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Рис. 6. Збурення вiльної поверхнi рiдини при нелiнiйному вторинному резонансi i кут вiдхилення пiдвiсу \alpha .

У системах резервуар – рiдина на маятниковому пiдвiсi при коротких довжинах пiдвiсу
незвичним є те,що вихiд на резонанс за формою n = 1 фактично не спостерiгається, оскiль-
ки цей резонанс тепер за порядком зростання частот є четвертим. Водночас вихiд на третiй
резонанс за формою n = 0 теж практично не проявляється. Єдиний спосiб, коли вдається
проявити такий резонанс, пов’язаний iз спецiальним пiдбором довжини маятникового пiд-
вiсу, коли вдається досягти рiвностi частот за формами n = 0 i n = 1 (таке реалiзується
на частотi 6,12). Цей варiант докладно дослiджено в роботi [10]. Зазначимо, що в такому
резонансi коливання резервуара i вiльної поверхнi за формою n = 1 встановлюються май-
же вiдразу. Проте через приблизно 25 перiодiв коливань починають iнтенсивно зростати
коливання за формою n = 0. Такий резонанс на лiнiйному рiвнi взагалi вiдсутнiй, тому його
слiд вважати нелiнiйним, вторинним. Залежно вiд довжини маятникового пiдвiсу поведiн-
ку системи резервуар – рiдина з вiльною поверхнею можна розбити на такi три дiапазони.
Перший дiапазон (великi довжини пiдвiсу), коли частота антисиметричної форми коли-
вань буде менше 5,45 i займатиме друге мiсце пiсля частоти маятникових коливань. Другий
дiапазон (середнi довжини пiдвiсу), коли частота антисиметричної форми коливань буде
знаходитися в iнтервалi вiд 5,45 до 6,12, тобто буде на третьому мiсцi. I третiй дiапазон
(короткi довжини пiдвiсу), коли частота антисиметричної форми коливань буде бiльше
6,12 (четверте мiсце в порядку зростання частот). Виходячи з вiдомих властивостей прояву
резонансних процесiв залежно вiд положення резонансних частот у загальному ряду вла-
сних частот коливань слiд очiкувати рiзнi тенденцiї поведiнки системи для рiзних довжин
пiдвiсiв резервуара. Важливо, що частина цих резонансiв є виключно нелiнiйними, але з
точки зору черговостi частот, обумовлених переважно впливом сумiсностi руху складових
компонент, вони є суттєвими. В усiх режимах руху i типах резонансiв суттєвим є врахуван-
ня коливань на власних частотах усiх форм, якi беруться до уваги на нелiнiйному рiвнi, в
пiдсумку через трансцендентнi спiввiдношення мiж цими частотами вихiд на усталений
режим коливань не спостерiгається [12].

Загальною тенденцiєю прояву всiх типiв резонансiв є те, що всi резонанси, якi вiдбува-
ються на рiзних частотах, проявляються через збудженняколивань замаятниковоюформою
i першою антисиметричною формою n = 1, проте в частинi випадкiв така концентрацiя
енергiї в цiй формi вiдбувається на основi нелiнiйних механiзмiв енергообмiну.

Висновки. У роботi дослiджено нелiнiйну динамiку руху системи резервуар – рiдина з
вiльною поверхнею при кутових рухах резервуара. Постановку задачi виконано на осно-
вi варiацiйного принципу Гамiльтона –Остроградського. З позицiй аналiтичної механiки
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вивчено всi кiнематичнi в’язi задачi, до яких додатково ще включено умову розв’язуваностi
крайової задачi Неймана. Реалiзовано метод аналiтичного виключення всiх в’язей задачi
для довiльної кiлькостi координатних функцiй, що використовуються для побудови набли-
женого розв’язку задачi. Одержано нелiнiйну динамiчну модель задачi за умови сумiсностi
руху складових механiчної системи. Показано, що у випадку кутових рухiв резервуара з
рiдиною на маятниковому пiдвiсi суттєво змiнюється частотний спектр задачi, причому
на рiзних довжинах пiдвiсу спостерiгається змiна черговостi розташування форм коливань
при їхньому розмiщеннi за зростанням частот. У пiдсумку це веде до змiни прiоритетно-
стi в проявi резонансiв. Проаналiзовано розвинення резонансiв при збудженнi коливань
за формою, близькою до маятникових коливань резервуара, а також два типи нелiнiйних
вторинних резонансiв. Вiдмiчено, що для коротких маятникових пiдвiсiв резонанс на ча-
стотi коливань за першою формою не проявляється, оскiльки ця частота стає четвертою
за величиною. При дослiдженнi процесiв в околi резонансiв у моделi важливим був прояв
коливань на власних частотах усiх форм коливань, якi утримувалися в рамках нелiнiйної
моделi. В пiдсумку це приводить до трансцендентних спiввiдношень мiж частотами i, як
наслiдок, обумовлює вiдсутнiсть усталених режимiв коливань у системi резервуар – рiдина
з вiльною поверхнею.

Автор заявляє про вiдсутнiсть конфлiкту iнтересiв. Усi необхiднi данi мiстяться в статтi.
Автор заявляє про вiдсутнiсть спецiального фiнансування цiєї роботи.
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