
DOI: 10.3842/nosc.v26i3.1437
УДК 517.9

ЗАДАЧА ОПТИМАЛЬНОГО КЕРУВАННЯ
ДЛЯ СИСТЕМ IНТЕГРО-ДИФЕРЕНЦIАЛЬНИХ РIВНЯНЬ

Вiкторiя Могильова
Нацiональний технiчний унiверситет України
“Київський полiтехнiчний iнститут iменi Iгоря Сiкорського”
просп. Перемоги, 37, Київ, 03056, Україна
e-mail: mogylova.viktoria@gmail.com

Роксолана Лахва
Київський нацiональний унiверситет iменi Тараса Шевченка
вул. Володимирська, 64/13, Київ, 01601, Україна
e-mail: roksolanalakhva@knu.ua, вiдповiдальна за листування

Василь Кравець
Таврiйський державний агротехнологiчний унiверситет iменi Дмитра Моторного
вул. Жуковського, 66, Запорiжжя, 69600, Україна
e-mail: v_i_kravets@ukr.net

For the linear control system of integro-differential equations, we obtain sufficient conditions of optimality
in terms of the right-hand sides of the system and functions of the quality criteria. The speciality of the
problem lies in the fact that it is considered until the solution reaches the boundary of the domain that
depends on control.

Для лiнiйної за керуванням системи iнтегро-диференцiальних рiвнянь отримано достатнi умови
оптимальностi у термiнах правих частин системи та функцiй, що входять у критерiй якостi. Особ-
ливiстю задачi є те, що її розглядають до моменту виходу розв’язку на межу областi, який залежить
вiд керування.

1. Вступ. У цiй статтi розглянуто задачу оптимального керування системою iнтегро-дифе-
ренцiальних рiвнянь

\.x =

\left\{     f1(t, x) + f2(t, x)u(t) +

\int t

0
f3(t, s, x)u(s) ds,

x(0) = x0,

(1.1)

з критерiєм якостi

J(u) =

\tau \int 
0

L(t, x(t), u(t)) dt \rightarrow inf, (1.2)
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на вiдрiзку [0, T ], де x0 \in D — фiксований вектор, x \in D — фазовий вектор, D — деяка
область у \BbbR d, \partial D —межа D, D = D\cup \partial D, \tau = \tau (u) —момент першого виходу розв’язку,
x(t) = x(t, u) на \partial D, u \in U \subset \BbbR m — вектор керування, U — опукла, замкнена множина в
\BbbR m i 0 \in U. Точну постановку задачi буде надено у п. 2.

Основним результатом роботи є отримання достатнiх умов оптимальностi у термiнах
правих частин системи та функцiї L iз критерiя якостi. При цьому момент закiнчення
процесу (момент виходу розв’язку на межу областi) також залежить вiд керування, що
суттєво ускладнює дослiдження.

Для систем звичайних диференцiальних рiвнянь подiбнi задачi вивчалися в [1], для
стохастичних систем — у [2], для систем функцiонально-диференцiальних рiвнянь —
у [3], для iмпульсних систем — у [4].

Стосовно самих систем iнтегро-диференцiальних рiвнянь зазначимо, що вони є мате-
матичними моделями багатьох процесiв природознавства, наприклад у флюїднiй динамiцi,
кiнетичнiй хiмiї (див. [5, 6] та наведену там бiблiографiю). Такi рiвняння з’являються при
вивченнi мультиволатильних популяцiй [7] та iн.

Питання iснування розв’язкiв задач Кошi та крайових задач для iнтегро-диференцiаль-
них рiвнянь вивчались у роботах [8, 9] та iн. Суттєвою умовою у цих роботах була не-
перервнiсть правих частин за всiма змiнними. Однак, для задач оптимального керування
наявнiсть у правiй частинi керування u(t), яке, як правило, є лише вимiрною функцiєю, ро-
бить вимогу неперервностi правої частини неприродною. Тому в нашому випадку потрiбно
отримати результат, аналогiчний теоремi Каратеодорi для систем звичайних диференцi-
альних рiвнянь. У цiй статтi ми отримуємо такий результат.

Iдея доведення iснування оптимального керування у задачi (1.1), (1.2) бiльш-менш
стандартна i складається з трьох етапiв:

1) видiлення слабко збiжної мiнiмiзуючої послiдовностi допустимих керувань;
2) доведення компактностi множини вiдповiдних траєкторiй;
3) обґрунтування граничного переходу в рiвняннi та функцiоналi якостi.
Однак, на вiдмiну вiд задач iз фiксованим моментом закiнчення процесу T тут виникає

принципова складнiсть: задача розглядається до моменту виходу \tau розв’язку на межу роз-
глядуваної областi. При цьому цей момент виходу залежить вiд керування \tau = \tau (u). Тому
фактично розв’язком задачi є трiйка

\bigl( 
u\ast , x\ast , \tau \ast 

\bigr) 
— оптимальне керування, оптимальна

траєкторiя та оптимальний момент виходу. Зазначимо, що частинним випадком цiєї задачi
є задача найшвидшого виходу розв’язку на межу областi \tau \rightarrow inf (якщо L \equiv 1).

Оскiльки момент виходу \tau = \tau (u) залежить вiд керування, то для доведення iснування
оптимального керування доводиться ще робити й граничний перехiд у моментi виходу
\tau = \tau 

\bigl( 
u(n)

\bigr) 
, що є нетривiальною задачею.

Робота складається зi вступу та трьох частин. У п. 2 ми вводимо необхiднi поняття й
означення i даємо строгу постановку задачi. Пункт 3 присвячено теоремам iснування та
продовжуваностi розв’язку до його моменту виходу на межу областi для систем iнтегро-
диференцiальних рiвнянь iз вимiрною за часовою змiнною правою частиною.Формулюван-
ня й доведення основного результату статтi наведено в останньому пунктi.

2. Постановка задачi. Надалi через | \cdot | позначатимемо норму вектора у скiнчен-
новимiрному евклiдовому просторi, а через \| \cdot \| — норму матрицi, узгоджену iз нормою
вектора.

Нехай виконуються такi умови:
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A) вектор-функцiя f1(t, x) : [0, T ] \times D \rightarrow \BbbR d, матриця f2(t, x) : [0, T ] \times D \rightarrow \BbbR d \times \BbbR m i
матриця f3(t, s, x) : [0, T ]\times [0, T ]\times D \rightarrow \BbbR d \times \BbbR m неперервнi за сукупнiстю змiнних.

Б) окрiм того, у випадку необмеженої областi D виконуються ще й такi умови для
функцiй f1(t, x), f2(t, x), f3(t, s, x) : C > 0 таке, що для довiльних t, s \in [0, T ], x \in D :

| f1(t, x)| \leq C(1 + | x| ), (2.1)

\| f2(t, x)\| \leq C(1 + | x| ), (2.2)

\| f3(t, s, x)\| \leq C(1 + | x| ). (2.3)

Функцiї L(t, x, u), Lx(t, x, u) i Lu(t, x, u) є неперервними за сукупнiстю змiнних для
будь-яких t \in [0, T ], x \in D, u \in U i задовольняють умови:

1) iснують такi k > 0, p > 1, що виконується нерiвнiсть

L(t, x, u) \geq k| u| p (2.4)

для t \in [0, T ], x \in D, u \in U ;
2) iснують такi K > 0 i \alpha > 0, що

| Lx(t, x, u)| + | Lu(t, x, u)| \leq K
\bigl( 
1 + | u| p - 1 + | x| \alpha 

\bigr) 
(2.5)

для t \in [0, T ], x \in D, u \in U ;

3) L(t, x, u) опукла по u для будь-яких фiксованих t \in [0, T ], x \in D.

Керування u(t) вважають допустимим, якщо:

a1) u(t) \in Lp([0, T ]), \| u(\cdot )\| p =
\biggl( \int T

0
| u(t)| p dt

\biggr) 1
p

;

a2) u(t) \in U при t \in [0, T ].

Множину допустимих керувань позначатимемо через V.

3. Деякi допомiжнi результати. Для подальшого нам потрiбнi деякi результати про
iснування розв’язку задачi Кошi та його продовжуванiсть до моменту виходу з областi для
iнтегро-диференцiальних систем i з вимiрною за незалежною змiнною правою частиною.
Отже, розглянемо задачi Кошi

\.x = X

\left(  t, x, t\int 
0

\varphi (t, s, x(s)) ds

\right)  , x(0) = x0, (3.1)

де x \in D, D — область у \BbbR d, a \partial D — її межа, D = D \cup \partial D, x0 \in D. Розв’язок цiєї задачi
будемо розумiти в такому сенсi.

Означення 3.1. Абсолютно неперервну функцiю x(t) називають розв’язком задачi (3.1)
на промiжку [0, T ], якщо вона задовольняє на [0, T ] таке iнтегральне рiвняння:

x(t) = x0 +

t\int 
0

X

\left(  s, x(s), s\int 
0

\varphi (s, \tau , x(\tau )) d\tau 

\right)  ds. (3.2)

Одержали таку теорему.
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Теорема 3.1. Нехай X(t, x, y) визначено в областi t \in [0, T ], x \in D, y \in \BbbR m i вико-
нуються такi умови:

1) X(t, x, y) для майже всiх t (за мiрою Лебега) неперервна по x i y ;
2) X(t, x, y) вимiрна по t при всiх x i y ;
3) iснують iнтегровнi функцiї m(t) i \mu (t, s) такi, що

| X(t, x, y)| \leq m(t), x \in D, y \in \BbbR m, (3.3)

| \varphi (t, s, x)| \leq \mu (t, s), x \in D, (3.4)

T\int 
0

m(t) dt < \infty ,

T\int 
0

T\int 
0

\mu (t, s) ds dt < \infty . (3.5)

Тодi iснує таке h > 0, що задача Кошi має розв’язок (3.1) на вiдрiзку [0, h].
Доведення. Виберемо b > 0 таким чином, що вiдрiзок | x  - x0| \leq b цiлком лежить у

D, а h > 0 таке, що
h\int 

0

m(t) dt \leq b. (3.6)

Для кожного натурального n покладемо \delta = h/n i позначимо ti = i\delta . Послiдовно на
вiдрiзках [ti, ti+1], i = 0, n - 1, побудуємо послiдовнiсть функцiй xn(t), визначену на [0, h]
таким чином. Покладемо xn(t) \equiv x0 при t \leq 0 i

xn(t) = x0 +

t\int 
0

X(s, xn(s - \delta ),

s\int 
0

\varphi (s, \tau , xn(\tau  - h)) d\tau ) ds. (3.7)

Для кожного n \in \BbbN функцiї xn(t) визначенi та неперервнi на [0, h]. Дiйсно, при t \in 

[0, \delta ] маємо xn(t  - \delta ) = x0 i для кожного s \in [0, \delta ] :
\int s

0
\varphi (s, \tau , x0) d\tau iснує та є сумовною

функцiєю, оскiльки
s\int 

0

| \varphi (s, \tau , x0)| d\tau \leq 
s\int 

0

\mu (s, \tau ) d\tau < \infty 

виконується згiдно з умовами (3.4), (3.5) i теоремою Фубiнi. Тодi згiдно з [10, с. 121]
пiдiнтегральна функцiя (3.7) сумовна, при цьому

| xn(t) - x0| \leq 
t\int 

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| X
\left(  s, x0, s\int 

0

\varphi (s, \tau , x0)d\tau 

\right)  \bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ds \leq 
h\int 

0

m(t) dt \leq b. (3.8)

Тодi на [0, h] функцiя xn(t) є неперервною i лежить у областi D. Аналогiчно, при
t \in [h, 2h] отримаємо

s\int 
0

| \varphi (s, \tau , xn(\tau  - h)| d\tau \leq 
s\int 

0

\mu (s, \tau ) d\tau < \infty 
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i

| xn(t) - x0| \leq 
t\int 

0

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| X(s, xn(s - \delta ),

s\int 
0

\varphi (s, \tau , xn(\tau  - \delta )) d\tau 

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ds \leq 
h\int 

0

m(t) dt \leq b.

Отже, продовжуючи цей процес, одержуємо, що xn(t) є неперервною на [0, h] i для неї
виконується оцiнка

| xn(t) - x0| \leq b, t \in [0, h]. (3.9)

Окрiм того, згiдно з абсолютною неперервнiстю iнтеграла Лебега для будь-якого \varepsilon > 0
iснує \delta > 0 такe, що коли | \alpha  - \beta | < \delta , тодi

| xn(\beta ) - xn(\alpha )| \leq 
\beta \int 

\alpha 

m(t) dt < \varepsilon . (3.10)

Таким чином, згiдно з (3.9) та (3.10) функцiї xn(t) є рiвностепенево неперервними та
рiвномiрно обмеженими на [0, h]. Отже, iснує рiвномiрно збiжна на [0, h] їхня пiдпослiдов-
нiсть xnk

(t) до неперервної функцiї x(t). Не обмежуючи загальностi, будемо вважати, що
сама послiдовнiсть xn(t) рiвномiрно збiгається до x(t) при n \rightarrow \infty . Оскiльки

| xn(s - \delta ) - x(s)| \leq | xn(s - \delta ) - xn(s)| + | xn(s) - x(s)| ,

то згiдно з рiвностепеневою непервнiстю та умовою xn(s  - \delta ) \rightarrow x(s) при n \rightarrow \infty . Отже,
з урахуванням неперервностi функцiї X(t, x, y) по x, y i неперервностi \varphi (t, s, x) по x, iз
(3.3) – (3.5), використовуючи теорему Лебега про мажоровану збiжнiсть, у (3.7) можли-
вий граничний перехiд пiд знаком iнтегралiв. А тому гранична функцiя x(t) задовольняє
рiвняння (3.2) i є, очевидно, абсолютно неперервною на [0, h].

Наступна теорема гарантує продовжуванiсть побудованого розв’язку на межу цилiндра
(0, T )\times D \subset \BbbR d+1 у випадку обмеженостi областi D.

Теорема 3.2. За умов теореми 3.1 кожний розв’язок рiвняння (3.1), що проходить всере-
динi цилiндра (0, T )\times D, можна продовжити до його виходу на межу цилiндра.

Доведення. Розглянемо розв’язок x(t), що проходить через точку (t0, x0) \subset (0, T )\times D,
яку позначимо через A0. Межу цилiндра (0, T )\times D позначимо через \Gamma . Виберемо \varepsilon 1 > 0
таке, що 2\varepsilon 1 \leq \rho (A,\Gamma ) — вiдстань вiд точки A до межi \Gamma . Iз абсолютної неперервностi

iнтеграла Лебега маємо iснування такого \delta 1 > 0, що коли | \beta  - \alpha | < \delta 1, тодi
\int \beta 

\alpha 
m(t)dt < \varepsilon 1.

Далi, з доведення теореми 3.1 випливає, що розв’язок задачi Кошi x(t0) = x0 можна
продовжити вправо на вiдрiзок [t0, t0 + \delta 1]. Якщо виявиться, що вiдстань вiд точки (t0 +
\delta 1, x(t0 + \delta 1)) до \Gamma не менша 2\varepsilon 1, то розв’язок можна продовжити вправо ще на \delta 1 i т. д.,
поки вiн не дiйде до точки A1(t1, x1) такої, що \rho (A1,\Gamma ) < 2\epsilon 1. Взявши \varepsilon i \rightarrow 0, i = 1, 2, . . . ,
можемо продовжити розв’язок до точок Ai(ti, xi) так, що t1 < t2 < . . . , i \rho (Ai,\Gamma ) \rightarrow 0,
i \rightarrow \infty . У протилежному випадку розв’язок продовжиться до верхньої основи цилiндра
t = T. Якщо послiдовнiсть \{ tn\} нескiнченна, то tn \rightarrow t\ast . З обмеженостi D випливає,
що послiдовнiсть \{ x(tn)\} має збiжну пiдпослiдовнiсть. Не обмежуючи загальностi, також
вважатимемо, що сама x(tn) \rightarrow x\ast , n \rightarrow \infty . З оцiнки

| x(\beta ) - x(\alpha )| \leq 
\beta \int 

\alpha 

m(t) dt,
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яка виконується за умови, що при t \in [\alpha , \beta ] x(t) лежить у D, випливає рiвномiрна непе-
рервнiсть функцiї x(t) на

\bigl[ 
t0, t

\ast \bigr) , а отже, iснування границi
lim

t\rightarrow t\ast  - 0
x(t) = x\ast .

Очевидно,
\bigl( 
t\ast , x\ast 

\bigr) 
\in \Gamma . Поклавши x

\bigl( 
t\ast 
\bigr) 
= x\ast , отримаємо розв’язок, що досягає межi \Gamma 

цилiндра (0, T )\times D у точцi
\bigl( 
t\ast , x\ast 

\bigr) 
.

Зауваження 3.1. Якщо додатково за умов теореми 3.1 функцiї X(t, x, y) i \varphi (t, s, x)
задовольняють за змiнними x \in D, y \in \BbbR умову лiнiйного зростання

| X(t, x, y)| \leq m(t)(1 + | x| + | y| ), | \varphi (t, s, x)| \leq \mu (t, s)(1 + | x| ), (3.11)

то умову обмеженостi областi D в теоремi 3.2 можна зняти.
Доведення. Дiйсно, обмеженiсть D ми використали при доведеннi iснування скiнчен-

ної границi

lim
n\rightarrow \infty 

x(tn) = x\ast . (3.12)

Але з умови (3.11) для будь-якого t \in 
\bigl[ 
t0, t

\ast \bigr) отримаємо

| x(t)| \leq | x0| + C +

t\int 
t0

m(s)| x(s)| ds+
t\int 

0

\left(  s\int 
0

\mu (s, \tau )| x(\tau )| d\tau 

\right)  ds.

Тодi з узагальненої нерiвностi Гронуолла матимемо

| x(t)| \leq (| x0| + C) exp

\left\{   C2

\left(  t\int 
t0

m(t) dt+

t\int 
t0

s\int 
t0

\mu (s, \tau )

\right)  d\tau ds

\right\}   
на

\bigl[ 
t0, t

\ast \bigr) . Звiдси випливає обмеженiсть x(t), а отже, й iснування скiнченної границi (3.12),
що й доводить твердження.

4. Основнi результати.
Теорема 4.1. Нехай для системи (1.1) з критерiєм якостi (1.2) виконуються умови A)

у випадку обмеженостi областi D, умови Б) у випадку необмеженої областi, а також
умови 1) – 3). Тодi задача (1.1), (1.2) має розв’язок у класi допустимих керувань V, тобто
iснує оптимальне керування u\ast (t), яке мiнiмiзує критерiй якостi (1.2).

Доведення. Покажемо, що для кожного допустимого керування iснує розв’язок задачi
Кошi, що продовжується до виходу на межу цилiндра (0, T )\times D. Для цього перевiримо для
кожного допустимого керування u(t) виконання умов теореми 3.1.

Для обмеженої областi D з неперервностi функцiй f1, f2, f3 за сукупнiстю змiнних
t \in [0, T ], s \in [0, T ], x \in D випливає iснування константи C1 > 0 такої, що

| f1(t, x)| + | f2(t, x)| + | f3(t, s, x)| \leq C1 (4.1)

для всiх t, s \in [0, T ], x \in D. Тодi у нашому випадку \varphi (t, s, x) = f3(t, s, x)u(t), i ми маємо
| \varphi (t, s, x)| \leq C1| u(t)| . А отже,\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| f1(t, x) + f2(t, x)u(t) +

t\int 
0

f3(t, s, x)u(s) ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq C1 + C1| u(t)| + C1

t\int 
0

| u(s)| ds.
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Оскiльки функцiя
\int t

0
| u(s)| ds абсолютно неперервна на [0, T ], то умови (3.3) – (3.5) вико-

нуються.
У випадку необмеженої областi D розглянемо її перетин iз кулею радiуса R iз центром

у нулi. Позначимо його DR, тодi цилiндр (0, T ) \times DR є обмеженою множиною. За умов
лiнiйного зростання для функцiй f1, f2, f3 виконується (4.1) у цилiндрi (0, T )\times DR. Тодi
розв’язок продовжується до межi цилiндра. Якщо пара (t, x(t)) попадає на межу цилiндра
(0, T ) \times D, то твердження встановлено. Якщо ж нi, то x(t) попадає на сферу SR, а тому
пара (t, x(t)) лежить усерединi цилiндра (0, T )\times D; отже, згiдно з теоремою 3.1 розв’язок
продовжимо вправо.

Розглядаючипослiдовнiсть куль BR(0), щовичерпуютьмножину D (за рахунок зростан-
ня радiуса), ми продовжуємо розв’язок до його виходу на межу цилiндра (0, T )\times D.

Взявши в ролi допустимого керування u(t) стале керування, тобто u(t) = u0, отримаємо
для нього вiдповiдну допустиму траєкторiю x(t), що продовжується до межi областi D на
вiдрiзку [0, \tau ], де \tau \leq T. Оскiльки x(t) — неперервна функцiя на [0, \tau ], то вона обмежена.
Тодi згiдно з неперервнiстю функцiї L(t, x, u) за сукупнiстю змiнних маємо

\tau \int 
0

L(t, x(t), u0) dt < \infty . (4.2)

Тому множина допустимих керувань непорожня.
Тому що критерiй якостi — невiд’ємна величина, iснує невiд’ємна нижня межа m

значень J(u), а отже, й послiдовнiсть допустимих керувань \{ un(t), n \geq 1\} таких, що
J(un) \rightarrow m при n \rightarrow \infty монотонно. Тобто

J(un) =

\tau n\int 
0

L(t, xn(t), un(t)) dt \rightarrow m, n \rightarrow \infty ,

де xn(t) — розв’язки системи (1.1), що вiдповiдають керуванням un(t), а \tau n — момент
виходу розв’язку xn(t) на границю D.

Зауважимо, що для достатньо великих n

J(un) \leq m+ 1.

Не втрачаючи загальностi, будемо вважати, що un(s) = 0 для \tau n < s \leq T при \tau n < T.
Тому з використанням умови (3.6) отримаємо

\tau n\int 
0

| un(t)| p dt =
T\int 
0

| un(t)| p dt \leq 
m+ 1

k
,

\| un(\cdot )\| p \leq 
\biggl( 
m+ 1

k

\biggr) 1
p

. (4.3)

Останнє означає, що сiм’я un(\cdot ) слабко компактна у просторi Lp([0, T ]). Тому можна вибра-
ти пiдпослiдовнiсть (яку також позначатимемо через un(t)), що слабко збiгається до гра-
ницi u\ast (t) \in Lp([0, T ]), i таку, що виконується умова (4.3). Тодi за лемоюМазура знайдеться
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опукла комбiнацiя bk(t) =
\sum n(k)

i=1
\alpha i(k)ui(t) елементiв ui(t) \in U

\biggl( 
\alpha i \geq 0,

\sum n(k)

i=1
\alpha i = 1

\biggr) 
,

що в Lp маємо bk \rightarrow u\ast , k \rightarrow \infty .

Отже, iснує майже всюди збiжна на [0, T ] за мiрою Лебега пiдпослiдовнiсть bkl така,
що bkl(t) \rightarrow u\ast (t), l \rightarrow \infty , для майже всiх t. Оскiльки U — опукла та замкнена множина,
то

\sum n(k)

i=1
\alpha iui(t) \in U майже для всiх t.

Для розв’язкiв xn(t) маємо iнтегральне зображення

xn(t) = x0 +

t\int 
0

\left[  f1(t, xn(t)) + f2(t, xn(t))un(t) +

s\int 
0

f3(s, \sigma , xn(s))u(\sigma ) d\sigma 

\right]  dt.
Покажемо рiвномiрну обмеженiсть розв’язкiв xn при t \in [0, \tau n]. Для обмеженої областi це
твердження очевидне.

Доведемо рiвномiрну обмеженiсть у випадку необмеженої областi. Для цього скори-
стаємось умовами лiнiйного зростання (2.1) – (2.3). При q =

p

p - 1
маємо

| xn(t)| q =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| x0 +
t\int 

0

f1(s, xn(s)) ds+

t\int 
0

f2(s, xn(s))un(s) ds+

t\int 
0

s\int 
0

f3(s, \sigma , xn(s))un(\sigma ) d\sigma ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
q

\leq 4q - 1

\left(  | x0| q +

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t\int 

0

f1(s, xn(s)) ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
q

+

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t\int 

0

f2(s, xn(s))un(s) ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
q

+

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t\int 

0

s\int 
0

f3(s, \sigma , xn(s))un(\sigma ) d\sigma ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
q\right)  

\leq 4q - 1

\left(  | x0| q + Cq

\left(  T +

t\int 
0

| xn(s)| ds

\right)  q

+ Cq

\left(  t\int 
0

un(s)ds+

t\int 
0

| xn(s)| | un(s)| ds

\right)  q\right)  

+ Cq

\left(  T +

t\int 
0

| xn(s)| ds

\right)  q\left(  t\int 
0

| un(s)| ds

\right)  q

\leq 4q - 1

\left(  | x0| q + Cq

\left(  T +

t\int 
0

xn(s)ds

\right)  q\left(  1 +

\left(  t\int 
0

| un(s)| ds

\right)  q\right)  

+ Cq

\left(  t\int 
0

un(s)ds+

t\int 
0

| xn(s)| | un(s)| ds

\right)  q\right)  .

Для оцiнки другого i третього iнтегралiв у останнiй нерiвностi використаємо нерiвнiсть
Гельдера, а також врахуємо, що \tau n \leq T. У результатi матимемо
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| xn(t)| q \leq 8q - 1Cq

\left(  | x0| q21 - q

Cq
+

\left(  T q +

\left(  t\int 
0

| xn(s)| ds

\right)  q\right)  \left(  1 +

\left(  T\int 
0

| un(s)| ds

\right)  q\right)  

+

\left(  t\int 
0

| un(s)| ds

\right)  q

+

\left(  t\int 
0

| xn(s)| | un(s)| ds

\right)  q\right)  

\leq 8q - 1Cq

\left(  | x0| q21 - q

Cq
+ T q

\left(  1 +

\left(  T\int 
0

| un(s)| ds

\right)  q\right)  

+

\left(  t\int 
0

| xn(s)| ds

\right)  q\left(  1 +

T\int 
0

| un(s)| ds

\right)  q\right)  

+

\left(  t\int 
0

| un(s)| ds

\right)  q

+

\left(  t\int 
0

| xn(s)| | un(s)| ds

\right)  q

\leq 8q - 1Cq

\biggl( 
| x0| q21 - q

Cq
+ T q

\bigl( 
1 + T\| un\| qp

\bigr) \biggr) 

+ T
q
p
\bigl( 
1 + T\| un\| qp

\bigr) t\int 
0

| xn(s)| q ds+ T\| un\| qp + \| un\| qp

t\int 
0

| xn(s)| q ds.

Позначимо

M1 = 8q - 1Cq

\biggl( 
| x0| q21 - q

Cq

\biggr) 
+ T q + (T q + 1)T\| un\| qp,

M2 = 8q - 1Cq
\Bigl( 
T

q
p
\bigl( 
1 + T\| un\| qp

\bigr) 
+ \| un\| qp

\Bigr) 
.

Тодi за аналогом леми Гроноулла – Беллмана одержуємо

| xn(t)| q = M1e
M2T = Aq < \infty (4.4)

при t \in [0, \tau n]. Оскiльки розв’язки xn при t \in [0, \tau n] рiвномiрно обмеженi, то | xn(\tau n)| \leq A.
Тому функцiї xn можна продовжити на весь вiдрiзок [0, T ] таким чином:

yn(t) =

\left\{   xn(t) при t \in [0, \tau n),

xn(\tau n) при t \in [\tau n, T ].
(4.5)

Доведемо рiвностепеневу неперервнiсть функцiй yn(t) при t \in [0, T ]. Для будь-яких
s1, s2 \in [0, \tau n] таких, що s1 < s2, маємо
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| yn(s1) - yn(s2)| = | xn(s1) - xn(s2)| 

=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
s2\int 

s1

\left(  f1(t, xn(t)) + f2(t, xn(t))un(t) +

t\int 
0

f3(t, s, xn(t))un(s) ds

\right)  dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
Розглянемо два випадки, коли область D обмежена й необмежена.
Якщо область D обмежена, то, очевидно, iснує константа C2 > 0 така,що | f1(t, xn(t))| +

| f2(t, xn(t))| + | f3(t, s, xn(t))| \leq C2. Тодi, використовуючи нерiвнiсть Гельдера для iнтеграла
s2\int 

s1

(f1(t, xn(t)) + f2(t, xn(t))un(t) +

t\int 
0

f3(t, s, xn(t))un(s) ds) dt, (4.6)

отримаємо оцiнку

C2(s2  - s1) + C2(s2  - s1)
1
q

\left(  T\int 
0

| un(t)| p dt

\right)  
1
p

+ C2(s2  - s1)T

\left(  T\int 
0

| un(t)| p dt

\right)  
1
p

,

де 1

p
+

1

q
= 1, яка й означає рiвностепеневу неперервнiсть.

Якщо ж область необмежена, то, використовуючи умови (2.1) – (2.3), оцiнимо (4.6)
таким чином:

s2\int 
s1

\left(  C3(1 + | xn(t)| ) + C3(1 + | xn(t)| )| un(t)| +
t\int 

0

C3(1 + | xn(t)| )| un(s)| ds

\right)  dt

\leq C3(1 +A)
\Bigl( 
(s2  - s1) + (s2  - s1)

1
q \| un\| p + (s2  - s1)\| un\| p

\Bigr) 
.

Вочевидь, що з наведених вище оцiнок маємо yn(s1)  - yn(s2) \rightarrow 0 при | s2  - s1| \rightarrow 0.
При s1 < \tau n < s2 < T одержуємо

| yn(s1) - yn(\tau n)| = | xn(s1) - xn(\tau n)| 

=

\tau n\int 
s1

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| f1(t, xn(t)) + f2(t, xn(t))un(t) +

t\int 
0

f3(t, s, xn(t))un(s) ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| dt.
Якщо область обмежена, то, аналогiчно з попереднiм,

\tau n\int 
s1

\left(  f1(t, xn(t)) + f2(t, xn(t))un(t) +

t\int 
0

f3(t, s, xn(t))un(s)ds

\right)  dt (4.7)

оцiнюють величиною

C4(\tau n  - s1) + C4(\tau n  - s1)
1
q \| un\| p + C4(\tau n  - s1)T\| un\| p

\leq C4(s2  - s1) + C4(s2  - s1)
1
q \| un\| p + C4(s2  - s1)\| un\| p.
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Оцiнимо (4.7) у випадку необмеженої областi. Аналогiчно з попереднiм маємо

\tau n\int 
s1

C5(1 + | xn(t)| ) +
\tau n\int 

s1

C5

\left(  1 + | xn(t)| | un(t)| dt+
\tau n\int 

s1

t\int 
0

C5(1 + | xn(t)| )| un(s)| ds

\right)  
\leq C5(1 +A)

\Bigl( 
(\tau n  - s1) + (\tau n  - s1)

1
q \| un\| p + (\tau n  - s1)\| un\| p

\Bigr) 
\leq C5(1 +A)

\Bigl( 
(s2  - s1) + (s2  - s1)

1
q \| un\| p + (s2  - s1)\| un\| p

\Bigr) 
.

Тодi
| yn(s1) - yn(\tau n)| = | xn(s1) - xn(\tau n)| \rightarrow 0 при | s2  - s1| \rightarrow 0.

Якщо \tau n < s1 < s2 < T, то

| yn(s1) - yn(s2)| = | xn(\tau n) - xn(\tau n)| .

Таким чином, встановлено рiвностепеневу неперервнiсть функцiй yn(t) при t \in [0, T ].

Отже, можна видiлити пiдпослiдовнiсть послiдовностi \{ yn(t), n \geq 1\} (яку також позна-
чимо через \{ yn(t), n \geq 1\} ) таку, що yn(t) \rightarrow y\ast (t), n \rightarrow \infty , рiвномiрно на вiдрiзку [0, T ].

Позначимо через \tau \ast момент першого виходу y\ast (t) на границю \partial D, тобто

\tau \ast =

\left\{   inf\{ t \in [0, T ], y\ast (t) \in \partial D\} ,

T, якщо y\ast (t) \in D \forall t \in [0, T ],

\tau n =

\left\{   inf\{ t \in [0, T ] : yn(t) \in \partial D\} ,

T, якщо yn(t) \in D \forall t \in [0, T ].

Покажемо, що \tau \ast \leq limn\rightarrow \infty inf \tau n. Припустимо, що це не так. Тодi \tau \ast > limn\rightarrow \infty inf \tau n =
\tau . За теоремою про характеризацiю нижньої границi для довiльного \delta > 0 множина \{ n \in 
\BbbN | \tau n < \tau + \delta \} є нескiнченною. Виберемо \delta таким чином, щоб \tau + \delta < \tau \ast . Тодi iснує така
пiдпослiдовнiсть \{ \tau nk

, nk \geq 1\} послiдовностi \{ \tau n, n \geq 1\} , що iснує N \in \BbbN таке, що для
будь-якого nk \geq N \tau nk

< \tau + \delta .

Виберемо момент t0 такий, що t0 \in 
\bigl( 
\tau + \delta , \tau \ast 

\bigr) 
, тодi ynk

(t0) = xnk
(\tau nk

) \in \partial D. Iз
рiвномiрної збiжностi yn(t) до y\ast (t) на [0, T ] маємо, що для будь-якого \varepsilon > 0 iснує N \in \BbbN 
таке, що nk \geq N i виконується нерiвнiсть | y\ast (t) - ynk

(t)| < \varepsilon .

Проте, якщо вибрати \varepsilon так, щоб 0 < \varepsilon < inf
\upsilon \in \partial D

\bigm| \bigm| y\ast (t0)  - \upsilon 
\bigm| \bigm| , тодi для фiксованого t0 \in \bigl( 

\tau + \delta , \tau \ast 
\bigr) 

| y\ast (t0) - ynk
(t)| = | y\ast (t0) - xnk

(\tau nk
)| > \varepsilon .

Ми отримали суперечнiсть. Отже,

\tau \ast \leq lim
n\rightarrow \infty 

inf \tau n.

Покладемо x\ast (t) = y\ast (t) при t \in 
\bigl[ 
0, \tau \ast 

\bigr] 
. Покажемо, що x\ast (t) є розв’язком системи (1.1)

при t \in 
\bigl[ 
0, \tau \ast 

\bigr] 
, що вiдповiдає керуванню u\ast (t).
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Розглянемо два випадки:
1) Нехай \tau \ast \leq limn\rightarrow \infty inf \tau n. Тодi за теоремою про характеризацiю нижньої границi

множина
\bigl\{ 
n \in \BbbN | \tau n < \tau \ast 

\bigr\} 
скiнченна. Тому можна вибрати пiдпослiдовнiсть \{ tk, k > 0\} 

послiдовностi \{ tn, n > 0\} таку, що для довiльного k > 0 виконується \tau k > \tau \ast . Тодi для
будь-якого t \in 

\bigl[ 
0, \tau \ast 

\bigr] 
маємо yk(t) = xk(t) i y\ast (t) = x\ast (t). Оскiльки для кожного t \in [0, T ]

yk(t) \rightarrow y\ast (t) при k \rightarrow \infty рiвномiрно, то xk(t) \rightarrow x\ast (t) при k \rightarrow \infty рiвномiрно по t \in [0, \tau ].
Тому що xk(t) — розв’язок системи (1.1), маємо

xk(t) = x0 +

t\int 
0

\left(  f1(s, xk(s)) + f2(s, xk(s))uk(s) +

s\int 
0

f3(s, \sigma , xk(s))uk(\sigma )d\sigma 

\right)  ds

= x0 +

t\int 
0

\left(  f1(s, xk(s)) + f2(s, xk(s))uk(s) +

s\int 
0

f3(s, \sigma , xk(s))uk(\sigma )d\sigma 

\right)  ds

+

t\int 
0

f2(s, xk(s))u
\ast (s)ds - 

t\int 
0

f2(s, x
\ast (s))uk(s)ds

+

t\int 
0

f2(s, x
\ast (s))uk(s)ds+

t\int 
0

f2(s, x
\ast (s))uk(s)ds

 - 
t\int 

0

f2(s, x
\ast (s))uk(s)ds+

t\int 
0

s\int 
0

f3(s, \sigma , xk(s))u
\ast (\sigma )d\sigma ds

 - 
t\int 

0

s\int 
0

f3(s, \sigma , xk(s))u
\ast (\sigma )d\sigma ds+

t\int 
0

s\int 
0

f3(s, \sigma , x
\ast (s))uk(\sigma ) d\sigma ds

 - 
t\int 

0

s\int 
0

f3(s, \sigma , x
\ast (s))uk(\sigma )d\sigma ds+

t\int 
0

s\int 
0

f3(s, \sigma , x
\ast (s))u\ast (\sigma ) d\sigma ds

 - 
t\int 

0

s\int 
0

f3(s, \sigma , x
\ast (s))u\ast (\sigma ) d\sigma ds

= x0 +

t\int 
0

\left(  f1(s, xk(s)) + f2(s, xk(s))u
\ast (s) +

s\int 
0

f3(s, \sigma , xk(s))u
\ast (\sigma ) d\sigma 

\right)  ds

+

t\int 
0

(f2(s, xk(s)) - f2(s, x
\ast (s)))(uk(s) - u\ast (s))ds

+

t\int 
0

s\int 
0

(f3(s, \sigma , xk(s) - f3(s, \sigma , x
\ast (s))(uk(\sigma ) - u\ast (\sigma ))d\sigma )ds
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+

t\int 
0

f2(s, x
\ast (s))(uk(s) - u\ast (s))ds+

t\int 
0

s\int 
0

(f3(s, \sigma , x
\ast (s))(uk(\sigma ) - u\ast (\sigma ))d\sigma )ds.

Для другого iнтеграла в останнiй рiвностi iз застосуванням нерiвностi Гельдера мати-
мемо оцiнку\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

t\int 
0

(f2(s, xk(s)) - f2(s, x
\ast (s)))(uk(s) - u\ast (s))

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| ds

\leq 

\left(  t\int 
0

| f2(s, xk(s)) - f2(s, x
\ast (s))| qds

\right)  
1
q
\left(  t\int 

0

| uk(s) - u\ast (s)| p ds

\right)  
1
p

= \| uk(t) - u\ast (t)\| p

\left(  t\int 
0

| f2(s, xk(s)) - f2(s, x
\ast (s))| q

\right)  
1
q

.

Аналогiчнi мiркування проведемо i для третього iнтеграла:\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t\int 

0

s\int 
0

(f3(s, \sigma , xk(s) - f3(s, \sigma , x
\ast (s))))(uk(\sigma ) - u\ast (\sigma ))d\sigma ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\left(  t\int 
0

s\int 
0

| f3(s, \sigma , xk(s)) - f3(s, \sigma , x
\ast (s))q| d\sigma ds

\right)  
1
q
\left(  t\int 

0

s\int 
0

| uk(\sigma ) - u\ast (\sigma )| p d\sigma ds

\right)  
1
p

= \| uk(t) - u\ast (t)\| p

\left(  t\int 
0

s\int 
0

| f3(s, \sigma , xk(s)) - f3(s, \sigma , x
\ast (s))| q

\right)  d\sigma ds.

У випадку обмеженої областi використаємо (4.1) i одержимо | f3(t, s, xk(t))| \leq C6, де
стала C6 > 0.

Якщо ж область необмежена, то використовуємо умови (2.2), (2.3); отримуємо

| f2(t, xk(t))| \leq C6(1 + | xk(t)| ) \leq C6(1 +A),

| f3(t, s, xk(t))| \leq C6(1 + | xk(t)| ) \leq C6(1 +A).

Отже, функцiї f2(t, xk(t)) i f3(t, s, xk(t)) iнтегровнi на [0, \tau k], а тому на
\bigl[ 
0, \tau \ast 

\bigr] 
. З рiв-

номiрної збiжностi xk(t) до x\ast (t) на
\bigl[ 
0, \tau \ast 

\bigr] 
випливає аналогiчна оцiнка й для x\ast (t). Тодi

згiдно з теоремою Лебега другий i третiй iнтеграли прямують до нуля при k \rightarrow \infty .

Четвертий iнтеграл
\int t

0
f2
\bigl( 
s, x\ast (s)

\bigr) \bigl( 
uk(s)  - u\ast (s)

\bigr) 
ds прямує до нуля згiдно зi слабкою

збiжнiстю uk(t) до u\ast (t) при k \rightarrow \infty .
Прямування останнього iнтеграла до нуля випливає з теореми Лебега про мажоровану

збiжнiсть iз використанням означення слабкої збiжностi uk(t) до u\ast (t) при k \rightarrow \infty .
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Аналогiчними мiркуваннями отримуємо, що згiдно з теоремоюЛебега перший iнтеграл
прямує до виразу

t\int 
0

\left(  f1(s, x\ast (s)) + f2(s, x
\ast (s))u\ast (s) +

s\int 
0

f3(s, \sigma , x
\ast (s))u\ast (\sigma ) d\sigma 

\right)  ds

при k \rightarrow \infty . Отже, граничним переходом при k \rightarrow \infty одержуємо

x\ast (t) = x0 +

t\int 
0

\left(  f1(s, x\ast (s)) + f2(s, x
\ast (s))u\ast (s) +

s\int 
0

f3(s, \sigma , x
\ast (s))u\ast (\sigma ) d\sigma 

\right)  ds (4.8)

для будь-якого t \in 
\bigl[ 
0, \tau \ast 

\bigr] 
.

2) Нехай тепер \tau \ast = limn\rightarrow \infty inf \tau n. Виберемо довiльний момент t2 такий, що t2 <
\tau \ast . Тодi за теоремою про характеризацiю нижньої границi множина \{ n \in \BbbN | \tau n < t2\} 
скiнченна, а на промiжку

\bigl( 
t2, \tau 

\ast \bigr) може лежати нескiнченна кiлькiсть \tau n. У цьому випадку
виберемо пiдпослiдовнiсть \{ \tau k, k > 0\} послiдовностi \{ \tau k, k > 0\} таку, що для будь-
якого k > 0 : \tau k \in 

\bigl( 
t2, \tau 

\ast \bigr) . Тодi для кожного t \in [0, t2] маємо yk(t) = xk(t) i y\ast (t) =
x\ast (t). Аналогiчно з попереднiм пунктом маємо, що (4.8) виконується для будь-якого t \in 
[0, t2]. Доведемо виконання рiвностi (4.8) для довiльного t \in 

\bigl[ 
0, \tau \ast 

\bigr] 
. Оскiльки t2 вибрано

довiльним чином, то для кожного t \in 
\bigl[ 
0, \tau \ast 

\bigr) 
рiвнiсть (4.8) виконується.

Залишилося показати виконання рiвностi (4.8) у точцi \tau \ast , а саме:

x\ast (\tau \ast ) = x0 +

\tau \ast \int 
0

\left(  f1(s, x\ast (s)) + f2(s, x
\ast (s))u\ast (s) +

s\int 
0

f3(s, \sigma , x
\ast (s))u\ast (\sigma ) d\sigma 

\right)  ds.

Виберемо послiдовнiсть tn \in 
\bigl[ 
0, \tau \ast 

\bigr] 
таку, що tn \rightarrow \tau \ast . Тодi x\ast (\tau n) \rightarrow x\ast 

\bigl( 
\tau \ast 
\bigr) 
, того що x\ast (t)

є неперервною на
\bigl[ 
0, \tau \ast 

\bigr] 
.

Далi маємо\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\tau \ast \int 
0

\left(  f1(s, x\ast (s)) + f2(s, x
\ast (s))u\ast (s) +

s\int 
0

f3(s, \sigma , x
\ast (s))u\ast (\sigma ) d\sigma 

\right)  ds

 - 
tn\int 
0

(f1(s, x
\ast (s)) + f2(s, x

\ast (s))u\ast (s) +

s\int 
0

f3(s, \sigma , x
\ast (s))u\ast (\sigma )d\sigma ) ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\tau \ast \int 

tn

\left(  f1(s, x\ast (s)) + f2(s, x
\ast (s))u\ast (s) +

s\int 
0

f3(s, \sigma , x
\ast (s))u\ast (\sigma )d\sigma 

\right)  ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
Оцiнимо останнiй вираз у випадку обмеженої областi. Очевидно, що iснує стала C7 > 0

така, що
| f1(s, x\ast (s))| + | f2(s, x\ast (s))| + | f3(t, s, x\ast (s))| \leq C7.

Звiдки випливає оцiнка

C7(\tau 
\ast  - tn) + C7(\tau 

\ast  - tn)
1
q \| u\ast \| p + C7(\tau 

\ast  - tn)T\| u\ast | p \rightarrow 0

при n \rightarrow \infty .
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Увипадку необмеженої областi, використовуючи умови (2.1) – (2.3) i (4.4), маємо оцiнку

C(1 +A)| \tau \ast  - tn| + C(1 +A)| \tau \ast  - tn| 
1
q \| u\ast \| p + C(1 +A)| \tau \ast  - tn| T\| u\ast \| p \rightarrow 0

при n \rightarrow \infty .
Отже,

x\ast (tn) = x0 +

tn\int 
0

\left(  f1(s, x\ast (s)) + f2(s, x
\ast (s))u\ast (s) +

s\int 
0

f3(s, \sigma , x
\ast (s))u\ast (\sigma ) d\sigma 

\right)  ds

\rightarrow x0 +

\tau \ast \int 
0

\left(  f1(s, x\ast (s)) + f2(s, x
\ast (s))u\ast (s) +

s\int 
0

f3(s, \sigma , x
\ast (s))u\ast (\sigma )d\sigma 

\right)  ds = x\ast (\tau \ast )

при n \rightarrow \infty .
А тому x\ast (t) — розв’язок системи (1.1), що вiдповiдає керуванню u\ast (t) при t \in 

\bigl[ 
0, \tau \ast 

\bigr] 
.

Залишилося довести, що керування u\ast (t) є оптимальним. Знову розглянемо 2 випадки:
1) y\ast 

\bigl( 
\tau \ast 
\bigr) 
\in \partial D.

a) Нехай \tau \ast < limn\rightarrow \infty inf \tau n. Виберемо довiльний момент t2 такий, що t2 < \tau n. Тодi
за теоремою про характеризацiю нижньої границi множина

\bigl\{ 
n \in \BbbN | \tau n < \tau \ast 

\bigr\} 
скiнченна.

Тому можна вибрати пiдпослiдовнiсть \{ \tau k, k \geq 0\} послiдовностi \{ \tau nk
, nk \geq 0\} таку, що для

будь-якого k > 0 виконується \tau k > \tau \ast . Тодi для кожного t \in 
\bigl[ 
0, \tau \ast 

\bigr] 
маємо yk(t) = xk(t)

i y\ast (t) = x\ast (t). Покажемо iнтегровнiсть функцiї L
\bigl( 
t, x\ast (t), uk(t)

\bigr) 
для будь-якого k > 0 на

вiдрiзку
\bigl[ 
0, \tau \ast 

\bigr] 
.

Використовуючи нерiвнiсть

| L(t, x\ast (t), uk(t)) - L(t, x\ast (t), u0)| \leq sup
\lambda \in (0,1)

| Lu(t, x
\ast (t), u0) + \lambda (uk(t) - u0)| | uk(t) - u0| ,

де u0 = const, u0 \in U, отримуємо

| L(t, x\ast (t), uk(t))| \leq | L(t, x\ast (t), u0)| + | L(t, x\ast (t), uk(t)) - L(t, x\ast (t), u0)| 

\leq | L(t, x\ast (t), u0)| + sup
\lambda \in (0,1)

| Lu(t, x
\ast (t), u0 + \lambda (uk(t) - u0))| | uk(t) - u0| .

Застосовуючи умову (2.5), одержуємо

| L(t, x\ast (t), uk(t))| \leq | L(t, x\ast (t), u0)| +K(1 + | x\ast (t)| )\alpha 

+ sup
\lambda \in (0,1)

| u0 + \lambda (uk(t) - u0)| p - 1| uk(t) - u0| 

\leq | L(t, x\ast (t), u0)| +K| uk(t) - u0| +K| x\ast (t)| \alpha | uk(t) - u0| 

+K sup
\lambda \in (0,1)

| u0 + \lambda (uk(t) - u0)| p - 1| uk(t) - u0| .

Перший доданок iнтегрований на вiдрiзку
\bigl[ 
0, \tau \ast 

\bigr] 
вiдповiдно до (4.2). Покажемо iнте-

гровнiсть другого та третього доданкiв. Застосовуючи нерiвнiсть (4.4), маємо
\tau \ast \int 
0

\bigl[ 
K| uk(t) - u0| +K| x\ast (t)| \alpha | uk(t) - u0| 

\bigr] 
dt
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= K

\tau \ast \int 
0

(1 + | x\ast (t)| \alpha )| uk(t) - u0| 

\leq 

\left(  \tau \ast \int 
0

(1 + | x\ast (t)| \alpha )q
\right)  

1
q
\left(  \tau \ast \int 

0

| uk(t) - u0| p
\right)  

1
p

\leq K(1 +A\alpha )\tau 
1
q \| uk(t) - u0\| p < \infty .

Покажемо iнтегровнiсть останнього доданка. Нехай Ak =
\bigl\{ 
t \in 

\bigl[ 
0, \tau \ast 

\bigr] 
: uk(t) = u0

\bigr\} 
.

Тодi

\tau \ast \int 
0

sup
\lambda \in (0,1)

| u0 + \lambda (uk(t) - u0)| p - 1| uk(t) - u0| dt

\leq 
\tau \ast \int 
0

(| u0| + | uk(t) - u0| )p - 1| uk(t) - u0| dt

\leq 
\int 
Ak

(| u0| + | uk(t) - u0| )p - 1| uk(t) - u0| dt

+

\int 
[0,\tau \ast ]\setminus Ak

(| u0| + | uk(t) - u0| )p - 1| uk(t) - u0| dt.

Перший iнтеграл дорiвнює нулю. Помноживши та подiливши пiдiнтегральну функцiю
у другому iнтегралi на | u0| + | uk(t) - u0| , одержимо

\tau \ast \int 
0

sup
\lambda \in (0,1)

| u0 + \lambda (uk(t) - u0)| p - 1| uk(t) - u0| dt

\leq 
\int 

[0,\tau \ast ]\setminus Ak

(| u0| + | uk(t) - u0| )p

| u0| + | uk(t) - u0| 
| uk(t) - u0| dt

\leq 2p - 1

\int 
[0,\tau \ast ]\setminus Ak

(| u0| p + | uk(t) - u0| )p

uk(t) - u0
| uk(t) - u0| dt

\leq 2p - 1

\tau \ast \int 
0

(| u0| p + | uk(t) - u0| )p dt < \infty .

Отже, функцiя L
\bigl( 
t, x\ast (t), uk(t)

\bigr) 
iнтегровна на вiдрiзку

\bigl[ 
0, \tau \ast 

\bigr] 
для будь-якого k > 0.
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Нехай \chi R(t) — характеристична функцiя множини
\bigl\{ 
t :

\bigm| \bigm| u\ast (t)\bigm| \bigm| < R
\bigr\} 
. Оскiльки

L(t, x, \cdot ) опукла, то виконується нерiвнiсть

L(t, x\ast (t), \upsilon (t))\chi R(t)

\geq L(t, x\ast (t), u\ast (t))\chi R(t) + (\upsilon (t) - u\ast (t))L\upsilon (t, x
\ast (t), u\ast (t))\chi R(t)

для будь-якого \upsilon (t) \in V, t \in 
\bigl[ 
0, \tau \ast 

\bigr] 
.

Покладемо \upsilon (t) = uk(t), тодi

\tau \ast \int 
0

L(t, x\ast (t), uk(t))dt\chi R(t) \geq 
\tau \ast \int 
0

L(t, x\ast (t), u\ast (t))\chi R(t) dt

+

\tau \ast \int 
0

(uk(t) - u\ast (t))Lu(t, x
\ast (t), u\ast (t))\chi R(t) dt. (4.9)

З умови (2.5) маємо

| L(t, x\ast (t), u\ast (t))| \chi R(t)

\leq K
\bigl( 
1 + | u\ast (t)| p - 1 + | x\ast (t)| \alpha 

\bigr) 
\leq K

\bigl( 
1 +Rp - 1 +A\alpha 

\bigr) 
.

Отже, другий iнтеграл у нерiвностi (4.9) прямує до 0 при k \rightarrow \infty . Останнє випливає зi
слабкої збiжностi uk(t) до u\ast (t). Тому

lim
k\rightarrow \infty 

inf

\tau \ast \int 
0

L(t, x\ast (t), uk(t))\chi R(t) dt \geq 
\tau \ast \int 
0

L(t, x\ast (t), u\ast (t))\chi R(t) dt.

Оскiльки L(t, x, u) \geq 0, \chi R(t) \leq 1 i \chi R(t) \rightarrow 1 при R \rightarrow \infty , то

\tau \ast \int 
0

L(t, x\ast (t), u\ast (t))dt \leq lim
k\rightarrow \infty 

inf

\tau \ast \int 
0

L(t, x\ast (t), uk(t))dt. (4.10)

Розглянемо також величину\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\tau \ast \int 
0

[L(t, xk(t), uk(t)) - L(t, x\ast (t), uk(t))]dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
Використавши рiвнiсть

L(t, xk(t), uk(t)) - L(t, x\ast (t), uk(t)) =

1\int 
0

Lx(t, x\lambda k
(t), uk(t))(xk(t) - x\ast (t))d\lambda ,
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де x\lambda k
(t) = x\ast (t)+\lambda (xk(t) - x\ast (t)), а також застосовуючи нерiвностi (2.5), (4.4) i нерiвнiсть

Гельдера, отримуємо\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\tau \ast \int 
0

[L(t, xk(t), uk(t)) - L(t, x\ast (t), uk(t))] dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\tau \ast \int 
0

1\int 
0

Lx(t, x\lambda k
(t), uk(t))(xk(t) - x\ast (t))d\lambda dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

\tau \ast \int 
0

| xk(t) - x\ast (t)| K
\bigl( 
1 + | uk(t)| p - 1 + | xk(t) + x\ast (t)| \alpha 

\bigr) 
dt

\leq K

\tau \ast \int 
0

| xk(t) - x\ast (t)| (1 + (2A)\alpha )dt+K

\tau \ast \int 
0

| xk(t) - x\ast (t)| | uk(t)| p - 1 dt

\leq K

\tau \ast \int 
0

| xk(t) - x\ast (t)| (1 + (2A)\alpha )dt+K\| uk\| 
p
q
p

\left(  \tau \ast \int 
0

| xk(t) - x\ast (t)| p dt

\right)  
1
p

.

Отже, далi маємо
\tau \ast \int 
0

[L(t, xk(t), uk(t)) - L(t, x\ast (t), uk(t))] dt

\leq K

\tau \ast \int 
0

| xk(t) - x\ast (t)| (1 + (2A)\alpha )dt

+K\| uk\| 
p
q
p

\left(  \tau \ast \int 
0

| xk(t) - x\ast (t)| p dt

\right)  
1
p

. (4.11)

Оскiльки \| uk\| p обмежена, то права частина (4.11) прямує до 0 при k \rightarrow \infty . Одержуємо
\tau \ast \int 
0

[L(t, xk(t), uk(t))] dt =

\tau \ast \int 
0

[L(t, xk(t), uk(t)) - L(t, x\ast (t), uk(t))] dt

+

\tau \ast \int 
0

[L(t, x\ast (t), uk(t)) - L(t, x\ast (t), u\ast (t))] dt

+

\tau \ast \int 
0

L(t, x\ast (t), u\ast (t))dt.
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Перейдемо до нижньої границi при k \rightarrow \infty в останнiй рiвностi:

lim
k\rightarrow \infty 

\tau \ast \int 
0

L(t, xk(t), uk(t)) dt = lim
k\rightarrow \infty 

\tau \ast \int 
0

[L(t, xk(t), uk(t)) - L(t, x\ast (t), uk(t))] dt

+ lim
k\rightarrow \infty 

\tau \ast \int 
0

[L(t, x\ast (t), uk(t)) - L(t, x\ast (t), u\ast (t))] dt

+

\tau \ast \int 
0

L(t, x\ast (t), u\ast (t))dt.

Перша границя у правiй частинi цiєї рiвностi прямує до 0 при k \rightarrow \infty згiдно з (4.11). А
згiдно з нерiвнiстю (4.10) друга границя невiд’ємна. Тодi маємо

m = lim
k\rightarrow \infty 

inf

\tau k\int 
0

L(t, xk(t), uk(t)) dt

\geq lim
k\rightarrow \infty 

inf

\tau \ast \int 
0

L(t, xk(t), uk(t)) dt

\geq 
\tau \ast \int 
0

L(t, x\ast (t), u\ast (t))dt.

Звiдси
J
\bigl( 
u\ast 

\bigr) 
= m.

Отже, u\ast (t) — оптимальне керування.
б) Нехай тепер \tau \ast = limn\rightarrow \infty inf \tau n. Виберемо довiльний момент t2 такий, що t2 <

\tau \ast . Тодi за теоремою про характеризацiю нижньої границi множина \{ n \in \BbbN | \tau n < \tau 2\} 
скiнченна, а на промiжку

\bigl( 
t2, \tau 

\ast \bigr) може лежати нескiнченна кiлькiсть \tau n. У цьому випадку
виберемо пiдпослiдовнiсть \{ \tau k, k > 0\} послiдовностi \{ \tau n, n > 0\} таку, що для довiльного
k > 0 виконується \tau k \in 

\bigl( 
t2, \tau 

\ast \bigr) . Тодi для кожного t \in [0, t2] маємо yk(t) = xk(t) i y\ast (t) =
x\ast (t).

Нехай знову \chi R(t) — характеристична функцiя множини
\bigl\{ 
t :

\bigm| \bigm| u\ast (t)\bigm| \bigm| < R
\bigr\} 
. Оскiльки

L(t, x, \cdot ) опукла, то виконується нерiвнiсть

L(t, x\ast (t), \upsilon (t))\chi R(t)

\geq L(t, x\ast (t), u\ast (t))\chi R(t) + (\upsilon (t) - u\ast (t))L\upsilon (t, x
\ast (t), u\ast (t))\chi R(t)

для кожного \upsilon (t) \in V, t \in 
\bigl[ 
0, \tau \ast 

\bigr] 
.
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Покладемо \upsilon (t) = uk(t). Тодi
t2\int 
0

L(t, x\ast (t), uk(t))\chi R(t) dt \geq 
t2\int 
0

L(t, x\ast (t), u\ast (t))\chi R(t) dt

+

t2\int 
0

(uk(t) - u\ast (t))Lu(t, x
\ast (t), u\ast (t))\chi R(t) dt. (4.12)

З умови (2.5) маємо

| Lu(t, x
\ast (t), u\ast (t))| \chi R(t)

\leq K
\Bigl( 
1 + | u\ast (t)| p - 1 + | x\ast (t)| \alpha 

\Bigr) 
\leq K

\bigl( 
1 +Rp - 1 +A\alpha 

\bigr) 
.

Отже, другий iнтеграл у нерiвностi (4.12) прямує до нуля при k \rightarrow \infty . Останнє випливає
зi слабкої збiжностi uk(t) до u\ast (t). Тому

lim
k\rightarrow \infty 

inf

t2\int 
0

L(t, x\ast (t), uk(t))\chi R(t) dt \geq 
t2\int 
0

L(t, x\ast (t), u\ast (t))\chi R(t) dt.

Оскiльки L(t, x, u) \geq 0, \chi R(t) \leq 1 i \chi R(t) \rightarrow 1 при R \rightarrow \infty , то

lim
k\rightarrow \infty 

inf

t2\int 
0

L(t, x\ast (t), uk(t))dt \geq 
t2\int 
0

L(t, x\ast (t), u\ast (t))dt. (4.13)

Розглянемо також величину\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t2\int 
0

[L(t, xk(t), uk(t)) - L(t, x\ast (t), uk(t))]dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .
Використовуючи рiвнiсть

L(t, xk(t), uk(t)) - L(t, x\ast (t), uk(t)) =

1\int 
0

Lx(t, x\lambda k
(t), uk(t))(xk(t) - x\ast (t))d\lambda ,

де x\lambda k
(t) = x\ast (t) + \lambda 

\bigl( 
xk(t)  - x\ast (t)

\bigr) 
, а також застосовуючи спiввiдношення (2.5), (4.4) i

нерiвнiсть Гельдера, отримуємо\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t2\int 
0

[L(t, xk(t), uk(t)) - L(t, x\ast (t), uk(t))]dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
=

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t2\int 
0

1\int 
0

Lx(t, x\lambda k
(t), uk(t))(xk(t) - x\ast (t))d\lambda dt

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
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\leq 
t2\int 
0

| xk(t) - x\ast (t)| K
\bigl( 
1 + | uk(t)| p - 1 + | xk(t) + x\ast (t)| \alpha 

\bigr) 
dt

\leq K

t2\int 
0

| xk(t) - x\ast (t)| (1 + (2A)\alpha )dt+K

t2\int 
0

| xk(t) - x\ast (t)| | uk(t)| p - 1dt

\leq K

t2\int 
0

| xk(t) - x\ast (t)| (1 + (2A)\alpha )dt+K\| uk\| 
p
q
p

\left(  t2\int 
0

| xk(t) - x\ast (t)| p dt

\right)  
1
p

. (4.14)

Оскiльки \| uk\| p обмежена, то права частина (4.14) прямує до 0 при k \rightarrow \infty . Далi маємо

t2\int 
0

L(t, xk(t), uk(t))dt+

t2\int 
0

L(t, x\ast (t), uk(t))dt

 - 
t2\int 
0

L(t, x\ast (t), uk(t))dt+

t2\int 
0

L(t, x\ast (t), u\ast (t)) - 
t2\int 
0

L(t, x\ast (t), u\ast (t))dt

=

t2\int 
0

[L(t, xk(t), uk(t)) - L(t, x\ast (t), uk(t))]dt

+

t2\int 
0

[L(t, x\ast (t), uk(t)) - L(t, x\ast (t), u\ast (t))]dt+

t2\int 
0

L(t, x\ast (t), u\ast (t))dt.

Перший iнтеграл у правiй частинi останьої нерiвностi прямує до 0 при k \rightarrow \infty згiдно з
(4.14). А згiдно з нерiвнiстю (4.13) для будь-якого t2 \in 

\bigl[ 
0, \tau \ast 

\bigr) 
одержуємо

t2\int 
0

L(t, x\ast (t), u\ast (t))dt \leq m.

Звiдси за допомогою граничного переходу при t2 \rightarrow \tau \ast маємо

J(u\ast ) =

\tau \ast \int 
0

L(t, x\ast (t), u\ast (t))dt \leq m.

А тому
J(u\ast ) = m.

Отже, u\ast (t) — оптимальне керування.
2) Нехай тепер y\ast 

\bigl( 
\tau \ast 
\bigr) 
\in D. Тодi \tau \ast = T. Отже, для достатньо великих nk : \tau nk

= T.
Далi доведення аналогiчне з першим випадком iз замiною \tau \ast i \tau k на T.
Теорему доведено.
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