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We introduce and study a massive class of continuous functions defined on the interval (0; 1) using a
special encoding (representation) of the argument with an alphabet Z = \{ 0,\pm 1,\pm 2, . . .\} :

x = b\alpha 1 +

m\sum 
k=2

b\alpha k

k - 1\prod 
i=1

\Theta \alpha i \equiv \Delta B
\alpha 1\alpha 2...\alpha m(\varnothing ),

x = b\alpha 1
+

\infty \sum 
k=2

b\alpha k

k - 1\prod 
i=1

\Theta \alpha i
\equiv \Delta B

\alpha 1\alpha 2...\alpha n...,

where \alpha n \in Z, \Theta n > 0 \forall n \in Z,
\sum +\infty 

n= - \infty 
\Theta n = 1, bn+1 \equiv 

\sum n - 1

i= - \infty 
= bn +\Theta n \forall n \in Z .
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The function f, which is the main object of the study, is defined by the equalities\left\{     
f(x = \Delta B

i1...ik...
) = \sigma i11 +

\sum \infty 

k=2
\sigma ikk

\prod k - 1

j=1
pijj \equiv \Delta i1...ik...,

f(x = \Delta B
i1...im(\emptyset )) = \sigma i11 +

\sum m

k=2
\sigma ikk

\prod k - 1

j=1
pijj \equiv \Delta i1...im(\emptyset ),

where the infinite matrix \| pik\| , i \in Z, k \in N, satisfies the conditions
1) | pik| < 1 \forall i \in Z, \forall k \in N ;

2)
\sum 

i\in Z
pik = 1 \forall k \in N ;

3) 0 <
\sum \infty 

k=2

\prod k - 1

j=1
pijj < \infty \forall (ij) \in L;

4) 0 < \sigma ik \equiv 
\sum i - 1

j= - \infty 
pjk < 1 \forall i \in Z, \forall k \in N.

This class of functions contains monotonic, nonmonotonic, nowhere monotonic functions and functi-
ons without monotonicity intervals except for constancy intervals, Cantor-type and quasi-Cantor-type
functions as well as functions of bounded and unbounded variation. Criteria for the function f to be
monotonic and a Cantor-type function as well as a criterion of nowhere monotonicity of this function are
proved. We find expressions for the Lebesgue measure of a set of non-constancy of the function and for
the variation of the function. We establish necessary and sufficient conditions for the function to have an
unbounded variation. In the particular case, we describe the self-similarity (structural fractality) of the
graph of this function and study its differential properties.

Вводиться i вивчається масивний клас неперервних функцiй, визначених на iнтервалi (0; 1) з вико-
ристанням спецiального кодування (зображення) аргументу з алфавiтом Z = \{ 0,\pm 1,\pm 2, . . .\} :

x = b\alpha 1
+

m\sum 
k=2

b\alpha k

k - 1\prod 
i=1

\Theta \alpha i
\equiv \Delta B

\alpha 1\alpha 2...\alpha m(\varnothing ),

x = b\alpha 1 +

\infty \sum 
k=2

b\alpha k

k - 1\prod 
i=1

\Theta \alpha i \equiv \Delta B
\alpha 1\alpha 2...\alpha n...,

де \alpha n \in Z, \Theta n > 0 \forall n \in Z,
\sum +\infty 

n= - \infty 
\Theta n = 1, bn+1 \equiv 

\sum n - 1

i= - \infty 
= bn +\Theta n \forall n \in Z.

Функцiю f, що є основним об’єктом дослiдження, означуємо рiвностями\left\{     
f(x = \Delta B

i1...ik...
) = \sigma i11 +

\sum \infty 

k=2
\sigma ikk

\prod k - 1

j=1
pijj \equiv \Delta i1...ik...,

f(x = \Delta B
i1...im(\varnothing )) = \sigma i11 +

\sum m

k=2
\sigma ikk

\prod k - 1

j=1
pijj \equiv \Delta i1...im(\varnothing ),

де нескiнченна матриця \| pik\| , i \in Z, k \in N, задовольняє умови:
1) | pik| < 1 \forall i \in Z, \forall k \in N ;

2)
\sum 

i\in Z
pik = 1 \forall k \in N ;

3) 0 <
\sum \infty 

k=2

\prod k - 1

j=1
pijj < \infty \forall (ij) \in L;

4) 0 < \sigma ik \equiv 
\sum i - 1

j= - \infty 
pjk < 1 \forall i \in Z, \forall k \in N.

Серед функцiй цього класу є монотоннi, немонотоннi, нiде немонотоннi i такi, що не мають
промiжкiв монотонностi окрiм промiжкiв сталостi, функцiї канторiвського i квазiканторiвського
типiв, функцiї обмеженої та необмеженої варiацiї. Обґрунтовано критерiї монотонностi та канторо-
востi функцiї f, а також критерiй її нiде немонотонностi. Одержано вирази мiри Лебега множини
несталостi функцiї та варiацiї функцiї. Встановлено необхiднi й достатнi умови, за яких функцiя
має необмежену варiацiю. Для частинного випадку описано автомодельнiсть (структурну фракталь-
нiсть) графiка функцiї i вивчено її диференцiальнi властивостi.
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1. Вступ. Неперервнi нiде не монотоннi, зокрема недиференцiйовнi, сингулярнi функцiї
(монотоннi, немонотоннi, нiде не монотоннi окрiм промiжкiв сталостi), а також функцiї
необмеженої варiацiї ми вiдносимо до класу локально складних [1]. Вивченню одного
нескiнченнопараметричного класу P (B) таких функцiй присвячено цю роботу.

Зрозумiло, що аналiтично задати локально складну функцiю виразом зi скiнченною
кiлькiстю простих бiнарних операцiй практично не можливо [2 – 5]. Тому з цiєю метою
для зображення аргументу ми використовуємо одне нескiнченносимвольне зображення
(кодування) чисел iнтервалу (0; 1) з алфавiтом A = Z = \{ 0,\pm 1,\pm 2, . . .\} , визначене не-
скiнченною двосторонньою збiжною i нормованою послiдовнiстю додатних дiйсних чисел
(\Theta n). Значення функцiї визначає нескiнченна матриця \| pik\| , i \in Z, k \in N, яка задовольняє
ряд вимог.

2. \bfitB -зображення чисел. Нехай A = Z = \{ 0,\pm 1,\pm 2, . . .\} — алфавiт (набiр цифр), L =
A\times A\times . . . — простiр послiдовностей елементiв алфавiту; (\Theta n) — довiльна послiдовнiсть
додатних дiйсних чисел n \in Z така, що

0 <
\infty \sum 
n=1

\Theta  - n \equiv u < 1, 0 <
+\infty \sum 
n=0

\equiv v < 1, u+ v = 1.

Прикладом такої є двостороння послiдовнiсть (\Theta n) : \Theta 0 =
1 - 3a

1 - a
, \Theta  - n = \Theta n = an, де

параметр a задовольняє нерiвностi 0 < a <
1

3
, n \in N, зокрема a =

\surd 
5 - 1

2
[6].

Сформуємо iншу двосторонню послiдовнiсть (bn), визначену послiдовнiстю (\Theta n) :

bn \equiv 
n - 1\sum 

i= - \infty 
\Theta i = bn - 1 +\Theta n - 1.

Теорема 1. Для будь-якого числа x \in (0; 1) iснує єдиний скiнченний набiр цiлих чисел
(\alpha 1, \alpha 2, . . . , \alpha m) або єдина послiдовнiсть (\alpha n) \in L такi, що виконується одна з рiвностей

x = b\alpha 1 +

m\sum 
k=2

b\alpha k

k - 1\prod 
i=1

\Theta \alpha i \equiv \Delta B
\alpha 1\alpha 2...\alpha m(\varnothing ), (1)

x = b\alpha 1 +

\infty \sum 
k=2

b\alpha k

k - 1\prod 
i=1

\Theta \alpha i \equiv \Delta B
\alpha 1\alpha 2...\alpha k...

. (2)

Доведення. Iснування. Оскiльки

(0; 1) =

\infty \bigcup 
n= - \infty 

[bn; bn+1),

то очевидно, що iснує \alpha 1 \in A таке, що b\alpha 1 \leq x < b\alpha 1+1.

Якщо x = b\alpha 1 , то отримано розклад (1) i x = \bigtriangleup B
\alpha 1(\varnothing ).

Якщо x \not = b\alpha 1 , тобто b\alpha 1 < x < b\alpha 1+1, то 0 < x  - b\alpha 1 \equiv x1 < b\alpha 1+1  - b\alpha 1 = \Theta \alpha 1 i
x = b\alpha 1 + x1.
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Розглянемо число x1 \in (0;\Theta \alpha 1). Оскiльки

(0;\Theta \alpha 1) =
\infty \bigcup 

n= - \infty 

\Bigl[ 
bn\Theta \alpha 1 ; bn+1\Theta \alpha 1

\Bigr) 
,

то очевидно, що iснує \alpha 2 \in A таке, що b\alpha 2\Theta \alpha 1 \leq x1 < b\alpha 2+1\Theta \alpha 1 .

Якщо x1 = b\alpha 2\Theta \alpha 1 , то x = b\alpha 1 + x1 = b\alpha 1 + b\alpha 2\Theta \alpha 1 = \bigtriangleup B
\alpha 1\alpha 2(\varnothing ).

Якщо x1 \not = b\alpha 2\Theta \alpha 1 , тобто b\alpha 2\Theta \alpha 1 < x1 < b\alpha 2+1\Theta \alpha 1 , то

0 < x1  - b\alpha 2\Theta \alpha 1 \equiv x2 < b\alpha 2+1\Theta \alpha 1  - b\alpha 2\Theta \alpha 1 = \Theta \alpha 2\Theta \alpha 1 i x1 = b\alpha 2\Theta \alpha 1 + x2.

Далi аналогiчнi мiркування продовжуємо стосовно числа x2.

Оскiльки

x2 \in (0;\Theta \alpha 1\Theta \alpha 2) =
\infty \bigcup 

n= - \infty 

\Bigl[ 
bn\Theta \alpha 1\Theta \alpha 2 ; bn+1\Theta \alpha 1\Theta \alpha 2

\Bigr) 
,

то iснує \alpha 3 \in A таке, що b\alpha 3\Theta \alpha 1\Theta \alpha 2 \leq x2 < b\alpha 3+1\Theta \alpha 1\Theta \alpha 2 .

Якщо x2 = b\alpha 3\Theta \alpha 1\Theta \alpha 2 , то

x = b\alpha 1 + x1 = b\alpha 1 + b\alpha 2\Theta \alpha 1 + x2 = b\alpha 1 + b\alpha 2\Theta \alpha 1 + b\alpha 3\Theta \alpha 1\Theta \alpha 2 = \Delta B
\alpha 1\alpha 2\alpha 3(\varnothing ).

Якщо ж x2 \not = b\alpha 3\Theta \alpha 1\Theta \alpha 2 , то 0 \leq x2  - b\alpha 3\Theta \alpha 1\Theta \alpha 2 \equiv x3 < \Theta \alpha 1\Theta \alpha 2\Theta \alpha 3 .

Аналогiчно мiркуємо стосовно x3.

Так за скiнченну кiлькiсть крокiв отримуємо

x = b\alpha 1 + x1 = b\alpha 1 + b\alpha 2\Theta \alpha 1 + x2

= . . . = b\alpha 1 + b\alpha 2\Theta \alpha 1 + b\alpha 3\Theta \alpha 1\Theta \alpha 2 + . . .+ b\alpha m\Theta \alpha 1\Theta \alpha 2 . . .\Theta \alpha m - 1 = \Delta B
\alpha 1\alpha 2...\alpha m(\varnothing ).

Якщо ж при будь-якому m :

x = b\alpha 1 + b\alpha 2\Theta \alpha 1 + b\alpha 3\Theta \alpha 1\Theta \alpha 2 + . . .+ b\alpha m\Theta \alpha 1\Theta \alpha 2 . . .\Theta \alpha m - 1 + xm,

де xm \not = 0, то з того, що \Theta j \leq M \equiv \mathrm{m}\mathrm{a}\mathrm{x}\{ \Theta i, i \in Z\} < 1, для будь-якого j \in Z маємо

xm <
m - 1\prod 
i=1

\Theta \alpha i \leq Mm - 1 \rightarrow 0, m \rightarrow 0.

Звiдки робимо висновок про збiжнiсть процесу розкладу числа x у суму (1) або ряд (2).
Єдинiсть. Доведемо, що числа з формально рiзними розкладами рiвними бути не

можуть. Розглянемо всi можливi випадки:
1) x1 = \Delta B

\alpha 1\alpha 2...\alpha n..., x2 = \Delta B
\beta 1\beta 2...\beta n...

;

2) x1 = \Delta B
\alpha 1...\alpha m(\varnothing ), x2 = \Delta B

\beta 1...\beta m(\varnothing );

3) x1 = \Delta B
\alpha 1...\alpha m(\varnothing ), x2 = \Delta B

\beta 1...\beta m...\beta k(\varnothing ).
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Уперших двох випадкахможна скористатися спiльнимимiркуваннями.Нехай виконується
1). Оскiльки їхнi зображення формально рiзнi, то iснує m таке, що \alpha m \not = \beta m, але \alpha i = \beta i,
коли i < m. Задля конкретностi, нехай \alpha m < \beta m.

Розглянемо рiзницю x2  - x1 = C
\prod m - 1

i=1
\Theta \alpha i , де

C \equiv b\beta m  - b\alpha m +
\infty \sum 
k=1

b\beta m+k

k - 1\prod 
i=0

\Theta \beta m+i
 - 

\infty \sum 
k=1

b\alpha m+k

k - 1\prod 
i=0

\Theta \alpha m+i .

Оскiльки b\beta m  - b\alpha m = \Theta \alpha m +\Theta \alpha m+1 + . . .+\Theta \beta m - 1 \geq \Theta \alpha m ,

0 < b\beta m+1 \Theta \beta m <
\infty \sum 
k=1

b\beta m+k

k - 1\prod 
i=0

\Theta \beta m+i
< \Theta \beta m \cdot 1,

\infty \sum 
k=1

b\alpha m+k

k - 1\prod 
i=0

\Theta \alpha m+i <

\infty \sum 
k=1

b\alpha m+k

k - 1\prod 
i=0

\Theta \alpha m+i < \Theta \alpha m \cdot 1,

то

C \geq (\Theta \alpha m +\Theta \alpha m+1) + . . .+\Theta \beta m - 1 +
\infty \sum 
k=1

b\beta m+k

k - 1\prod 
i=0

\Theta \beta m+i
 - \Theta \alpha m > 0.

Отже, x2 > x1.

У випадку 2), коли \alpha n < \beta n, але \alpha i = \beta i при i < n < m, тодi аналогiчно до випадку 1)
обґрунтовуємо нерiвнiсть x1 < x2.

У випадку 3) можливi пiдвипадки.
3.1) Якщо \alpha i = \beta i для всiх i \leq m, то

x2  - x1 =

k\sum 
i=m+1

b\beta i

i - 1\prod 
j=1

\Theta \beta j
> 0.

3.2) Нехай iснує \alpha n \not = \beta n, але \alpha i = \beta i при i < n \leq m. Розглянемо число x3 =
\Delta B

\beta 1...\beta m(\varnothing ). Згiдно з 3.1) x3 < x2, а згiдно з 2) маємо x1 = x3 тодi й лише тодi, коли \alpha i = \beta i
для всiх i \leq m. Тому при \alpha n < \beta n одержуємо x1 < x3 < x2.

Нехай \alpha n > \beta n. Тодi x1 > x3. Розглянемо рiзницю x1  - x2. Отримуємо

x1  - x2 = C1

n - 1\prod 
i=1

\Theta \alpha i ,

де

C1 = b\alpha n  - b\beta n +
m\sum 
i=1

b\alpha n+i

i - 1\prod 
j=0

\Theta \alpha n+j  - 
k\sum 

i=1

b\beta n+i

i - 1\prod 
j=0

\Theta \beta n+j
.

Оскiльки b\alpha n  - b\beta n \geq \Theta \beta n ,

0 < b\alpha n+1 \Theta \alpha n \leq 
m\sum 
i=1

b\alpha n+i

i - 1\prod 
j=0

\Theta \alpha n+j < \Theta \alpha n ,
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k\sum 
i=1

b\beta n+i

i - 1\prod 
j=0

\Theta \beta n+j
< \Theta \beta n ,

то C1 > \Theta \beta n + 0 - \Theta \beta n = 0 i x1 > x2.
Символiчнi записи числа x рiвностями (1) або (2) називатимемо B -зображенням цього

числа, а \alpha n = \alpha n(x) — n-ю його цифрою. Iз-за єдиностi B -зображення числа, \alpha n(x) є
коректно означеною функцiєю числа x.

Числа, для яких виконується рiвнiсть (1), називаємо B -скiнченними, а тi, для яких
виконується рiвнiсть (2), — B -нескiнченними.

Множина всiх B -скiнченних чисел є злiченною, всюди щiльною у (0; 1) множиною.
B -зображення є засобом кодування чисел iнтервалу (0; 1), їхньої iдентифiкацiї та по-

рiвняння: числа x = \Delta B
\alpha 1...\alpha m... i y = \Delta B

\beta 1...\beta m... перебувають у вiдношеннi x < y тодi й лише
тодi, коли iснує k \in N таке, що \alpha k < \beta k, але \alpha i = \beta i при i < k .

Обґрунтування цих висновкiв фактично мiститься у доведеннi єдиностi теореми 1.
3. Геометрiя \bfitB -зображення чисел. Геометрiю B -зображення чисел (геометричний

змiст цифр, метричнi вiдношення) достатньо повно розкривають властивостi цилiндричних
i хвостових множин.

Означення 1. Множину \Delta B
c1...cm чисел x \in (0; 1), що мають скiнченне або нескiнченне

B -зображення з першими m-цифрами c1, c2, . . . , cm вiдповiдно, тобто

\Delta B
c1...cm =

\Bigl\{ 
x : x = \Delta B

c1...cm\alpha m+1...\alpha n(\varnothing ), x = \Delta B
c1...cm\beta 1\beta 2..., (\beta n) \in L

\Bigr\} 
,

називають B -цилiндром рангу m з основою c1c2 . . . cm.

0. Безпосередньо з означення випливає рiвнiсть \Delta B
c1...cm =

\infty \bigcup 
i= - \infty 

\Delta B
c1...cmi.

1. Порядок слiдування цилiндрiв визначає рiвнiсть

\mathrm{s}\mathrm{u}\mathrm{p}\Delta B
c1...cm - 1cm = \mathrm{m}\mathrm{i}\mathrm{n}\Delta B

c1...cm - 1[cm+1].

2. Цилiндр \Delta B
c1...cm є пiввiдрiзком [a; d) з кiнцями

a = bc1 +
m\sum 
k=2

bck

k - 1\prod 
i=1

\Theta ci = \Delta B
c1...cm(\varnothing ), d = a+

m\prod 
i=1

\Theta ci = \Delta B
c1...cm - 1[cm+1](\varnothing ).

3. Довжина цилiндра
\bigm| \bigm| \Delta B

c1...cm

\bigm| \bigm| =\prod m

i=1
\Theta ci \rightarrow 0 при m \rightarrow \infty .

4. Основне метричне спiввiдношення\bigm| \bigm| \Delta B
c1...cmi

\bigm| \bigm| = \Theta i

\bigm| \bigm| \Delta B
c1...cm

\bigm| \bigm| .
5. \forall (cm) \in L :

\infty \bigcap 
m=1

\Delta B
c1...cm = \Delta B

c1...cm....

Цилiндри задають систему подрiбнюючих розбиттiв iнтервалу (0; 1).
Означення 2. Кажуть, що B -зображення чисел x = \Delta B

\alpha 1...\alpha n... i y = \Delta B
\beta 1...\beta n...

“мають
однаковий хвiст” (символiчно записують x \backsim y ), якщо iснують такi натуральнi числа m
i k, що \alpha m+j = \beta k+j для будь-якого j \in N. Вважатимемо, що B -скiнченнi числа мають
однаковий хвiст за означенням.
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Очевидно, що вiдношення \backsim є вiдношенням еквiвалентностi. Кожен iз класiв еквiва-
лентностi називаємо хвостовою множиною. Зрозумiло, що зображення всiх B -скiнченних
чисел належать одному класу еквiвалентностi.

Кожна хвостова множина є злiченною, всюди щiльною у iнтервалi (0; 1), а множина
класiв еквiвалентностi—континуальною. Змiстовнi метризацiї хвостовихмножин є однiєю
з цiкавих i важливих проблем для теорiї динамiчних систем.

4. Об’єкт дослiдження. Нехай нескiнченна матриця \| pik\| , i \in Z, k \in N, задовольняє
умови:

1) | pik| < 1 \forall i \in Z \forall k \in N ;

2)
\sum 

i\in Z
pik = 1 \forall k \in N ;

3) 0 <
\sum \infty 

k=2

\prod k - 1

j=1
pijj < \infty \forall ij \in Z;

4) 0 < \sigma ik \equiv 
\sum i - 1

j= - \infty 
pjk < 1 \forall i \in Z \forall k \in N.

Означимо функцiю f на множинi (0; 1) рiвностями

f
\bigl( 
x = \Delta B

i1...ik...

\bigr) 
= \sigma i11 +

\infty \sum 
k=2

\sigma ikk

k - 1\prod 
j=1

pijj \equiv \Delta i1...ik...,

f
\Bigl( 
x = \Delta B

i1...im(\varnothing )

\Bigr) 
= \sigma i11 +

m\sum 
k=2

\sigma ikk

k - 1\prod 
j=1

pijj \equiv \Delta i1...im(\varnothing ).

(3)

Коректнiсть означення функцiї рiвностями (3) є наслiдком єдиностi B -зображення чисел
i умов 1) – 4), що гарантують збiжнiсть ряду (3).

Якщо pik = \Theta i для всiх i \in Z, k \in N, то f(x) = x. Частковий випадок, коли \Theta n =

\Theta  - n = \tau 3+| n| , де \tau =

\surd 
5 - 1

2
, pik = pi для всiх i \in Z, k \in N, розглядався у роботi [7].

5. Неперервнiсть функцiї.
Теорема 2. Функцiя f, означена рiвнiстю (3), неперервна в кожнiй точцi областi визна-

чення.
Доведення. Оскiльки функцiя f визначена в кожнiй точцi iнтервалу (0; 1), то її непе-

рервнiсть у точцi x0 \in (0; 1) рiвносильна рiвностi

\mathrm{l}\mathrm{i}\mathrm{m}
x\rightarrow x0

| f(x) - f(x0)| = 0.

1. Нехай x0 = \Delta B
c1...cn... — B -нескiнченна точка, x0 \not = x = \Delta B

\alpha 1...\alpha n.... Тодi iснує m \in N
таке, що \alpha m \not = cm, але \alpha i = ci при i < m. Розглянемо модуль рiзницi

| f(x) - f(x0)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
m - 1\prod 
i=1

pcii

\bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| (\sigma \alpha mm +

\infty \sum 
k=m+1

\sigma \alpha kk

k - 1\prod 
j=m

p\alpha jj  - \sigma cmm  - 
\infty \sum 
k=2

\sigma ckk

k - 1\prod 
j=m

p\alpha jj)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
Оскiльки вираз пiд останнiм модулем є рiзницею двох чисел з iнтервалу (0; 1), то його
значенням є число, модуль якого не перевищує 1.

Враховуючи, що з умови 3) для матрицi \| pik\| випливає умова
m - 1\prod 
k=1

pikk \rightarrow 0, m \rightarrow \infty \forall \alpha k \in L,
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бачимо, що
| f(x) - f(x0)| \rightarrow 0, m \rightarrow \infty \leftrightarrow x \rightarrow x0.

Отже, функцiя f неперервна у точцi x0.
2. Нехай x0 = \Delta B

c1...cm(\varnothing ) — B -скiнченна точка, x \rightarrow x0  - 0. Для чисел x < x0,

достатньо близьких до x0, маємо x = \Delta B
c1...cm - 1[cm - 1]\alpha m+1\alpha m+2...

, причому умова x \rightarrow x0
рiвносильна умовi \alpha m+1 \rightarrow \infty . Розглянемо рiзницю

| f(x) - f(x0)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
m - 1\prod 
i=1

pci

\bigm| \bigm| \bigm| \bigm| \bigm| \times C, (4)

де

C =

\bigm| \bigm| \bigm| \bigm| \bigm| \sigma [cm - 1]m + p[cm - 1]m

\infty \sum 
k=m+1

\sigma \alpha kk

k - 1\prod 
i=m

p\alpha ii  - \sigma cmm

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \sigma [cm - 1]m + p[cm - 1]m\sigma \alpha m+1[m+1] + p\alpha mmp\alpha m+1[m+1]

\infty \sum 
k=m+2

\sigma \alpha kk

k - 1\prod 
i=m+1

p\alpha ii  - \sigma cmm

\bigm| \bigm| \bigm| \bigm| \bigm| \rightarrow 0,

оскiльки \sigma \alpha m+1[m+1] \rightarrow 1 при \alpha m+1 \rightarrow \infty .

3. Нехай x \rightarrow x0 + 0, x = \Delta B
c1...cm\alpha m+1\alpha m+2... i \alpha m+1 \rightarrow  - \infty . Розглянемо рiзницю

| f(x) - f(x0)| =

\bigm| \bigm| \bigm| \bigm| \bigm| 
m\prod 
i=1

pcii

\bigm| \bigm| \bigm| \bigm| \bigm| \times C,

де

C =

\bigm| \bigm| \bigm| \bigm| \bigm| \sigma [cm - 1]m + p[cm - 1]m

\infty \sum 
k=m+1

\sigma \alpha kk

k - 1\prod 
i=m

p\alpha ii  - \sigma cmm

\bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \sigma [cm - 1]m + p[cm - 1]m\sigma \alpha m+1[m+1] + p\alpha mmp\alpha m+1[m+1]

\infty \sum 
k=m+2

\sigma \alpha kk

k - 1\prod 
i=m+1

p\alpha ii  - \sigma cmm

\bigm| \bigm| \bigm| \bigm| \bigm| \rightarrow 0,

оскiльки \sigma \alpha m+1[m+1] \rightarrow 1 при \alpha m+1 \rightarrow \infty .
Отже, f неперервна у кожнiй точцi iнтервалу (0; 1).
6. Функцiї канторiвського типу. Множиною сталостi функцiї називається об’єднання

всiх її iнтервалiв сталостi.Множиноюнесталостi функцiї називається доповненнямножини
сталостi до всiєї областi визначення.

Кажуть, що визначена i неперервна на промiжку функцiя, вiдмiнна вiд константи, має
канторiвський тип, якщо сумарна довжина її iнтервалiв сталостi дорiвнює довжинi областi
визначення (промiжку) [8]. Кожна функцiя канторiвського типу є сингулярною, тобто
неперервною функцiєю, похiдна якої рiвна нулю майже скрiзь у розумiннi мiри Лебега.
Найпростiшим прикладом такої функцiї є класична функцiя Кантора, вперше розглянута
Лебегом [9].

Зауважимо, що функцiя канторiвського типу може бути монотонною, немонотонною
i нiде не монотонною, крiм промiжкiв сталостi; мати як обмежену, так i необмежену
варiацiю [10 – 12].
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Ми кажемо, що функцiя має квазiканторiвський тип, якщо її множина несталостi
(зокрема множина точок зростання для неспадних функцiй) є нiде не щiльною, але має
додатну мiру Лебега, тодi як функцiя канторiвського типу вона має нульову мiру Лебега.

Лема 1. Якщо pcm = 0, то функцiя f є сталою на кожному цилiндрi \Delta B
c1c2...cm - 1c.

Доведення. Справдi, якщо x \in \Delta B
c1...cm - 1c = [a, d), де

a = bc1 +
m - 1\sum 
k=2

bck

k - 1\prod 
i=1

\Theta ci + bc

m - 1\prod 
i=1

\Theta ci , d = a+\Theta c

m - 1\prod 
i=1

\Theta i,

то x = \Delta B
c1...cm - 1c\alpha 1\alpha 2..., f(x) = f(a) + 0, оскiльки pc

\prod m - 1

i=1
pci = 0, або x = \Delta B

c1...cm - 1c(\varnothing )

i f(x) = f(a).
Наслiдок 1. Якщо pik \not = 0 для будь-яких i \in Z, k \in N, то функцiя f не має iнтервалiв

сталостi.
Лема 2. Прирiст \mu f

\bigl( 
\Delta B

c1...cm

\bigr) 
\equiv f(d) - f(a) функцiї f на цилiндрi \Delta B

c1...cm = [a; d) обчис-
люється за формулою \mu f

\bigl( 
\Delta B

c1...cm

\bigr) 
=
\prod m

i=1
pcii.

Доведення. Оскiльки

a = bc1 +
m\sum 
k=2

bck

k - 1\prod 
i=1

\Theta ci = \Delta B
c1...cm(\varnothing ), d = a+

m\prod 
i=1

\Theta ci = \Delta B
c1...cm - 1[cm+1](\varnothing ),

то, враховуючи неперервнiсть функцiї i те, що \sigma [cm+1]m  - \sigma cmm = pcmm, маємо

f(d) - f(a) =

\Biggl( 
m - 1\prod 
i=1

pcii

\Biggr) \bigl( 
\sigma [cm+1]m  - \sigma cmm

\bigr) 
=

m\prod 
i=1

pcii.

Наслiдок 2. Якщо pcii \not = 0 для всiх i \leq m, то прирiст функцiї f на цилiндрi \Delta B
c1...cm

є або додатним, або вiд’ємним, причому додатним, якщо
\prod m

i=1
pcii > 0, i вiд’ємним у

протилежному випадку.
Наслiдок 3. Якщо матриця \| pik\| не має вiд’ємних елементiв, то f є функцiєю розподiлу

на iнтервалi (0; 1), причому строго зростаючою, якщо матриця не мiстить нулiв.
Теорема 3. Мiра Лебега множини Sf несталостi функцiї f обчислюється за формулою

\lambda (Sf ) =
\infty \prod 
k=1

\lambda (Fk)

\lambda (Fk - 1)
=

\infty \prod 
k=1

\Biggl( 
1 - 

\lambda 
\bigl( 
F k

\bigr) 
\lambda (Fk - 1)

\Biggr) 
=

\infty \prod 
k=1

(1 - Wk), (5)

де F0 = [0; 1], Fk — об’єднання всiх B -цилiндрiв рангу k, якi мiстять цилiндри вищих рангiв
з ненульовими приростами функцiї f, F k \equiv Fk - 1 \setminus Fk, Wk =

\sum 
i : pik=0

\Theta i.

Доведення. Очевидно, що Sf \subset Fk+1 \subset Fk \forall k \in N i Sf =
\infty \bigcap 
k=1

Fk = \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

Fk. Внаслiдок

вимiрностi Sf i неперервностi мiри Лебега маємо \lambda (Sf ) = \mathrm{l}\mathrm{i}\mathrm{m}
k\rightarrow \infty 

\lambda (Fk) =
\prod \infty 

k=1

\lambda (Fk)

\lambda (Fk - 1)
.

Оскiльки Fk = Fk - 1 \setminus F k, то виконується передостання з рiвностей (5), але \lambda (F k)

\lambda (Fk - 1)
= Wk,

а тому справедлива остання з рiвностей (5).
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Наслiдок 4. \lambda (Sf ) = 0 \leftrightarrow 
\sum \infty 

k=1

\lambda 
\bigl( 
F k

\bigr) 
\lambda (Fk - 1)

=
\sum \infty 

k=1
Wk = \infty .

Теорема 4. Функцiя f є сингулярною функцiєю канторiвського типу тодi й лише тодi,
коли нескiнченна кiлькiсть стовпцiв матрицi \| pik\| мiстять нулi, i при цьому\sum 

k\in N
Wk = \infty .

Доведення. Це твердження випливає з означення функцiї канторiвського типу, попе-
реднього твердження i вiдомого взаємозв’язку збiжностi – розбiжностi нескiнченних добут-
кiв i рядiв.

Наслiдок 5. Якщо pik = pi для будь-якого k \in N i iснує pm = 0, то f є функцiєю
канторiвського типу.

Наслiдок 6. Якщо pikk = 0, pjk \not = 0 при j \not = jk i \Theta ik <
1

k2
для будь-якого k, то ряд\sum 

k\in N
Wk збiгається i f є функцiєю квазiканторiвського типу.

7. Розподiли значень функцiї. Нехай \zeta = \Delta B
\zeta 1\zeta 2...\zeta n...

— випадкова величина з незалеж-
ними однаково розподiленими цифрами B -зображення P\{ \zeta n = i\} = qi \geq 0,

\sum 
i\in Z

qi = 1.

Легко довести, що \zeta має чистий лебегiвський тип розподiлу: чисто дискретний, чисто
абсолютно неперервний, чисто сингулярно неперервний (загальну схему доведення цього
наведено у роботi [13]), причому чисто дискретний розподiл — тодi й лише тодi, коли
\mathrm{m}\mathrm{a}\mathrm{x}\{ qi\} = 1. При \mathrm{m}\mathrm{a}\mathrm{x}\{ qi\} \not = 1 розподiл \zeta є чисто неперервним, причому

рiвномiрним на (0; 1), якщо qk = \Theta k \forall k \in Z;
сингулярним розподiлом канторiвського, якщо iснує qi = 0;
сингулярним розподiлом салемiвського типу, якщо qk > 0 \forall k \in Z та iснує pi \not = \Theta i.
Далi виключимо з розгляду випадок дискретностi розподiлу \zeta .
Лема 3. Якщо f —функцiя канторiвського типу, а \zeta — випадкова величина з незалеж-

ними однаково розподiленими цифрами B -зображення, то точка

y\ast = f
\Bigl( 
\Delta B

c1...cm - 1i(\varnothing )

\Bigr) 
, де pckk \not = 0 \not = qck , k = 1,m - 1, pim = 0 \not = qi, (6)

є атомом розподiлу випадкової величини Y = f(\zeta ), маса якого дорiвнює значенню виразу
qi
\prod m - 1

k=1
qck = P

\Bigl\{ 
\zeta \in \Delta B

c1...cm - 1i

\Bigr\} 
.

Доведення. Якщо pckk \not = 0 при k \in \{ 1, 2, . . . ,m  - 1\} i pim = 0, то згiдно з лемою 1
функцiя f є сталою на цилiндрi \Delta B

c1...cm - 1i
. Разом з цим

P
\Bigl\{ 
\xi \in \Delta B

c1...cm - 1i

\Bigr\} 
= qi

m - 1\prod 
k=1

qck > 0.

Зокрема, якщо \zeta має рiвномiрний розподiл, то

P
\bigl\{ 
\zeta \in \Delta B

c1...cmi

\bigr\} 
=
\bigm| \bigm| \Delta B

c1...cmi

\bigm| \bigm| = \Theta i

m - 1\prod 
j=1

\Theta cj .

Тодi для будь-якого x \in \Delta B
c1...cm - 1i

, f
\Bigl( 
x = \Delta B

c1...cm - 1i(\varnothing )

\Bigr) 
= y\ast . Тому

P\{ Y = y\ast \} = P
\Bigl\{ 
\zeta \in \Delta B

c1...cm - 1i

\Bigr\} 
> 0.

Отже, y\ast є атомом розподiлу випадкової величини Y з указаною масою.
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Наслiдок 7. Якщо f —функцiя розподiлу канторiвського типу, а \zeta —неперервна випад-
кова величина з незалежними однаково розподiленими цифрами B -зображення, то точковий
спектр (множину атомiв) випадкової величини Y = f(\zeta ) утворюють точки вигляду (8).

Введемо позначення

A0k \equiv \{ i : pik \not = 0 \not = qi\} , A1k \equiv \{ i : pik = 0 \not = qi\} ,\sum 
i\in A0k

qi \equiv Qk,
\sum 
i\in A1k

qi \equiv Gk, k \in N.

Теорема 5. Якщо f —функцiя розподiлу канторiвського (або квазiканторiвського) типу,
а \zeta — неперервна випадкова величина з незалежними однаково розподiленими цифрами B -
зображення, причому P\{ \zeta n = i\} = qi > 0,

\sum 
i\in Z

qi = 1, то випадкова величина Y = f(\zeta )

має чисто дискретний розподiл тодi й лише тодi, коли

G \equiv 
\infty \sum 
k=1

Gk

k - 1\prod 
i=1

Qi = 1, (7)

qk = \Theta k \forall k \in Z, атомами якого є кожна з точок вигляду

y = f
\Bigl( 
\Delta B

c1...cm - 1i(\varnothing )

\Bigr) 
, де pckk \not = 0 \not = qck , k = 1,m - 1, pim = 0 \not = qi, (8)

маса атома якої дорiвнює qi
\prod m - 1

k=1
qck . У рештi випадкiв розподiл Y є нетривiальною су-

мiшшю дискретного та неперервного розподiлiв.
Доведення. Оскiльки f — функцiя розподiлу канторiвського (квазiканторiвського)

типу, то вона монотонна i має нескiнченну кiлькiсть B -цилiндрiв сталостi, причому рiз-
них рангiв. Внаслiдок неперервностi розподiлу \zeta атоми в розподiлi випадкової величини Y
можуть з’явитися лише за рахунок iнтервалiв сталостi функцiї f. Тому розподiл випадкової
величини Y має нескiнченну кiлькiсть атомiв згiдно з лемою 8 лише у випадку, коли у
послiдовностi A0n нескiнченна кiлькiсть непорожнiх множин. I лише в тому випадку,
коли сума G мас усiх атомiв дорiвнює 1, розподiл випадкової величини Y буде чисто
дискретним, а це буде тодi, коли виконується умова (7).

Окремо розглянемо випадок, коли \zeta має рiвномiрний розподiл. Якщо f — функцiя
канторiвського типу, то qi = \Theta i \forall i \in Z,

P
\bigl\{ 
\zeta \in \Delta B

c1...cmi

\bigr\} 
=
\bigm| \bigm| \Delta B

c1...cmi

\bigm| \bigm| = \Theta i

m - 1\prod 
j=1

\Theta cj .

Тодi за даних умов для будь-якого x \in \Delta B
c1...cm - 1i

маємо f
\Bigl( 
x = \Delta B

c1...cm - 1i(\varnothing )

\Bigr) 
= y0. Тому

P\{ Y = y0\} = P
\Bigl\{ 
X \in \Delta B

c1...cm - 1i

\Bigr\} 
=
\bigm| \bigm| \bigm| \Delta B

c1...cm - 1i

\bigm| \bigm| \bigm| = \Theta i

m - 1\prod 
j=1

\Theta cj .

Отже, y0 є атомом розподiлу випадкової величини Y з указаною масою. А враховуючи
канторовiсть функцiї f, а саме те, що сумарна довжина всiх її iнтервалiв сталостi дорiвнює
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1, робимо висновок, що розподiл Y чисто дискретний. Нехай тепер f — функцiя квазi-
канторiвського типу. Аналогiчно до попереднього випадку формується її точковий спектр.
Але сума довжин iнтервалiв сталостi функцiї менша 1, тому сума мас усiх атомiв автома-
тично менша 1. Отже, розподiл Y є нетривiальною сумiшшю дискретного i неперервного
розподiлiв.

8. Умови нiде не монотонностi функцiї.
Теорема 6. Функцiя f є нiде не монотонною тодi й лише тодi, коли серед елементiв

матрицi \| pik\| немає нулiв i нескiнченна кiлькiсть її стовпцiв мiстять вiд’ємнi елементи.
Доведення. Спочатку доведемо, що коли матриця не має нульових елементiв i нескiн-

ченна кiлькiсть її стовпцiв мiстять вiд’ємнi елементи, то функцiя f нiде не монотонна.
Оскiльки в матрицi \| pik\| нулiв немає, то згiдно з наслiдком з леми 2 функцiя f не має

iнтервалiв сталостi. Залишається довести, що f не має iнтервалiв монотонностi. Оскiльки
для будь-якого iнтервалу (a; b) \subset (0; 1) легко вказати B -цилiндр, який цiлком належить
цьому iнтервалу, то для доведення вказаного твердження досить показати, що функцiя не
є монотонною на будь-якому B -цилiндрi.

Нехай \Delta B
c1...cm — довiльний цилiндр рангу m i pik < 0, де k > m.

Прирiст функцiї на B -цилiндрi \Delta B
c1...cm...ck - 1c

= [a1; d1) подаємо у виглядi

f(d1) - f(a1) = pck

k - 1\prod 
j=1

pcjj ,

а на B -цилiндрi \Delta B
c1...cm...ck - 1cck+1...cn - 1i

= [a2; d2), де pin < 0, причому pjs > 0 для будь-
яких j \in Z i k < s < n, має вигляд

f(d2) - f(a2) =

\left(  k - 1\prod 
j=1

pcjj

\right)  pck

\left(  n - 1\prod 
j=k+1

pcjj

\right)  pin. (9)

Оскiльки [a2; d2) \subset [a1; d1), а
\prod n - 1

j=k+1
pcjj > 0 (до речi, при n = k + 1 цей множник у

добутку (9) просто вiдсутнiй), то прирости функцiї на вказаних цилiндрах, якi належать
цилiндру \Delta B

c1...cm , мають протилежнi знаки.
Таким чином, функцiя на B -цилiндрi \Delta B

c1...cm не є монотонною, а отже, є нiде не
монотонною завдяки довiльностi вибору цього B -цилiндра.

Нехай f —нiде не монотонна функцiя. Якщо припустити, що серед елементiв матрицi
\| pik\| є нулi (нехай pcs = 0), то згiдно з лемою 1 функцiя має промiжки сталостi, що
суперечить її нiде не монотонностi. Отже, нульовi елементи у матрицi \| pik\| вiдсутнi.

Припустимо тепер, що лише скiнченна кiлькiсть стовпцiв матрицi мають вiд’ємнi еле-
менти i pik > 0 \forall i \in Z, k > k0. Тодi згiдно з наслiдком 3 з леми 2 на кожному цилiндрi
рангу k функцiя f є монотонною. У цьому випадку вона є кусково-монотонною, що знову
суперечить умовi нiде не монотонностi. Отриманi суперечностi з припущеннями доводять,
що умова вiдсутностi нулiв у матрицi \| pik\| i наявнiсть у нiй нескiнченної кiлькостi стовпцiв
з вiд’ємними елементами є необхiдною i достатньою для нiде не монотонностi функцiї.

9. Варiацiйнi властивостi функцiї. У класi P (B) iснують функцiї обмеженої та необме-
женої варiацiї залежно вiд властивостей матрицi \| pik\| .

Лема 4. Функцiя f свого найбiльшого i найменшого значення на \Phi -цилiндрi набуває на
його кiнцях.
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Доведення. Розглянемо довiльний B -цилiндр \Delta B
c1...cm = [a; d), де a = \Delta \Phi 

c1...cm(\varnothing ), d =

\Delta B
c1...cm - 1[cm+1](\varnothing ), i точку x, що йому належить. Число x може бути B -скiнченним або

B -нескiнченним. Розглянемо обидва можливi випадки: x = x1 = \Delta B
c1...cmi(\varnothing ) i x = x2 =

\Delta B
c1...cm...ck...

. Якщо D \equiv 
\prod m - 1

k=1
pckk, то

f(x1) - f(a) = Dpcmm \sigma i[m+1],

f(d) - f(x1) = D
\bigl( 
\sigma [cm+1]m  - \sigma cmm  - pcmm\sigma i[i+1]

\bigr) 
= Dpcmm(1 - \sigma i[m+1]).

Оскiльки \sigma i[m+1] > 0 i 1 - \sigma i[m+1] > 0, то значення виразiв f(x1) - f(a) i f(d) - f(x1) мають
однаковi знаки абож одночасно рiвнi 0. Тому f(a) є максимальним, а f(d) —мiнiмальним,
якщо f(x1) - f(a) < 0, i навпаки у протилежному випадку.

Аналогiчно

f(x2) - f(a) = Dpcmm

\infty \sum 
k=m+1

\sigma ckik

k - 1\prod 
j=m+1

pcjj ,

f(d) - f(x2) = D

\left(  \sigma [cm+1]m  - \sigma cmm  - 
\infty \sum 

k=m+1

\sigma ckk

k - 1\prod 
j=m

pcjj

\right)  

= Dpcmm

\left(  1 - 
\infty \sum 

k=m+1

\sigma ckk

k - 1\prod 
j=m+1

pcjj

\right)  .

Оскiльки

0 < 1 - 
\infty \sum 

k=m+1

\sigma ckk

k - 1\prod 
j=m+1

pcjj < 1,

то вирази f(x2)  - f(a) i f(d)  - f(x2) мають однаковi знаки або одночасно рiвнi 0. Це
приводить до тих же висновкiв.

Отже, функцiя f найбiльшого i найменшого значень набуває на кiнцях B -цилiндра,
що розглядається.

Лему 4 доведено.
Теорема 7. Варiацiя V 1

0 (f) функцiї f на iнтервалi (0; 1) обчислюється за формулою

V 0
1 (f) =

\infty \prod 
k=1

Vk, де Vk =

+\infty \sum 
i= - \infty 

| pik| . (10)

Доведення. Сума приростiв функцiї f на цилiндрах 1-го рангу згiдно з лемою 2 до-
рiвнює

V1 =
+\infty \sum 

i= - \infty 
| pi1| .

Завдяки умовам 1) i 2) для матрицi \| pik\| маємо V1 \geq 1.
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Сума приростiв функцiї f на цилiндрах 2-го рангу, що належать цилiндру \Delta B
c1 , має

вигляд

| pc11| 
+\infty \sum 

i= - \infty 
| pi2| .

Тодi суму B2 приростiв функцiї f на всiх цилiндрах 2-го рангу обчислюємо за формулою

B2 \equiv 
+\infty \sum 

c1= - \infty 

\Biggl( 
| pc11| 

+\infty \sum 
i= - \infty 

| pi2| 

\Biggr) 
= V1V2.

Iндуктивномiркуючи, отримуємо вираз Bm всiх приростiвфункцiї f на цилiндрах рангуm :

Bm =

m\prod 
k=1

Vk.

Оскiльки функцiя f свого найбiльшого i найменшого значень на цилiндрi набуває на його
кiнцях (див. лему 4), то варiацiя функцiї f на (0; 1) дорiвнює

V 1
0 (f) = \mathrm{l}\mathrm{i}\mathrm{m}

m\rightarrow \infty 
Bm =

\infty \prod 
k=1

Vk.

Наслiдок 8. Функцiя f має необмежену варiацiю тодi й лише тодi, коли

\infty \sum 
k=1

(1 - Vk) =  - \infty .

Справдi, оскiльки Vk = 1 - (1 - Vk) \geq 1, то це твердження випливає з вiдомої теореми
про взаємозв’язок збiжностi нескiнченних добуткiв i рядiв.

Наслiдок 9. Якщо всi стовпцi матрицi \| pik\| однаковi i функцiя f є нiде не монотонною,
то вона має необмежену варiацiю.

Доведення. Справдi, при виконаннi умов леми Vm = V1, Bm = V m
1 , V 1

0 (f) = \mathrm{l}\mathrm{i}\mathrm{m}
m\rightarrow \infty 

V m
1 .

Але з умови нiде не монотонностi функцiї f випливає V1 > 1. Отже, V 1
0 (f) = \infty .

Наслiдок 10. Якщо нескiнченна кiлькiсть стовпцiв у матрицi \| pik\| мiстять нульовi
елементи i при цьому

\sum \infty 

k=1
(1  - Vk) =  - \infty , то f є функцiєю канторiвського або квазi-

канторiвського типу, яка має необмежену варiацiю i не має промiжкiв монотонностi окрiм
промiжкiв сталостi.

10. Автомодельнi та iнтегральнi властивостi функцiй. Клас P (B) функцiй, означених
рiвнiстю (3), континуальний. Його важливий континуальний пiдклас P0(B) утворюють
функцiї, визначенi матрицями, всi стовпцi яких однаковi. У цьому випадку матрицю \| pik\| 
визначає вектор-стовпець

(. . . , p - 2, p - 1, p0, p1, p2, . . .) = p.

У цiй ситуацiї при pi = \Theta i для будь-якого i \in Z маємо f(x) = x.
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Лема 5. Графiк \Gamma f функцiї f є структурно фрактальною множиною, а саме N-само-
афiнною множиною зi структурою самоафiнностi

\Gamma f =
+\infty \bigcup 

i= - \infty 
\Gamma i, \Gamma i = \varphi i(\Gamma f ), \varphi i :

\left\{   x\prime = \Theta ix+ bi,

y\prime = piy + \sigma i,
i \in Z.

Доведення. Оскiльки \Gamma f =
\infty \bigcup 

i= - \infty 
Hi, де Hi =

\bigl\{ 
M(x; y) : x = \Delta B

i\alpha 2\alpha 3...
, y = \Delta i\alpha 2\alpha 3...

\bigr\} 
, то

залишається показати, що Hi = \varphi i(\Gamma f ).
Нехай M(x; y) \in \Gamma f , тобто x = \Delta B

c1c2..., y = \Delta c1c2... = f(x). Розглянемо точку \varphi i(M) =
M \prime (\delta i(x); \rho i(x)) — образ точки M пiд дiєю афiнного перетворення \varphi i, де \delta i(x) \equiv \Delta B

i\alpha 1\alpha 2...
,

\rho i(x) \equiv \Delta i\alpha 1\alpha 2.... Очевидно, що M \prime \in Hi, а отже, \Gamma i \subset Hi.
Доведемо, що Hi \subset \Gamma i.
Нехай K\ast \bigl( x\ast ; y\ast \bigr) \in Hi, тобто x\ast = \Delta B

i\alpha 2\alpha 3...
, y\ast = \Delta i\alpha 2\alpha 3...; тодi очевидно, що K\ast є

образом точки K
\bigl( 
x; y
\bigr) 
, де x = \Delta B

\alpha 2\alpha 3..., y = \Delta \alpha 2\alpha 3..., яка належить графiку функцiї f, пiд
дiєю перетворення \varphi i, а отже, K \in \Gamma i. З \Gamma i \subset Hi i Hi \subset \Gamma i отримуємо рiвнiсть Gi = Hi

для довiльного i \in Z. Тому твердження доведено.
Теорема 8. Має мiсце рiвнiсть

1\int 
0

f(x) dx =

\sum 
i\in Z

\sigma i\Theta i

1 - 
\sum 

i\in Z
\Theta ipi

.

Доведення. Оскiльки функцiя f є неперервною, то вона iнтегровна на кожному B -
цилiндрi. Використовуючи адитивну властивiсть iнтеграла i N-самоафiннiсть графiка
функцiї, маємо

1\int 
0

f(x) dx =
\infty \sum 

k= - \infty 

bk+1\int 
bk

f(x) dx,

bk+1\int 
bk

f(x) dx =

1\int 
0

(pif(x) + \sigma i)d(\Theta ix+ bi) = \Theta ipi

1\int 
0

f(x) dx+ \sigma i\Theta i,

1\int 
0

f(x) dx =
\sum 
i\in Z

\sigma i\Theta i +
\sum 
i\in Z

\Theta ipi

1\int 
0

f(x) dx,

\Biggl( 
1 - 

\sum 
i\in Z

\Theta ipi

\Biggr) 1\int 
0

f(x) dx =
\sum 
i\in Z

\sigma i\Theta i,

1\int 
0

f(x) dx =

\sum 
i\in Z

\sigma i\Theta i

1 - 
\sum 

i\in Z
\Theta ipi

.
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11. Диференцiальнi властивостi функцiї. У цьому пунктi ми вважаємо, що pik = pi для
будь-яких i \in Z, k \in N.

Лема 6. Мiра Лебега множини канторiвського типу

C[B, V ] =
\bigl\{ 
x : x = \Delta B

\alpha 1...\alpha n..., \alpha n \in V \subset Z, V \not = Z
\bigr\} 

дорiвнює нулю.
Доведення. Нехай j \in V, Vj = Z \setminus \{ j\} . Очевидно, що C[B, V ] \subset C[B, Vj ] \equiv C, а отже,

длямiриЛебега маємо \lambda (C[B, V ]) \leq \lambda (C[B, Vj ]). Тому досить показати,що \lambda (C[B, Vj ]) = 0.
Якщо E0 = [0; 1], En —об’єднання B -цилiндрiв рангу n, серед внутрiшнiх точок яких

є точки множини C, то для довiльного n \in N маємо
C \subset En+1 \subset En, En \equiv En \setminus En - 1, \lambda (C) \leq \lambda (En)

i
\lambda (C) = \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 
\lambda (En) = \mathrm{l}\mathrm{i}\mathrm{m}

n\rightarrow \infty 

\biggl( 
\lambda (En)

\lambda (En - 1)

\lambda (En - 1)

\lambda (En - 2)
. . .

\lambda (E1)

\lambda (E0)

\biggr) 
=

\infty \prod 
n=1

\lambda (En)

\lambda (En - 1)
.

Але En \equiv En - 1 \setminus En, а тому En = En - 1 \setminus En;

\lambda (C) =
\infty \prod 
n=1

\lambda (En - 1) - \lambda 
\bigl( 
En

\bigr) 
\lambda (En - 1)

=
\infty \prod 
n=1

\Biggl( 
1 - 

\lambda 
\bigl( 
En

\bigr) 
\lambda (En - 1)

\Biggr) 
.

Оскiльки 0 <

\bigl( 
En

\bigr) 
\lambda (En - 1)

= \Theta j < 1, то \lambda (C) = 0 = \lambda (C[B, V ]).

Наслiдок 11. Мiра Лебега множини En(i) всiх чисел iз iнтервалу (0; 1), у B -зображеннi
яких цифра i може зустрiчатися лише на перших n-мiсцях, дорiвнює нулю.

Справдi, оскiльки
En(i) =

\bigcup 
\alpha 1\in A

. . .
\bigcup 

\alpha n\in A

\bigl[ 
\Delta B

\alpha 1...\alpha n
\cap En(i)

\bigr] 
,

а згiдно з лемою 6 \lambda 
\bigl[ 
\Delta B

\alpha 1...\alpha n
\cap En(i)

\bigr] 
= 0, то \lambda (En(i)) = 0.

Теорема 9. Множина I всiх чисел iз (0; 1), у B -зображеннi яких цифра i \in A зустрiча-
ється лише скiнченну кiлькiсть разiв, має нульову мiру Лебега.

Доведення. Оскiльки I \subset 
\bigcup 
n
En(i), то, враховуючи наслiдок попередньої леми, маємо

\lambda (I) \leq 
\sum 

n
\lambda (En(i)). Отже, \lambda (I) = 0.

Наслiдок 12. Майже всi (у розумiннi мiри Лебега) числа iнтервалу (0; 1) у своїх B -зобра-
женнях використовують усi цифри алфавiту нескiнченну кiлькiсть разiв.

Наслiдок 13. Для майже всiх (у розумiннi мiри Лебега) x = \Delta B
\alpha 1...\alpha n... \in (0; 1) маємо

\mathrm{l}\mathrm{i}\mathrm{m} \mathrm{s}\mathrm{u}\mathrm{p}
n\rightarrow \infty 

\alpha n(x) = \infty .

Лема 7. Якщо у B -нескiнченнiй точцi x0 iснує скiнченна похiдна функцiї f, то її можна
обчислити за формулою

f \prime (x0) =

\infty \prod 
k=1

p\alpha k(x0)

\Theta \alpha k(x0)
. (11)

Якщо нескiнченний добуток (11) розбiгається, причому не до нуля, то не iснує скiнченної
похiдної функцiї f у точцi x0.

Це твердження є наслiдком теореми 3.11.1 з [14, с. 93].
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Теорема 10. Якщо (pn) — послiдовнiсть додатних дiйсних чисел, серед членiв якої iснує
pk \not = \Theta k, то f є сингулярною строго зростаючою функцiєю розподiлу ймовiрностей на iнтер-
валi (0; 1).

Доведення. З урахуванням наслiдку 3 з леми 2 f є строго зростаючою функцiєю роз-
подiлу. Функцiя f, будучи монотонною, згiдно з вiдомою теоремою Лебега має скiнченну
похiдну на множинi \frakD повної мiри Лебега. Множину точок, що мають нормальну власти-
вiсть, яку констатує наслiдок 1 з теореми 9, позначимо через \frakB . Тодi множина \frakD \cap \frakB є
множиною повної мiри.

Для доведення сингулярностi функцiї f розглянемо довiльну точку x\ast \in \frakD \cap \frakB . Вра-
ховуючи лему 7, маємо

f \prime (x\ast ) =
\infty \prod 
n=1

p\alpha n(x\ast )

\Theta \alpha n(x\ast )
. (12)

Оскiльки нескiнченна кiлькiсть членiв останнього нескiнченного добутку рiвна pk
\Theta k

\not = 1,

то добуток (12) розбiгається (не виконується необхiдна умова збiжностi добутку). Тому
майже скрiзь добуток (12) розбiгається до нуля. Це й вимагалося довести. Отже, функцiя
f є сингулярною згiдно з означенням.

12. Заключнi зауваження. Нескiнченносимвольне B -зображення чисел має ряд специ-
фiчних властивостей, не притаманних iншим нескiнченносимвольним зображенням (Q\infty -
зображення чисел [15], зображення чисел елементарними ланцюговими дробами, зобра-
ження чисел рядамиЛюрота, Енгеля, Сiльвестера, Остроградського –Серпiнського –Пiрса
тощо), якi пов’язанi з двосторонньо-нескiнченним алфавiтом i полiосновнiстю системи ко-
дування чисел.

Залишилися нез’ясованими питання:
1) Чи iснують у класi P (B) функцiї, що мають множину рiвня, яка є канторвалом?
2) Якою є розмiрнiсть Гаусдорфа – Безиковича множини H = \{ x : f \prime (x) \not = 0\} нульової

мiри Лебега для функцiї f, що є сингулярною функцiєю салемiвського типу [16], диферен-
цiальнi властивостi якої вивчалися у попередньому пунктi?

Вiд iменi всiх авторiв вiдповiдальний за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв.

Лiтература
1. М. В. Працьовитий, Я. В. Гончаренко, С. О. Дмитренко, I. M. Лисенко, С. П. Ратушняк, Про один клас

функцiй з фрактальними властивостями, Буковин. мат. журн., 6, № 1, 273 – 283 (2021).
2. M. Jarnicki, P. Pflug, Continuous nowhere differentiable functions. The monsters of analysis, Springer Monogr.

Math., Springer, Cham (2015); https://doi.org/10.1007/978-3-319-12670-8.
3. M. V. Pratsiovytyi, Ya. V. Goncharenko, I. M. Lysenko, S. P. Ratushniak, Fractal functions of exponential type

that is generated by the Q\ast 
2 -representation of argument, Mat. Stud., 56, № 2, 133 – 143 (2021).

4. М. В. Працьовитий, С. П. Ратушняк, Неперервна нiде не диференцiйовна функцiя з фрактальними власти-
востями, визначена в термiнах Q2 -зображення, Нелiн. коливання, 23, № 2, 231 – 252 (2020).

5. M. Pratsiovytyi, N. Vasylenko, Fractal properties of functions defined in terms of Q -representation, Int. J.
Math. Anal., 7, № 61 – 67, 3155 – 3169 (2013).

6. M. V. Pratsiovytyi, O. Yu. Feshchenko, Topological-metric and fractal properties of the distributions on the set
of the incomplete sums of series of positive terms, Theory Stoch. Process., 13(29), № 1-2, 205 – 224 (2007).

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 3



НЕПЕРЕРВНI ФУНКЦIЇ З ЛОКАЛЬНО СКЛАДНИМИ ТА ФРАКТАЛЬНИМИ ВЛАСТИВОСТЯМИ . . . 425

7. M. V. Pratsovytyi, O. M. Baranovskyi, O. I. Bondarenko, S. P. Ratushniak, One class of continuous locally
complicated functions related to infinite-symbol \Phi -representation of numbers, Mat. Stud., 59(2), 123 – 131;
https://doi.org/10.30970/ms.59.2.123-131.

8. R. Salem, On some singular monotonic functions which are strictly increasing, Trans. Amer. Math. Soc., 53(3),
427 – 439 (1943); https://doi.org/10.2307/1990210.

9. M. Pratsiovytyi, I. Lysenko, O. Voitovska, Distribution of values of classic singular Cantor function of random
argument, Random Oper. Stoch. Equ., 26, № 4, 193 – 200 (2018).

10. М. В. Працьовитий, О. В. Свинчук, Розсiювання значень однiєї фрактальної неперервної немонотонної
функцiї канторiвського типу, Нелiн. коливання, 21, № 1, 116 – 130 (2018).

11. М. В. Працьовитий, А. В. Калашнiков, Самоафiннi сингулярнi та нiде не монотоннi функцiї, пов’язанi з
Q -зображенням чисел, Укр. мат. журн., 65, № 3, 381 – 393 (2013).

12. М. В. Працьовитий, С. П. Ратушняк, Розподiл значень однiєї фрактальної функцiї вiд випадкового аргумен-
ту, Наук. часоп. НПУ iм. М. П. Драгоманова. Сер. 1. Фiз.-мат. науки, № 16 (2), 150 – 160 (2014).

13. М. В. Працьовитий, Фрактальний пiдхiд у дослiдженнях сингулярних розподiлiв, Нац. пед. ун-т
iм. М. П. Драгоманова, Київ (1998).

14. М. В. Працьовитий, Двосимвольнi системи кодування дiйсних чисел та їх застосування, Наук. думка, Київ
(2022).

15. M. V. Pratsovytyi, O. L. Lechinskii, Properties of random variable defined by the distributions of elements of
their \widetilde Q\infty -representation, Theor. Probab. Math. Statist., № 57, 143 – 148 (1998).

16. R. Salem, On singular monotonic functions of the Cantor type, J. Math. Phys. Mass. Inst. Tech., 21(1-4), 69 – 82
(1942); doi:10.1002/sapm194221169.

Одержано 29.07.23

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 3


