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We consider evolutionary equations with fractional differentiation operators restrictions of which to certain
spaces of S type coincide with pseudodifferential operators constructed on the basis of smooth symbols,
which are multipliers in these spaces. The well-posedness of the time-nonlocal multipoint problem for
these equations with initial function, which is an element of the space of generalized functions of the
ultradistribution type, is established. We establish that the solutions of these problems stabilize to zero in
the spaces of generalized functions of type S\prime (weak stabilization) and also stabilize to zero uniformly on
\BbbR in the case where the initial generalized function has a bounded support.

Розглянуто еволюцiйнi рiвняння з операторами дробового диференцiювання, звуження яких на
певнi простори типу S збiгаються iз псевдодиференцiальними операторами, побудованими за глад-
кими символами, якi є мультиплiкаторами у таких просторах. Встановлено коректну розв’язнiсть
нелокальної багатоточкової за часом задачi для таких рiвнянь з початковою функцiєю, яка є еле-
ментом простору узагальнених функцiй типу ультрарозподiлiв. Встановлено, що розв’язки таких
задач стабiлiзуються до нуля у просторах узагальнених функцiй типу S\prime (слабка стабiлiзацiя), а
також стабiлiзуються до нуля рiвномiрно на \BbbR у випадку, коли початкова узагальнена функцiя має
обмежений носiй.

У теорiї дробового iнтегро-диференцiювання використовують оператор A :=

\biggl( 
I  - \partial 2

\partial x2

\biggr) 1/2
,

який у лiтературi прийнято називати оператором Бесселя дробового диференцiювання
порядку 1

2
[1]. У цiй статтi розглядаємо сiм’ю операторiв \{ Bp,\omega \} вигляду

Bp,\omega =

\Biggl( 
I +

p\sum 
k=1

( - 1)k
\partial 2k

\partial x2k

\Biggr) \omega 
2p

,

де \omega \in (0, 1], p \in \BbbN — довiльно фiксованi числа. До цього класу належить i оператор A ;
легко бачити, що A = B1,1. Iншi приклади операторiв Bp,\omega :

B2, 4
7
=

\biggl( 
I  - \partial 2

\partial x2
+

\partial 4

\partial x4

\biggr) 1
7

,
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B3, 4
5
=

\biggl( 
I  - \partial 2

\partial x2
+

\partial 4

\partial x4
 - \partial 6

\partial x6

\biggr) 2
15

.

Встановлено, що Bp,\omega — самоспряжений оператор у гiльбертовому просторi L2(\BbbR ) (при
фiксованих p, \omega ), звуження якого на певний простiр S\beta 

\alpha , який вiдноситься до просторiв
типу S (простори типу S введено в [2]), збiгається iз псевдодиференцiальним оператором
на S\beta 

\alpha , побудованим за функцiєю-символом

\varphi p,\omega (\sigma ) =
\bigl( 
1 + \sigma 2 + \sigma 4 + . . .+ \sigma 2p

\bigr) \omega 
2p , \sigma \in \BbbR ,

тобто
\^B := Bp,\omega | S\beta 

\alpha 
= F - 1

\sigma \rightarrow x[\varphi p,\omega (\sigma )Fx\rightarrow \sigma ],

де F, F - 1 — пряме та обернене перетворення Фур’є. Дослiджено також нелокальну за
часом задачу для рiвняння

\partial u(t, x)/\partial t+ \^Bu(t, x) = 0, (t, x) \in (0,\infty )\times \BbbR , (1)

коли початкову умову u| t=0 = f замiнюють умовою
m\sum 
k=0

\mu kBku(t, x)| t=tk = f, (2)

де t0 = 0, \{ t1, . . . , tm\} \subset (0,+\infty ), \{ \mu 0, \mu 1, . . . , \mu m\} \subset (0,+\infty ), m \in \BbbN , — фiксованi числа,
B0 = I,B1, . . . , Bm — псевдодиференцiальнi оператори, побудованi за гладкими символа-
ми (якщо \mu 0 = 1, \mu 1 = . . . = \mu m = 0, то маємо, очевидно, задачу Кошi, тобто задачу (1), (2)
можна розумiти як певне узагальнення задачi Кошi для рiвняння (1)). Умову (2) трактуємо
в класичному або слабкому сенсi, якщо f — узагальнена функцiя типу ультрарозподiлiв
(тобто f є елементом простору

\bigl( 
S\beta 
\alpha 

\bigr) \prime — простору, топологiчно спряженого до просто-
ру S\beta 

\alpha ).
Зауважимо, що нелокальну багатоточкову за часом задачу вiдносять до нелокальних

задач для диференцiально-операторних рiвнянь i рiвнянь iз частинними похiдними. Такi
задачi виникають примоделюваннi багатьох процесiв i задач практикикрайовими задачами
з нелокальними умовами, описi всiх коректних задач для конкретного оператора, побудовi
загальної теорiї крайових задач [3 – 7].

У роботi встановлено розв’язнiсть задачi (1), (2), дослiджено: а) властивостi фундамен-
тального розв’язку цiєї багатоточкової задачi; б) поведiнку розв’язку задачi (1), (2) при
t\rightarrow +\infty (стабiлiзацiя розв’язку) у просторах узагальнених функцiй типу ультрарозподiлiв,
а також рiвномiрну стабiлiзацiю до нуля на \BbbR розв’язку задачi (1), (2).

1. Простори основних функцiй. I. М. Гельфанд i Г. Є.Шилов у [2] ввели серiю просторiв,
названих просторами типу S. Цi простори складаються з нескiнченно диференцiйовних
на \BbbR функцiй, на якi накладено певнi умови спадання на нескiнченностi та зростання
похiдних. Цi умови задають за допомогою нерiвностей\bigm| \bigm| xk\varphi (m)(x)

\bigm| \bigm| \leq ckm, x \in \BbbR , \{ k,m\} \subset \BbbZ +,
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де \{ ckm\} —подвiйна послiдовнiсть додатних чисел. Якщо на елементи послiдовностi \{ ckm\} 
не накладено жодних обмежень, то маємо, очевидно, простiр Шварца S \equiv S(\BbbR ) швидко
спадних на нескiнченностi функцiй. Якщо ж числа ckm задовольняють певнi умови, то
вiдповiднi простори мiстяться в S i називаються просторами типу S. Означимо деякi
з них.

Для будь-яких \alpha , \beta > 0 покладемо

S\beta 
\alpha (\BbbR ) \equiv S\beta 

\alpha :=

\Biggl\{ 
\varphi \in S | \exists c > 0 \exists A > 0 \exists B > 0 \forall \{ m,n\} \subset \BbbZ + \forall x \in \BbbR :

\bigm| \bigm| \bigm| xm\varphi (n)(x)
\bigm| \bigm| \bigm| \leq cAmBnmm\alpha nn\beta 

\Biggr\} 
. (3)

Уведенi простори можна охарактеризувати ще й так [2]:
– S\beta 

\alpha складається з тих i лише тих нескiнченно диференцiйовних на \BbbR функцiй, якi
задовольняють нерiвностi\bigm| \bigm| \varphi (n)(x)

\bigm| \bigm| \leq cBnnn\beta exp
\bigl\{ 
 - a| x| 1/\alpha 

\bigr\} 
, c, B, a > 0, x \in \BbbR , n \in \BbbZ +, (4)

де сталi c, a,B > 0 залежать лише вiд функцiї \varphi ;
– якщо 0 < \beta < 1 i \alpha \geq 1  - \beta , то S\beta 

\alpha складається з тих i лише тих функцiй \varphi \in 
C\infty (\BbbR ), якi аналiтично продовжуються у комплексну площину \BbbC i для яких справджується
нерiвнiсть

| \varphi (x+ iy)| \leq c exp
\bigl\{ 
 - a| x| 1/\alpha + b| y| 1/(1 - \beta )

\bigr\} 
, c, a, b > 0, \{ x, y\} \subset \BbbR .

Простiр S1
\alpha складається з функцiй \varphi \in C\infty (\BbbR ), якi аналiтично продовжуються у деяку

смугу | Im z| < \delta , z = x+ iy (залежну вiд \varphi ) комплексної площини, при цьому справджу-
ється оцiнка

| \varphi (x+ iy)| \leq c exp
\bigl\{ 
 - a| x| 1/\alpha 

\bigr\} 
, c, a > 0, | y| < \delta \forall x \in \BbbR .

Простори S\beta 
\alpha нетривiальнi, якщо \alpha + \beta \geq 1 i утворюють щiльнi в L2(\BbbR ) множини.

Топологiчна структура в S\beta 
\alpha визначається таким чином. Символом S\beta ,B

\alpha ,A , A,B > 0,

позначимо сукупнiсть функцiй \varphi \in S\beta 
\alpha , якi задовольняють умову

\forall A > A \forall B > B :
\bigm| \bigm| xk\varphi (m)(x)

\bigm| \bigm| \leq cA
k
B

m
kk\alpha mm\beta , \{ k,m\} \subset \BbbZ +, x \in \BbbR .

Ця множина перетворюється у повний злiченно-нормований простiр, якщо норми у нiй
введено за допомогою спiввiдношень

\| \varphi \| \delta \rho = sup
x,k,m

\bigm| \bigm| xk\varphi (m)(x)
\bigm| \bigm| 

(A+ \delta )k(B + \rho )mkk\alpha mm\beta 
, \{ \delta , \rho \} \in 

\biggl\{ 
1,

1

2
,
1

3
, . . .

\biggr\} 
.

Указану систему норм iнодi замiнюють еквiвалентною їй системою норм

\| \varphi \| \delta \rho = sup
x,m

exp\{ a(1 - \delta )| x| 1/\alpha \} 
\bigm| \bigm| \varphi (m)(x)

\bigm| \bigm| 
(B + \rho )mmm\beta 

,
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\{ \delta , \rho \} \subset 
\biggl\{ 
1

2
,
1

3
, . . .

\biggr\} 
, a =

\alpha 

eA1/\alpha 
.

Якщо A1 < A2, B1 < B2, то S\beta ,B1

\alpha ,A1
неперервно вкладається в S\beta ,B2

\alpha ,A2
i S\beta 

\alpha =
\bigcup 

A,B>0 S
\beta ,B
\alpha ,A ,

тобто в S\beta 
\alpha вводимо топологiю iндуктивної границi просторiв S\beta ,B

\alpha ,A [2]. Отже, збiжнiсть до
нуля послiдовностi \{ \varphi \nu , \nu \geq 1\} \subset S\beta 

\alpha у просторi S\beta 
\alpha — це збiжнiсть до нуля за топологiєю

одного з просторiв S\beta ,B
\alpha ,A , до якого належать всi функцiї \varphi \nu . Iншими словами (див. [2]),

\varphi \nu \rightarrow 0 при \nu \rightarrow +\infty у просторi S\beta 
\alpha тодi й лише тодi, коли послiдовнiсть

\bigl\{ 
\varphi 
(m)
\nu , \nu \geq 1

\bigr\} 
при кожному m \in \BbbZ + збiгається рiвномiрно до нуля на кожному вiдрiзку [a, b] \subset \BbbR i для
деяких c, a,B > 0, не залежних вiд \nu , виконується нерiвнiсть\bigm| \bigm| \varphi (m)

\nu (x)
\bigm| \bigm| \leq cBmmm\beta exp

\bigl\{ 
 - a| x| 1/\alpha 

\bigr\} 
, x \in \BbbR , m \in \BbbZ +.

Множина F \subset S\beta 
\alpha називається обмеженою, якщо вона мiститься в деякому злiченно-

нормованому просторi S\beta ,B
\alpha ,A i в ньому обмежена, тобто якщо для всiх функцiй \varphi \in F мають

мiсце оцiнки (3) (або (4)) з одними й тими ж сталими c, A,B > 0 (c, a,B > 0).

У просторах S\beta 
\alpha клас лiнiйних обмежених операторiв збiгається з класом лiнiйних

неперервних операторiв [2].
Функцiя g \in C\infty (\BbbR ) називається мультиплiкатором у просторi S\beta 

\alpha , якщо g\psi \in S\beta 
\alpha для

довiльної функцiї \psi \in S\beta 
\alpha i вiдображення \psi \rightarrow g\psi є лiнiйним i неперервним оператором

в S\beta 
\alpha .
У просторах S\beta 

\alpha визначено й неперервну операцiю зсуву аргументу Tx : \varphi (\xi ) \rightarrow \varphi (\xi +x)

\forall \varphi \in S\beta 
\alpha . Ця операцiя є також диференцiйовною (навiть нескiнченно диференцiйовною

[2]) у розумiннi, що граничнi спiввiдношення вигляду

(\varphi (x+ h) - \varphi (x))h - 1 \rightarrow \varphi \prime (x), h\rightarrow 0,

виконуються для кожної функцiї \varphi \in S\beta 
\alpha у сенсi збiжностi за топологiєю простору S\beta 

\alpha . У
S\beta 
\alpha визначено й неперервну операцiю диференцiювання. Простори типу S є досконалими

[2] (тобто просторами, всi обмеженi множини яких компактнi). Вони пов’язанi мiж собою
перетворенням Фур’є, а саме: правильною є формула F

\bigl[ 
S\beta 
\alpha 

\bigr] 
= S\alpha 

\beta , де

F
\bigl[ 
S\beta 
\alpha 

\bigr] 
:=

\left\{   \psi : \psi (\sigma ) =
+\infty \int 

 - \infty 

\varphi (x)ei\sigma x dx, \varphi \in S\beta 
\alpha 

\right\}   ,
при цьому оператор F : S\beta 

\alpha \rightarrow S\alpha 
\beta неперервний.

2. Оператори \bfitB \bfitp ,\bfitomega у просторах типу \bfitS . Нагадаємо, що A0 := i\partial /\partial x —самоспряжений
у L2(\BbbR ) оператор зi щiльною у L2(\BbbR ) областю визначення

\scrD (A0) =
\bigl\{ 
\psi \in L2(\BbbR ) : \exists \psi \prime \in L2(\BbbR )

\bigr\} 
.

Якщо E\lambda , \lambda \in \BbbR , — спектральна функцiя оператора A0, то внаслiдок основної спектраль-
ної теореми для самоспряжених операторiв

A0\psi =

+\infty \int 
 - \infty 

\lambda dE\lambda \psi \forall \psi \in \scrD (A0).
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Згiдно з операцiйним численням, пов’язаним з побудовою функцiй вiд самоспряженого
оператора, маємо

Bp,\omega \psi =

\Biggl( 
I +

p\sum 
k=1

( - 1)k
\partial 2k

\partial x2k

\Biggr) \omega 
2p

\psi 

=

\Biggl( 
I +

\biggl( 
i
\partial 

\partial x

\biggr) 2

+

\biggl( 
i
\partial 

\partial x

\biggr) 4

+ . . .+

\biggl( 
i
\partial 

\partial x

\biggr) 2p
\Biggr) \omega 

2p

\psi 

=

+\infty \int 
 - \infty 

\bigl( 
1 + \lambda 2 + . . .+ \lambda 2p

\bigr) \omega 
2p dE\lambda \psi =

+\infty \int 
 - \infty 

\varphi p,\omega (\lambda ) dE\lambda \psi 

= \varphi p,\omega 

\biggl( 
i
\partial 

\partial x

\biggr) 
\psi \forall \psi \in \scrD (Bp,\omega ),

де
\varphi p,\omega (\lambda ) =

\bigl( 
1 + \lambda 2 + \lambda 4 + . . .+ \lambda 2p

\bigr) \omega 
2p , \lambda \in \BbbR .

Оскiльки \varphi p,\omega — дiйснозначна функцiя, то оператор Bp,\omega = \varphi p,\omega 

\biggl( 
i
\partial 

\partial x

\biggr) 
також самоспря-

жений у L2(\BbbR ). Вiдомо (див., наприклад, [8]), що

E\lambda \psi =
1

2\pi 

\lambda \int 
 - \infty 

\left\{   
+\infty \int 

 - \infty 

\psi (\tau )ei\sigma \tau d\tau 

\right\}   e - it\sigma d\sigma =
1

2\pi 

\lambda \int 
 - \infty 

F [\psi ](\sigma )e - it\sigma d\sigma .

Отже, dE\lambda \psi =
1

2\pi 
F [\psi ](\lambda )e - it\lambda d\lambda , тобто

Bp,\omega \psi =
1

2\pi 

+\infty \int 
 - \infty 

\varphi p,\omega (\lambda )F [\psi ](\lambda )e
 - it\lambda d\lambda = F - 1[\varphi p,\omega (\lambda )F [\psi ]]. (5)

Лема 1. Функцiя \varphi p,\omega —мультиплiкатор у просторi S1
1/\omega , \omega \in (0, 1], p \in \BbbN —фiксованi

числа.
Доведення. Для доведення твердження досить переконатися в тому, що: 1) \varphi p,\omega \psi \in 

S1
1/\omega \forall \psi \in S1

1/\omega ; 2) вiдображення \psi \rightarrow \varphi p,\omega \psi є неперервним оператором у просторi S1
1/\omega .

Доведемо властивiсть 1). Очевидно, що коли | \sigma | \leq 1, тодi функцiя \varphi p,\omega задовольняє
нерiвнiсть

\varphi p,\omega (\sigma ) \leq (1 + p)
\omega 
2p \leq 1 + p.

Якщо | \sigma | > 1, то для довiльно фiксованого \varepsilon > 0

\varphi p,\omega (\sigma ) \leq 
\bigl( 
(1 + p)| \sigma | 2p

\bigr) \omega 
2p = (1 + p)

\omega 
2p | \sigma | \omega \leq c(p)

\varepsilon 
e\varepsilon | \sigma | 

\omega 
, c(p) = 1 + p.

Отже,

\varphi p,\omega (\sigma ) \leq c\varepsilon e
\varepsilon | \sigma | \omega , \sigma \in \BbbR , c\varepsilon = (1 + p)max

\biggl\{ 
1,

1

\varepsilon 

\biggr\} 
(6)

для довiльно фiксованого \varepsilon > 0.
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Безпосередньо можна переконатися в тому, що\bigm| \bigm| Dm
\sigma \varphi p,\omega (\sigma )

\bigm| \bigm| \leq c0L
m
0 m! \leq c1L

m
1 m

m, (7)

де сталi c0, c1, L0, L1 > 0 залежать вiд p.
Нехай F \subset S1

1/\omega — обмежена множина, \psi — довiльна функцiя з множини F. Тодi
iснують сталi c, a,B > 0 (не залежнi вiд \psi ) такi, що\bigm| \bigm| Dm

\sigma \psi (\sigma )
\bigm| \bigm| \leq cBmmme - a| \sigma | \omega , \sigma \in \BbbR , m \in \BbbZ +. (8)

З (6) – (8) i формули Лейбнiца диференцiювання добутку двох функцiй випливають
нерiвностi

\bigm| \bigm| \bigm| (\varphi p,\omega (\sigma )\psi (\sigma ))
(m)
\bigm| \bigm| \bigm| = \bigm| \bigm| \bigm| \bigm| \bigm| 

m\sum 
k=0

Ck
m\varphi 

(k)
p,\omega (\sigma )\psi 

(m - k)(\sigma )

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq | \varphi p,\omega (\sigma )| 

\bigm| \bigm| \bigm| \psi (m)(\sigma )
\bigm| \bigm| \bigm| + m\sum 

k=1

Ck
m

\bigm| \bigm| \bigm| \varphi (k)
p,\omega (\sigma )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \psi (m - k)(\sigma )
\bigm| \bigm| \bigm| 

\leq c\varepsilon cB
mmme - (a - \varepsilon )| \sigma | \omega + c1c

m\sum 
k=1

Ck
mL

k
1k

kBm - k(m - k)m - ke - a| \sigma | \omega 

\leq c\varepsilon cB
mmme - (a - \varepsilon )| \sigma | \omega + c2B

m
1 m

me - a| \sigma | \omega ,

де B1 = 2max\{ L1, B\} , c2 = c1c. Якщо покласти \varepsilon = a/2, то одержимо оцiнку\bigm| \bigm| \bigm| (\varphi p,\omega (\sigma )\psi (\sigma ))
(m)
\bigm| \bigm| \bigm| \leq \~c \~Bmmme - \~a| \sigma | \omega , \sigma \in \BbbR , m \in \BbbZ + \forall \psi \in F, (9)

де \~c = max\{ c\varepsilon c, c2\} , \~B = max\{ B,B1\} , \~a = a/2. З останньої нерiвностi випливає власти-
вiсть 1), а також те, що \varphi p,\omega F \subset S1

1/\omega — обмежена множина, тобто оператор \psi \rightarrow \varphi p,\omega \psi 

кожну обмежену множину простору S1
1/\omega переводить у обмежену множину цього ж про-

стору. Отже, вказаний оператор є обмеженим (неперервним). Цим довели, що \varphi p,\omega —
мультиплiкатор у просторi S1

1/\omega .

Лему 1 доведено.
Зауваження 1. З (9) випливає, що \varphi p,\omega — мультиплiкатор i в кожному просторi S\gamma 

1/\omega ,

де \gamma > 1 (конкретне значення \gamma вкажемо пiзнiше). Нехай \^B = Bp,\omega | S\gamma 
1/\omega 

— звуження

оператора Bp,\omega на простiр S\gamma 
1/\omega . Якщо в (5) \psi \in S

1/\omega 
\gamma , то F [\psi ] \in S\gamma 

1/\omega , \varphi p,\omega F [\psi ] \in S\gamma 
1/\omega .

Тодi \^B\psi \in S
1/\omega 
\gamma \forall \psi \in S

1/\omega 
\gamma . Отже, оператор

\^B : S1/\omega 
\gamma \rightarrow S1/\omega 

\gamma 

збiгається iз псевдодиференцiальним оператором у просторi S1/\omega 
\gamma , побудованим за функ-

цiєю-символом \varphi p,\omega : \^B = F - 1[\varphi p,\omega (\sigma )F ].
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3. Простори узагальнених функцiй. Символом
\bigl( 
S\beta 
\alpha 

\bigr) \prime позначатимемо простiр усiх лi-
нiйних неперервних функцiоналiв на S\beta 

\alpha зi слабкою збiжнiстю. Елементи простору
\bigl( 
S\beta 
\alpha 

\bigr) \prime 
називатимемо узагальненими функцiями типу ультрарозподiлiв. Якщо f \in 

\bigl( 
S\beta 
\alpha 

\bigr) \prime 
, то до

цього ж простору належить також кожна похiдна f (p), p \in \BbbN , де f (p) визначаємо за фор-
мулою \Bigl\langle 

f (p), \psi 
\Bigr\rangle 
:= ( - 1)p

\Bigl\langle 
f, \psi (p)

\Bigr\rangle 
\forall \psi \in S\beta 

\alpha 

(тут
\bigl\langle 
f (p), \psi 

\bigr\rangle 
позначає дiю функцiонала f (p) на основну функцiю \psi ). Якщо g — мульти-

плiкатор у просторi основних функцiй S\beta 
\alpha , то gf \in 

\bigl( 
S\beta 
\alpha 

\bigr) \prime \forall f \in 
\bigl( 
S\beta 
\alpha 

\bigr) \prime 
, де

\langle gf, \psi \rangle := \langle f, g\psi \rangle \forall \psi \in S\beta 
\alpha .

Оскiльки в основному просторi S\beta 
\alpha визначено операцiю зсуву Tx, то згортку узагальне-

ної функцiї f \in 
\bigl( 
S\beta 
\alpha 

\bigr) \prime iз основною функцiєю визначимо за допомогою формули

(f \ast \varphi )(x) := \langle f\xi , T - x \v \varphi \rangle \equiv \langle f, \varphi (x - \cdot )\rangle , \v \varphi (\xi ) := \varphi ( - \xi ), \varphi \in S\beta 
\alpha .

Iз властивостi нескiнченної диференцiйовностi операцiї зсуву аргументу у просторi S\beta 
\alpha 

випливає, що згортка f \ast \varphi є звичайною нескiнченно диференцiйовною на \BbbR функцiєю.
Перетворення Фур’є узагальненої функцiї f \in 

\bigl( 
S\beta 
\alpha 

\bigr) \prime визначаємо за допомогою спiввiд-
ношення

\langle F [f ], \varphi \rangle := \langle f, F [\varphi ]\rangle \forall \varphi \in S\alpha 
\beta ,

при цьому F [f ] \in 
\bigl( 
S\beta 
\alpha 

\bigr) \prime 
, оператор F :

\bigl( 
S\beta 
\alpha 

\bigr) \prime \rightarrow \bigl( 
S\alpha 
\beta 

\bigr) \prime є неперервним.
Нехай f \in 

\bigl( 
S\beta 
\alpha 

\bigr) \prime 
. Якщо f \ast \varphi \in S\beta 

\alpha \forall \varphi \in S\beta 
\alpha , i iз спiввiдношення \varphi \nu \rightarrow 0 при \nu \rightarrow \infty за

топологiєю простору S\beta 
\alpha випливає, що f \ast \varphi \nu \rightarrow 0 при \nu \rightarrow \infty за топологiєю простору S\beta 

\alpha ,
то функцiонал f називаємо згортувачем у просторi S\beta 

\alpha .

Якщо f \in 
\bigl( 
S\beta 
\alpha 

\bigr) \prime — згортувач у просторi S\beta 
\alpha , то для довiльної основної функцiї \varphi \in S\beta 

\alpha 

правильною є формула
F [f \ast \varphi ] = F [f ]F [\varphi ],

де F [f ] — мультиплiкатор у просторi S\alpha 
\beta .

4. Нелокальна за часом задача. Розглянемо еволюцiйне рiвняння

\partial u(t, x)/\partial t+ \^Bu(t, x) = 0, (t, x) \in (0,+\infty )\times \BbbR \equiv \Omega , (10)

де \^B = Bp,\omega | S1/\omega 
2

, \omega \in (0, 1], p \in \BbbN , — фiксованi числа, при цьому (див. п. 2) \^B =

F - 1[\varphi p,\omega F ].

Пiд розв’язком рiвняння (10) розумiємо функцiю u(t, x), (t, x) \in \Omega , яка має такi вла-
стивостi:

1) u(\cdot , x) \in C1(0,+\infty ) при кожному x \in \BbbR ;
2) u(t, \cdot ) \in S

1/\omega 
2 при кожному t \in (0,+\infty ) ;

3) u(t, x), (t, x) \in \Omega , задовольняє рiвняння (10).
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Для рiвняння (10) поставимо нелокальну багатоточкову за часом задачу: знайти роз-
в’язок рiвняння (10), який задовольняє умову

\mu u(0, x) - \mu 1B1u(t1, x) - . . . - \mu mBmu(tm, x) = f(x), x \in \BbbR , f \in S
1/\omega 
2 , (11)

де u(0, x) := limt\rightarrow +0 u(t, x), x \in \BbbR , \{ \mu , \mu 1, . . . , \mu m\} \subset (0,+\infty ), \{ t1, . . . , tm\} \subset (0,\infty ),

m \in \BbbN — фiксованi числа, 0 < t1 < t2 < . . . < tm < +\infty , \mu >
\sum m

k=1
\mu k, B1, . . . , Bm —

псевдодиференцiальнi оператори, побудованi за функцiями (символами) gk : \BbbR \rightarrow (0,\infty )
вiдповiдно:

Bk = F - 1[gk(\sigma )F ], k \in \{ 1, . . . ,m\} .

Функцiї gk, k \in \{ 1, . . . ,m\} , задовольняють умови:
gk \in C\infty (\BbbR );
\forall \varepsilon > 0 \forall \sigma \in \BbbR : gk(\sigma ) \leq exp\{ \varepsilon | \sigma | \omega \} ,
\exists Mk > 0 \forall s \in \BbbN : | Ds

\sigma gk(\sigma )| \leq M s
ks!.

Зауважимо, що з наведених властивостей функцiй gk випливає, що gk, k \in \{ 1, . . . ,m\} , —
мультиплiкатор у просторi S1/\omega 

2 .
Введемо позначення a(\sigma ) := \varphi p,\omega (\sigma ), \sigma \in \BbbR .
Розв’язок задачi (10), (11) шукаємо за допомогою перетворення Фур’є, ввiвши по-

значення F [u(t, x)] = v(t, \sigma ). Врахувавши вигляд операторiв B1, . . . , Bm, для функцiї v :
\Omega \rightarrow \BbbR одержимо задачу з параметром \sigma :

dv(t, \sigma )

dt
+ a(\sigma )v(t, \sigma ) = 0, (t, \sigma ) \in \Omega , (12)

\mu v(0, \sigma ) - 
m\sum 
k=1

\mu kgk(\sigma )v(t, \sigma ) = \~f(\sigma ), \sigma \in \BbbR , (13)

де \~f(\sigma ) = F [f ](\sigma ). Загальний розв’язок рiвняння (12) має вигляд

v(t, \sigma ) = c exp\{  - ta(\sigma )\} , (t, \sigma ) \in \Omega , (14)

де c = c(\sigma ) визначимо з умови (13). Пiдставивши (14) у (13), знайдемо

c = \~f(\sigma )

\Biggl( 
\mu  - 

m\sum 
k=1

\mu kgk(\sigma ) exp\{  - tka(\sigma )\} 

\Biggr)  - 1

, \sigma \in \BbbR .

Введемо позначення

G(t, x) = F - 1[Q(t, \sigma )], Q(t, \sigma ) = Q1(t, \sigma )Q2(\sigma ), Q1(t, \sigma ) = exp\{  - ta(\sigma )\} ,

Q2(\sigma ) =

\Biggl( 
\mu  - 

m\sum 
k=1

\mu kgk(\sigma ) exp\{  - tka(\sigma )\} 

\Biggr)  - 1

.

Далi, мiркуючи формально, прийдемо до спiввiдношення

u(t, x) =

\int 
\BbbR 

G(t, x - \xi )f(\xi ) d\xi = G(t, x) \ast f(x).
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Справдi,

u(t, x) = (2\pi ) - 1

\int 
\BbbR 

Q(t, \sigma )

\left(  \int 
\BbbR 

f(\xi )ei\sigma \xi d\xi 

\right)  e - i\sigma x d\sigma 

=

\int 
\BbbR 

\left(  (2\pi ) - 1

\int 
\BbbR 

Q(t, \sigma )e - i\sigma (x - \xi ) d\sigma 

\right)  f(\xi ) d\xi 
=

\int 
\BbbR 

G(t, x - \xi )f(\xi ) d\xi = G(t, x) \ast f(x), (t, x) \in \Omega . (15)

Коректнiсть проведених тут перетворень, а отже, правильнiсть формули (15) випливає з
властивостей функцiї G, якi наведемо далi. Властивостi функцiї G визначають властивостi
функцiї Q, оскiльки G = F - 1[Q]. Отже, насамперед дослiдимо властивостi функцiї Q(t, \sigma )
як функцiї змiнної \sigma .

Лема 2. Для похiдних функцiї Q(t, \sigma ) правильними є оцiнки\bigm| \bigm| Ds
\sigma Q(t, \sigma )

\bigm| \bigm| \leq cAst\nu sss exp\{  - t| \sigma | \omega \} , s \in \BbbN , (16)

де \nu = 0, якщо 0 < t \leq 1 i \nu = 1, якщо t > 1, сталi c, A > 0 не залежать вiд t.
Доведення. Для доведення твердження скористаємося формулою Фаа дi Бруно дифе-

ренцiювання складеної функцiї

Ds
\sigma F (g(\sigma )) =

s\sum 
p=1

dpF (g)

dgp

\sum s!

p1! . . . pl!

\biggl( 
d

d\sigma 
g(\sigma )

\biggr) p1

. . .

\biggl( 
1

l!

dl

d\sigma l
g(\sigma )

\biggr) pl

(17)

(знак суми поширюється на всi розв’язки в цiлих невiд’ємних числах рiвняння p1+2p2+ . . .
+ lpl = s, p1 + p2 + . . .+ pl = p), де покладемо F = eg, g =  - ta(\sigma ). Тодi

Ds
\sigma e

 - ta(\sigma ) = e - ta(\sigma )
s\sum 

p=1

\sum s!

p1! . . . pl!
\Lambda ,

де символом \Lambda позначено вираз

\Lambda :=

\biggl( 
d

d\sigma 
( - ta(\sigma ))

\biggr) p1\biggl( 1

2!

d2

d\sigma 2
( - ta(\sigma ))

\biggr) p2

. . .

\biggl( 
1

l!

dl

d\sigma l
( - ta(\sigma ))

\biggr) pl

.

Урахувавши (7), знайдемо

| \Lambda | \leq cp1+...+pl
0 Lp1+2p2+...+lpl

0 tp1+...+pl \leq \~c p0 t
pLs

0, (18)

де \~c0 = max\{ 1, c0\} . Скориставшись (18), нерiвнiстю a(\sigma ) = \varphi p,\omega (\sigma ) \geq | \sigma | \omega i формулою
Стiрлiнга, одержимо нерiвностi\bigm| \bigm| Ds

\sigma Q1(t, \sigma )
\bigm| \bigm| \leq \~c s0L

s
0t

\nu ss! exp\{  - ta(\sigma )\} \leq cAst\nu sss exp\{  - t| \sigma | \omega \} , (19)

де \nu = 0, якщо 0 < t \leq 1, i \nu = 1, якщо t > 1, сталi c, A > 0 не залежать вiд t.
Лему 2 доведено.
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Зауваження 2. Iз оцiнок (16) випливає, що Q1(t, \cdot ) \in S1
1/\omega при кожному t > 0.

Лема 3. Функцiя Q2 — мультиплiкатор у просторi S2
1/\omega .

Доведення. Для доведення твердження здiйснимо оцiнку похiдних функцiї Q2. Для
цього скористаємося формулою (17), у якiй покладемо F = \varphi  - 1, \varphi = R, де

R(\sigma ) = \mu  - 
m\sum 
k=1

\mu kgk(\sigma ) exp\{  - tka(\sigma )\} .

Тодi Q2(\sigma ) = F (\varphi ) = R - 1 i

\bigm| \bigm| Ds
\sigma Q2(\sigma )

\bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

s\sum 
p=1

dp

dRp
R - 1

\sum s!

p1! . . . pl!

\biggl( 
d

d\sigma 
R(\sigma )

\biggr) p1

. . .

\biggl( 
1

l!

dl

d\sigma l
R(\sigma )

\biggr) pl

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| , s \in \BbbN .

Врахувавши властивостi функцiй g1, . . . , gm i нерiвностi (19), знайдемо\bigm| \bigm| \bigm| \bigm| 1j! dj

d\sigma j
R(\sigma )

\bigm| \bigm| \bigm| \bigm| \leq 1

j!

m\sum 
k=1

\mu k

j\sum 
i=0

Ci
j

\bigm| \bigm| Di
\sigma gk(\sigma )

\bigm| \bigm| \bigm| \bigm| \bigm| Dj - i
\sigma e - tka(\sigma )

\bigm| \bigm| \bigm| 
\leq 1

j!

m\sum 
k=1

\mu k

j\sum 
i=0

Ci
jM

i
ki!(\~c0L0)

j - it
\nu (j - i)
k (j  - i)!e - tka(\sigma )

\leq 
m\sum 
k=1

\mu k

j\sum 
i=0

Ci
jM

i
k(\~c0L0)

j - it
\nu (j - i)
k

(тут враховано, що i!(j  - i)! \leq j!). Нехай

\~M = max\{ M1, . . . ,Mm\} , M0 = 2max
\Bigl\{ 
\~c0L0T, \~M

\Bigr\} 
.

Тодi \bigm| \bigm| \bigm| \bigm| 1j! dj

d\sigma j
R(\sigma )

\bigm| \bigm| \bigm| \bigm| \leq \alpha 0M
j
0 , \alpha 0 =

m\sum 
k=1

\mu k, j \in \{ 1, . . . , l\} ,

\bigm| \bigm| \bigm| \bigm| \biggl( d

d\sigma 
R(\sigma )

\biggr) p1
\bigm| \bigm| \bigm| \bigm| . . . \bigm| \bigm| \bigm| \bigm| \biggl( 1

l!

dl

d\sigma l
R(\sigma )

\biggr) pl\bigm| \bigm| \bigm| \bigm| \leq (\alpha 0M0)
p1(\alpha 0M

2
0 )

p2 . . . (\alpha 0M
l
0)

pl

\leq \alpha p1+...+pl
0 Mp1+2p2+...+lpl

0 \leq \alpha p
0M

s
0 .

Крiм того,
dp

dRp
R - 1 = ( - 1)pp!R - (p+1),

R - 1(\sigma ) = Q2(\sigma ) =

\Biggl( 
\mu  - 

m\sum 
k=1

\mu kgk(\sigma ) exp\{  - tka(\sigma )\} 

\Biggr)  - 1

\leq 

\Biggl( 
\mu  - 

m\sum 
k=1

\mu k exp\{ \varepsilon | \sigma | \omega  - t1| \sigma | \omega \} 

\Biggr)  - 1

\leq 

\Biggl( 
\mu  - 

m\sum 
k=1

\mu k

\Biggr)  - 1

\equiv \beta 0, \varepsilon = t1.

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 3



332 ВАСИЛЬ ГОРОДЕЦЬКИЙ, ОЛЬГА МАРТИНЮК, РУСЛАНА КОЛIСНИК

Оскiльки, за умовою, \mu >
\sum m

k=1
\mu k, то \beta 0 > 0. Тут також врахованi властивостi функцiй

g1, . . . , gm i те, що 0 < t1 < t2 < . . . < tm. Отже,\bigm| \bigm| \bigm| \bigm| dpdRp
R - 1

\bigm| \bigm| \bigm| \bigm| \leq \beta p+1
0 p!,

\bigm| \bigm| Ds
\sigma Q2(\sigma )

\bigm| \bigm| \leq s!

s\sum 
p=1

\beta p+1
0 p!\alpha p

0M
s
0 \leq \beta 0M

s
0s(s!)

2\beta s0 \leq \beta 1\beta 
s
2s

2s. (20)

Далi доведення здiйснюватимемо за схемою доведення леми 1. Доводимо, що Q2\varphi \in S2
1/\omega 

для довiльної функцiї \varphi \in S2
1/\omega , вiдображення \varphi \rightarrow Q2\varphi є неперервним оператором у

просторi S2
1/\omega , при цьому використовуються оцiнки (4) i властивiсть обмеженостi функцiї

Q2(\sigma ) на \BbbR .
Лему 3 доведено.
Наслiдок 1. При кожному t > 0 функцiя Q(t, \sigma ) = Q1(t, \sigma )Q2(\sigma ) є елементом простору

S2
1/\omega , при цьому справджуються оцiнки\bigm| \bigm| Ds

\sigma Q(t, \sigma )
\bigm| \bigm| \leq \~c \~Ast\nu ss2s exp\{  - t| \sigma | \omega \} , (t, \sigma ) \in \Omega , s \in \BbbZ +,

де сталi \~c, \~A > 0 не залежать вiд t.
Урахувавши властивостi перетворення Фур’є (прямого та оберненого) та формулу

F - 1
\bigl[ 
S2
1/\omega 

\bigr] 
= S

1/\omega 
2 , одержимо, що G(t, \cdot ) \in S

1/\omega 
2 при кожному t > 0. Видiлимо в оцiн-

ках похiдних функцiї G (за змiнною x) залежнiсть вiд t, вважаючи t > 1. Для цього
скористаємося спiввiдношенням

xkDs
xF [\varphi ](x) = ik+sF

\Bigl[ 
(\sigma s\varphi (\sigma ))(k)

\Bigr] 
= ik+s

\int 
\BbbR 

(\sigma s\varphi (\sigma ))(k)ei\sigma x d\sigma , \{ k, s\} \subset \BbbZ +.

Отже,
xkDs

xG(t, x) = (2\pi ) - 1ik+s( - 1)s
\int 
\BbbR 

(\sigma sQ(t, - \sigma ))(k)ei\sigma x d\sigma .

Застосувавши формулу Лейбнiца диференцiювання добутку двох функцiй i оцiнки по-
хiдних функцiї Q(t, \sigma ), знайдемо

\bigm| \bigm| (\sigma sQ(t, - \sigma ))(k)
\bigm| \bigm| =

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
k\sum 

p=0

Cp
k(\sigma 

s)(p)Q(k - p)(t, - \sigma )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 
\bigm| \bigm| \bigm| \sigma sQ(k)(t, - \sigma )

\bigm| \bigm| \bigm| + ks
\bigm| \bigm| \bigm| \sigma s - 1Q(k - 1)(t, - \sigma )

\bigm| \bigm| \bigm| 
+
k(k  - 1)

2!
s(s - 1)

\bigm| \bigm| \bigm| \sigma s - 2Q(k - 2)(t, - \sigma )
\bigm| \bigm| \bigm| + . . .

\leq \~c
\Bigl[ 
\~Akt\nu k \~Bst - s/\omega mks + ks \~Ak - 1t\nu (k - 1) \~Bs - 1t - (s - 1)/\omega mk - 1,s - 1

+
1

2!
k(k  - 1)s(s - 1) \~Ak - 2t\nu (k - 2) \~Bs - 2t - (s - 2)/\omega mk - 2,s - 2 + . . .

\Bigr] 
e - 

t
2
| \sigma | \omega ,
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де mks = k2kss/\omega . Тут враховано нерiвностi\bigm| \bigm| \sigma se - t| \sigma | \omega \bigm| \bigm| \leq e - 
t
2
| \sigma | \omega sup

\sigma 
| \sigma se - 

t
2
| \sigma | \omega | \leq \~Bst - s/\omega ss/\omega e - 

t
2
| \sigma | \omega , \~B =

2

\omega 
e - 

1
\omega .

З урахуванням результатiв, наведених у [2, с. 236 – 243], знайдемо, що подвiйна послiдов-
нiсть mks = k2kss/\omega задовольняє нерiвнiсть

ks
mk - 1,s - 1

mks
\leq \~\gamma (k + s), \~\gamma > 0.

Урахувавши останню нерiвнiсть, а також те, що t > 1, одержимо\bigm| \bigm| (\sigma sQ(t, - \sigma ))(k)
\bigm| \bigm| \leq \~c \~Aktk \~Bsmks

\times 
\biggl( 
1 +

ks
\~A \~B

mk - 1,s - 1

mks
+

1

2!
k(k  - 1)s(s - 1)

1
\~A2 \~B2

mk - 2,s - 2

mks
+ . . .

\biggr) 

\times e - 
t
2
| \sigma | \omega \leq \~c \~Aktk \~Bsmks

\biggl( 
1 +

ks
\~A \~B

mk - 1,s - 1

mks

+
1

2!

1
\~A2 \~B2

ks
mk - 1,s - 1

mks
(k  - 1)(s - 1)

mk - 2,s - 2

mk - 1,s - 1
+ . . .

\biggr) 
e - 

t
2
| \sigma | \omega 

\leq \~c \~Aktk \~Bsmks

\biggl( 
1 +

\~\gamma 
\~A \~B

(k + s) +
1

2!

\~\gamma 2

\~A2 \~B2
(k + s)2 + . . .

\biggr) 
e - 

t
2
| \sigma | \omega 

\leq c1A
k
tkB

s
mkse

 - t
2
| \sigma | \omega , A = \~A exp

\biggl\{ 
\~\gamma 
\~A \~B

\biggr\} 
, B = \~B exp

\biggl\{ 
\~\gamma 
\~A \~B

\biggr\} 
.

Отже, \bigm| \bigm| xkDs
xG(t, x)

\bigm| \bigm| \leq (2\pi ) - 1c1A
k
tkB

s
mks

\int 
\BbbR 

e - 
t
2
| \sigma | \omega d\sigma 

= c2A
k
tkB

s
t - 1/\omega k2kss/\omega , \{ k, s\} \subset \BbbZ +.

Тодi \bigm| \bigm| Ds
xG(t, x)

\bigm| \bigm| \leq c2B
s
t - 1/\omega ss/\omega inf

k

A
k
k2k

(t - 1| x| )k
\leq c3B

s
t - 1/\omega ss/\omega exp

\bigl\{ 
 - a0t - 1/2| x| 1/2

\bigr\} 
,

де сталi c3, B, a0 > 0 не залежать вiд t ; тутми скористалися вiдомоюнерiвнiстю з [2, с. 204]:

e - 
\alpha 
e
| \xi | 1/\alpha \leq inf

k

Lkkk\alpha 

| \xi | k
\leq ce - 

\alpha 
e
| \xi | \alpha , c = e

\alpha e
2 ,

в якiй \alpha = 2, L = A.
Таким чином, справедливим є таке твердження.
Лема 4. Похiднi функцiї G(t, x) (за змiнною x) при t > 1 задовольняють нерiвностi\bigm| \bigm| Ds

xG(t, x)
\bigm| \bigm| \leq c3B

s
ss/\omega t - 1/\omega exp

\bigl\{ 
 - at - 1/2| x| 1/2

\bigr\} 
, s \in \BbbZ +, (21)

сталi c3, B, a0 > 0 не залежать вiд t.
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Лема 5. Функцiя G(t, \cdot ), t \in (0,+\infty ), як абстрактна функцiя параметра t зi значеннями
у просторi S1/\omega 

2 диференцiйовна по t.
Доведення. Iз властивостi неперервностi перетворення Фур’є (прямого та оберненого)

випливає, що для доведення твердження досить встановити, що функцiя F [G(t, \cdot )] = Q(t, \cdot )
як абстрактна функцiя параметра t iз значеннями в просторi S2

1/\omega диференцiйовна по t.
Iншими словами, потрiбно довести, що граничне спiввiдношення

\Phi \Delta t(\sigma ) :=
1

\Delta t

\bigl[ 
Q(t+\Delta t, \cdot ) - Q(t, \cdot )

\bigr] 
\rightarrow \partial 

\partial t
Q(t, \cdot ), \Delta t\rightarrow 0,

виконується в тому розумiннi, що:
1) Ds

\sigma \Phi \Delta t(\sigma )  - \rightarrow 
\Delta t\rightarrow 0

Ds
\sigma ( - a(\sigma )Q(t, \sigma )), s \in \BbbZ +, рiвномiрно на кожному вiдрiзку [a, b] \subset \BbbR ;

2)
\bigm| \bigm| Ds

\sigma \Phi \Delta t(\sigma )
\bigm| \bigm| \leq \=c \=Bss2s exp\{  - \=a| \sigma | \omega \} , s \in \BbbZ +, де сталi \=c, \=B, \=a > 0 не залежать вiд \Delta t,

якщо \Delta t досить мале.
Функцiя Q(t, \sigma ), (t, \sigma ) \in \Omega , диференцiйовна по t у звичайному розумiннi. Внаслiдок

теореми Лагранжа про скiнченнi прирости

\Phi \Delta t(\sigma ) =  - a(\sigma )Q(t+ \theta \Delta t, \sigma ).

Отже,

Ds
\sigma \Phi \Delta t(\sigma ) =  - 

s\sum 
l=0

C l
sD

l
\sigma a(\sigma )D

s - l
\sigma Q(t+ \theta \Delta t, \sigma )

i
Ds

\sigma 

\biggl( 
\Phi \Delta t(\sigma ) - 

\partial 

\partial t
Q(t, \sigma )

\biggr) 
=  - 

s\sum 
l=0

C l
sD

l
\sigma a(\sigma )

\Bigl[ 
Ds - l

\sigma Q(t+ \theta \Delta t, \sigma ) - Ds - l
\sigma Q(t, \sigma )

\Bigr] 
.

Оскiльки

Ds - l
\sigma Q(t+ \theta \Delta t, \sigma ) - Ds - l

\sigma Q(t, \sigma ) = Ds - l+1
\sigma Q(t+ \theta 1\Delta t, \sigma )\theta \Delta t, 0 < \theta 1 < 1,

то звiдси та з оцiнок (16) випливає

Ds - l+1
\sigma Q(t+ \theta 1\Delta t, \sigma )\theta \Delta t\rightarrow 0, \Delta t\rightarrow 0,

рiвномiрно на довiльному вiдрiзку [a, b] \subset \BbbR . Тодi й

Ds
\sigma \Phi \Delta t(\sigma ) \rightarrow Ds

\sigma 

\biggl( 
\partial 

\partial t
Q(t, \sigma )

\biggr) 
, \Delta t\rightarrow 0,

рiвномiрно на кожному вiдрiзку [a, b] \subset \BbbR . Отже, умова 1) виконується.
Урахувавши оцiнки, якi задовольняють функцiї a(\sigma ), Q(t, \sigma ) та їхнi похiднi, знайдемо

\bigm| \bigm| Ds
\sigma \Phi \Delta t(\sigma )

\bigm| \bigm| \leq c1c\varepsilon 

s\sum 
l=0

C l
sB

l
1l

l \~As - lt\nu (s - l)(s - l)2(s - l) exp
\bigl\{ 
 - (t+ \theta \Delta t)| \sigma | \omega + \varepsilon | \sigma | \omega 

\bigr\} 
(тут \varepsilon > 0 — довiльно фiксований параметр). Вiзьмемо \varepsilon = t/2. Тодi

| Ds
\sigma \Phi \Delta t(\sigma )| \leq cB

s
s2s exp

\bigl\{ 
 - a | \sigma | \omega 

\bigr\} 
, s \in \BbbZ +,

де B = 2max
\bigl\{ 
B1, \~At

\nu 
\bigr\} 
, a = t/2, причому всi сталi не залежать вiд \Delta t.
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Наслiдок 2. Правильною є формула

\partial 

\partial t
(f \ast G(t, \cdot )) = f \ast \partial G(t, \cdot )

\partial t
\forall f \in 

\Bigl( 
S
1/\omega 
2

\Bigr) \prime 
, t > 0.

Доведення. Згiдно з означенням згортки узагальненої функцiї з основною

f \ast G(t, \cdot ) =
\bigl\langle 
f\xi , T - x

\v G(t, \xi )
\bigr\rangle 
, \v G(t, \xi ) = G(t, - \xi ).

Тодi

\partial 

\partial t
(f \ast G(t, \cdot )) = lim

\Delta t\rightarrow 0

1

\Delta t

\bigl[ 
(f \ast G(t+\Delta t, \cdot )) - (f \ast G(t, \cdot ))

\bigr] 
= lim

\Delta t\rightarrow 0

\biggl\langle 
f\xi ,

1

\Delta t

\bigl[ 
T - x

\v G(t+\Delta t, \xi ) - T - x
\v G(t, \xi )

\bigr] \biggr\rangle 
.

Унаслiдок леми 5 граничне спiввiдношення

1

\Delta t

\bigl[ 
T - x

\v G(t+\Delta t, \xi ) - T - x
\v G(t, \xi )

\bigr] 
 - \rightarrow \partial 

\partial t
T - x

\v G(t, \xi ), \Delta t\rightarrow 0,

виконується в сенсi збiжностi за топологiєю простору S1/\omega 
2 . Тому

\partial 

\partial t
(f \ast G(t, \cdot )) =

\biggl\langle 
f\xi , lim

\Delta t\rightarrow 0

1

\Delta t

\bigl[ 
T - x

\v G(t+\Delta t, \xi ) - T - x
\v G(t, \xi )

\bigr] \biggr\rangle 

=

\biggl\langle 
f\xi ,

\partial 

\partial t
T - x

\v G(t, \xi )

\biggr\rangle 
=

\biggl\langle 
f\xi , T - x

\partial 

\partial t
\v G(t, \xi )

\biggr\rangle 
= f \ast \partial 

\partial t
G(t, \cdot ).

Твердження доведено.
Оскiльки

F [G(t, \cdot )] = Q(t, \sigma ) = Q1(t, \sigma )Q2(\sigma ) =

\int 
\BbbR 

G(t, x)ei\sigma x dx, t > 0,

то звiдси одержуємо формулу\int 
\BbbR 

G(t, x) dx = Q1(t, 0)Q2(0) = \lambda 0e
 - t, \lambda 0 =

\Biggl( 
\mu  - 

m\sum 
k=1

\mu kgk(0)e
 - tk

\Biggr)  - 1

(тут враховано, що a(0) = 1).
Лема 6. У просторi

\bigl( 
S
1/\omega 
2

\bigr) \prime правильними є спiввiдношення

1) G(t, \cdot ) \rightarrow F - 1[Q2], t\rightarrow +0;

2) \mu G(t, \cdot ) - 
m\sum 
k=1

\mu kBkG(tk, \cdot ) \rightarrow \delta , t\rightarrow +0 (22)

(тут \delta — дельта-функцiя Дiрака).
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Доведення. 1. Урахувавши властивiсть неперервностi перетворення Фур’є (прямого
та оберненого) у просторах типу S\prime , для доведення твердження досить встановити, що

F [G(t, \cdot )] = Q1(t, \cdot )Q2(\cdot ) \rightarrow Q2(\cdot ), t\rightarrow +0,

у просторi
\bigl( 
S2
1/\omega 

\bigr) \prime 
. Для цього вiзьмемо довiльну функцiю \varphi \in S2

1/\omega i, скориставшись тим,
що Q2 —мультиплiкатор у просторi S2

1/\omega , а також теоремоюЛебега про граничний перехiд
пiд знаком iнтеграла Лебега, знайдемо, що

\langle Q1(t, \cdot )Q2(\cdot ), \psi \rangle = \langle Q1(t, \cdot ), Q2(\cdot )\varphi (\cdot )\rangle 

=

\int 
\BbbR 

Q1(t, \sigma )Q2(\sigma )\varphi (\sigma ) d\sigma  - \rightarrow 
t\rightarrow +0

\int 
\BbbR 

Q2(\sigma )\varphi (\sigma ) d\sigma 

= \langle 1, Q2(\cdot )\varphi (\cdot )\rangle = \langle Q2, \varphi \rangle .

Звiдси вже випливає твердження 1.
2. Урахувавши твердження 1 i вигляд операторiв B1, . . . , Bm одержимо

\mu G(t, \cdot ) - 
m\sum 
l=1

\mu lBlG(tl, \cdot )  - \rightarrow 
t\rightarrow +0

\mu F - 1[Q2] - 
m\sum 
l=1

\mu lBlG(tl, \cdot )

= \mu F - 1[Q2] - 
m\sum 
l=1

\mu lF
 - 1[gl(\cdot )Q1(tl, \cdot )Q2(\cdot )]

= F - 1

\Biggl[ 
\mu Q2  - 

m\sum 
l=1

\mu lgl(\cdot )Q1(tl, \cdot )Q2(\cdot )

\Biggr] 

= F - 1

\Biggl[ \Biggl( 
\mu  - 

m\sum 
l=1

\mu lgl(\cdot )Q1(tl, \cdot )

\Biggr) 
Q2(\cdot )

\Biggr] 

= F - 1

\left[  \Biggl( \mu  - 
m\sum 
l=1

\mu lgl(\cdot )Q1(tl, \cdot )

\Biggr) \Biggl( 
\mu  - 

m\sum 
l=1

\mu lgl(\cdot )Q1(tl, \cdot )

\Biggr)  - 1
\right]  

= F - 1[1] = \delta .

Отже, спiввiдношення (22) виконується у просторi
\bigl( 
S
1/\omega 
2

\bigr) \prime 
.

Лему 6 доведено.
Зауваження 3. Якщо \mu = 1, \mu 1 = . . . = \mu m = 0, то задача (10), (11) вироджується в

задачу Кошi для рiвняння (10). У цьому випадку Q2(\sigma ) = 1 \forall \sigma \in \BbbR , G(t, x) = F - 1
\bigl[ 
e - ta(\sigma )

\bigr] 
i G(t, \cdot ) \rightarrow F - 1[1] = \delta при t\rightarrow +0 у просторi

\bigl( 
S
1/\omega 
1

\bigr) \prime 
.

Наслiдок 3. Нехай

\omega (t, x) = f \ast G(t, x), f \in 
\Bigl( 
S
1/\omega 
2,\ast 

\Bigr) \prime 
, (t, x) \in \Omega 
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тут

\bigl( 
S
1/\omega 
2,\ast 
\bigr) \prime — клас згортувачiв у просторi S1/\omega 

2

\bigr) 
. Тодi у просторi

\bigl( 
S
1/\omega 
2

\bigr) \prime виконується
граничне спiввiдношення

\mu \omega (t, \cdot ) - 
m\sum 
k=1

\mu kBk\omega (tk, \cdot ) \rightarrow f, t\rightarrow +0.

Доведення. Доведемо, що граничне спiввiдношення

F

\Biggl[ 
\mu \omega (t, \cdot ) - 

m\sum 
k=1

\mu kBk\omega (tk, \cdot )

\Biggr] 
\rightarrow F [f ], t\rightarrow +0,

виконується у просторi
\bigl( 
S2
1/\omega 

\bigr) \prime 
. Оскiльки f \in 

\bigl( 
S
1/\omega 
2,\ast 
\bigr) \prime 
, G(t, \cdot ) \in S

1/\omega 
2 при кожному t > 0, то

F [f \ast G(t, \cdot )] = F [f ] \cdot F [G(t, \cdot )] = F [f ] \cdot Q(t, \cdot ).

Звiдси випливає, що спiввiдношення

F

\Biggl[ 
\mu \omega (t, \cdot ) - 

m\sum 
k=1

\mu kBk\omega (tk, \cdot )

\Biggr] 
= F [f ]

\Biggl( 
\mu Q(t, \cdot ) - 

m\sum 
k=1

\mu kgk(\cdot )Q(tk, \cdot )

\Biggr) 

 - \rightarrow 
t\rightarrow +0

F [f ]

\Biggl( 
\mu Q2  - 

m\sum 
k=1

\mu kgk(\cdot )Q1(tk, \cdot )Q2(\cdot )

\Biggr) 

= F [f ]

\Biggl[ \Biggl( 
\mu  - 

m\sum 
k=1

\mu kgk(\cdot )Q1(tk, \cdot )

\Biggr) 
Q2(\cdot )

\Biggr] 
= F [f ]

виконується у просторi
\bigl( 
S2
1/\omega 

\bigr) \prime (тут враховано, що Q(t, \cdot ) \rightarrow Q2(\cdot ) при t \rightarrow +0 у просторi\bigl( 
S2
1/\omega 

\bigr) \prime ; див. доведення твердження 1 леми 6).
Твердження доведено.
Функцiя G(t, x) задовольняє рiвняння (10). Справдi,

\partial 

\partial t
G(t, \cdot ) = \partial 

\partial t
F - 1[Q(t, \cdot )] = F - 1

\biggl[ 
\partial 

\partial t
Q(t, \sigma )

\biggr] 
=  - F - 1[a(\sigma )Q(t, \sigma )],

\^BG(t, \cdot ) = F - 1[a(\sigma )F [G(t, \cdot )]] = F - 1[a(\sigma )Q(t, \sigma )].

Отже,
\partial G(t, x)

\partial t
+ \^BG(t, x) = 0, (t, x) \in \Omega ,

що й потрiбно було довести.
Функцiю G далi називатимемо фундаментальним розв’язком нелокальної багатоточ-

кової за часом задачi для рiвняння (10).
З наслiдку 3 випливає, що для рiвняння (10) нелокальну багатоточкову за часом задачу

можна ставити так: знайти функцiю u(t, x), (t, x) \in \Omega , яка задовольняє рiвняння (10) та
умову

\mu lim
t\rightarrow +0

u(t, \cdot ) - 
m\sum 
k=1

\mu kBku(tk, \cdot ) = f, f \in 
\Bigl( 
S
1/\omega 
2,\ast 

\Bigr) \prime 
, (23)
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де граничне спiввiдношення (23) розглядається у просторi
\bigl( 
S
1/\omega 
2

\bigr) \prime (обмеження на парамет-
ри \mu , \mu 1, . . . , \mu m, t1, . . . , tm i оператори B1, . . . , Bm такi ж, як i у випадку задачi (10), (11)).

Теорема 1. Задача (10), (23) є розв’язною, розв’язок визначає формула

u(t, x) = f \ast G(t, x), (t, x) \in \Omega ,

де G(t, x), (t, x) \in \Omega ,—фундаментальний розв’язок багатоточкової задачi для рiвняння (10),
u(t, \cdot ) \in S

1/\omega 
2 при кожному t > 0.

Доведення. Переконаємося в тому, що функцiя u(t, x), (t, x) \in \Omega , задовольняє рiвня-
ння (10). Справдi (див. наслiдок 2),

\partial u(t, x)

\partial t
=

\partial 

\partial t
(f \ast G(t, \cdot )) = f \ast \partial 

\partial t
G(t, x)

i
\^Bu(t, x) = F - 1[a(\sigma )F [f \ast G(t, \cdot )]].

Оскiльки f — згортувач у просторi S1/\omega 
2 , то

F [f \ast G(t, \cdot )] = F [f ]F [G(t, \cdot )] = F [f ]Q(t, \cdot ).

Отже,

\^Bu(t, x) = F - 1[a(\sigma )Q(t, \sigma )F [f ](\sigma )] =  - F - 1

\biggl[ 
\partial 

\partial t
Q(t, \cdot )F [f ]

\biggr] 

=  - F - 1

\biggl[ 
F

\biggl[ 
\partial 

\partial t
G(t, \cdot )

\biggr] 
F [f ]

\biggr] 

=  - F - 1

\biggl[ 
F

\biggl[ 
f \ast \partial G(t, \cdot )

\partial t

\biggr] \biggr] 
=  - f \ast \partial G(t, \cdot )

\partial t
.

Звiдси випливає, що функцiя u(t, x), (t, x) \in \Omega , задовольняє рiвняння (10). З наслiдку 3
маємо, що функцiя u(t, x) задовольняє умову (23) у вказаному сенсi.

Теорему 1 доведено.
Зауваження 4. Якщо в умовi (23) B1 = . . . = Bm = I (I — одиничний оператор), то

можна довести, що тодi задача (10), (23) коректно розв’язна, розв’язок визначає формула
u(t, x) = f \ast G(t, x), f \in 

\bigl( 
S
1/\omega 
1,\ast 
\bigr) \prime 
, (t, x) \in \Omega , G(t, x) = F - 1[Q(t, \cdot )],

Q(t, \sigma ) = e - ta(\sigma )

\Biggl( 
\mu  - 

m\sum 
k=1

\mu ke
 - tka(\sigma )

\Biggr)  - 1

,

G(t, \cdot ) \in S
1/\omega 
1 при кожному t > 0.

Теорема 2. Нехай u(t, x), (t, x) \in \Omega , — розв’язок задачi (10), (23). Тодi u(t, \cdot ) \rightarrow 0 при
t\rightarrow +\infty у просторi

\bigl( 
S
1/\omega 
2

\bigr) \prime 
.

Доведення. Розв’язок задачi (10), (23) визначає формула

u(t, x) = f \ast G(t, x) = \langle f\xi , G(t, x - \xi )\rangle , f \in 
\Bigl( 
S
1/\omega 
2,\ast 

\Bigr) \prime 
, (t, x) \in \Omega .
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Доведемо, що \langle u(t, \cdot ), \varphi \rangle \rightarrow 0 при t\rightarrow +\infty для довiльної функцiї \varphi \in S
1/\omega 
2 . Покладемо

\Psi t(\xi ) =

+\infty \int 
 - \infty 

G(t, x - \xi )\varphi (x) dx, \Psi t,R(\xi ) =

R\int 
 - R

G(t, x - \xi )\varphi (x) dx, R > 0, t > 1.

У цих позначеннях доведемо, що: а) при кожному t > 1 i R > 0 функцiя \Psi t,R(\xi ) є
елементом простору S1/\omega 

2 i \Psi t,R(\xi ) \rightarrow \Psi t(\xi ) при R\rightarrow +\infty у просторi S1/\omega 
2 ; б) \Psi t(\xi ) \in S

1/\omega 
2

при кожному t > 1. Звiдси дiстаємо, що

\langle u(t, \cdot ), \varphi \rangle =
+\infty \int 

 - \infty 

\langle f\xi , G(t, x - \xi )\rangle \varphi (x) dx =

\Biggl\langle 
f\xi ,

+\infty \int 
 - \infty 

G(t, x)\varphi (x+ \xi ) dx

\Biggr\rangle 

=

\Biggl\langle 
f\xi ,

+\infty \int 
 - \infty 

G(t, - y)\varphi ( - (y  - \xi )) dy

\Biggr\rangle 

=

\Biggl\langle 
f\xi ,

+\infty \int 
 - \infty 

G(t, - y) \v \varphi (y  - \xi ) dy

\Biggr\rangle 
, \v \varphi (z) = \varphi ( - z)

(тут u(t, \cdot ) розумiємо як регулярну узагальнену функцiю з простору
\bigl( 
S
1/\omega 
2

\bigr) \prime при кожно-
му t > 0).

Отже, встановимо властивiсть а) при фiксованих \{ k,m\} \subset \BbbZ +. Маємо

\bigm| \bigm| \bigm| \xi kDm
\xi \Psi t,R(\xi )

\bigm| \bigm| \bigm| \leq R\int 
 - R

\bigm| \bigm| \bigm| \xi k\varphi (x)Dm
\xi G(t, x - \xi )

\bigm| \bigm| \bigm| dx \leq 
+\infty \int 

 - \infty 

\bigm| \bigm| \bigm| \xi k\varphi (\xi + \eta )Dm
\eta G(t, \eta )

\bigm| \bigm| \bigm| d\eta .
Але \varphi \in S

1/\omega 
2 , а тому при деяких c, L,M > 0\bigm| \bigm| \bigm| \xi kDm

\xi \varphi (\xi )
\bigm| \bigm| \bigm| \leq cLkMmk2kmm/\omega , \{ k,m\} \subset \BbbZ +.

Звiдси при кожному \eta \in \BbbR 

sup
\xi \in \BbbR 

\bigm| \bigm| \xi k\varphi (\xi + \eta )
\bigm| \bigm| = sup

y\in \BbbR 

\bigm| \bigm| (y  - \eta )k\varphi (y)
\bigm| \bigm| = sup

y\in \BbbR 

\bigm| \bigm| \bigm| \bigm| \bigm| 
k\sum 

l=0

C l
ky

l( - \eta )k - l\varphi (y)

\bigm| \bigm| \bigm| \bigm| \bigm| 
\leq 

k\sum 
l=0

C l
k| \eta | k - l sup

y\in \BbbR 

\bigm| \bigm| yl\varphi (y)\bigm| \bigm| \leq c

k\sum 
l=0

C l
kL

ll2l| \eta | k - l.

Далi скористаємося оцiнками (21). Тодi

\bigm| \bigm| \xi kDm
\xi \Psi t,R(\xi )

\bigm| \bigm| \leq c
k\sum 

l=0

C l
kL

ll2l
+\infty \int 

 - \infty 

| \eta | k - l
\bigm| \bigm| Dm

\eta G(t, \eta )
\bigm| \bigm| d\eta 

\leq cc3B
m
mm/\omega t - 1/\omega 

k\sum 
l=0

C l
kL

ll2l
+\infty \int 

 - \infty 

| \eta | k - l exp
\Bigl\{ 
 - a0t - 1/2| \eta | 1/2

\Bigr\} 
d\eta .
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За допомогою безпосереднiх обчислень знаходимо
+\infty \int 

 - \infty 

| \eta | k - l exp
\bigl\{ 
 - a0t1/2| \eta | 1/2

\bigr\} 
d\eta \leq c4 \~L

kk2(k - l)tk - l+1, c4, \~L > 0.

Таким чином,\bigm| \bigm| \bigm| \xi kDm
\xi \Psi t,R(\xi )

\bigm| \bigm| \bigm| \leq cc3c4B
m
t1 - 1/\omega mm/\omega 

k\sum 
l=0

C l
kL

l \~Lk - ltk - ll2lk2(k - l)

\leq cB
m
L
k
k2kmm/\omega , (24)

де c = cc3c4t
1 - 1/\omega , L = 2max\{ L, \~Lt\} . Отже, \Psi t,R(\xi ) \in S

1/\omega 
2 при кожному t > 1 i довiльному

R > 0. Далi безпосередньо переконуємося у тому, що \Psi t,R(\xi ) \rightarrow \Psi t(\xi ) при R \rightarrow \infty 
рiвномiрно по \xi разом з усiма своїми похiдними на кожному вiдрiзку [a, b] \subset \BbbR . Крiм того,
сукупнiсть функцiй

\bigm| \bigm| \xi kDm
\xi \Psi t,R(\xi )

\bigm| \bigm| , \{ k,m\} \subset \BbbZ +, рiвномiрно обмежена (по R) у просторi
S
1/\omega 
2 (ця властивiсть випливає з оцiнок (24), в яких сталi c, B, L > 0 не залежать вiд R).

Це й означає виконання умови а).
З умови а) випливає б), оскiльки в досконалому просторi кожна обмежена множина є

компактною.
Використовуючи властивостi а), б), отримаємо спiввiдношення

\langle u(t, \cdot ), \varphi \rangle =
+\infty \int 

 - \infty 

G(t, - y)(f \ast \v \varphi )(y) dy.

Оскiльки f \in 
\bigl( 
S
1/\omega 
2

\bigr) \prime — згортувач у просторi S1/\omega 
2 , то f \ast \v \varphi \in S

1/\omega 
2 . Тодi, врахувавши

оцiнки (21) (при s = 0), отримаємо

\bigm| \bigm| \langle u(t, \cdot ), \varphi \rangle \bigm| \bigm| \leq +\infty \int 
 - \infty 

| G(t, - y)| | (f \ast \v \varphi )(y)| dy

\leq c

t1/\omega 

+\infty \int 
 - \infty 

| (f \ast \v \varphi )(y)| dy \leq c0

t1/\omega 
\rightarrow 0, t\rightarrow +\infty ,

для довiльної функцiї \varphi \in S
1/\omega 
2 , тобто u(t, \cdot ) \rightarrow 0 при t\rightarrow +\infty у просторi

\bigl( 
S
1/\omega 
2

\bigr) \prime 
.

Теорему 2 доведено.
Якщо узагальнена функцiя f в умовi (23) є фiнiтною (тобто носiй f (suppf ) — обме-

жена множина в \BbbR ), то можна говорити про рiвномiрне прямування до нуля на \BbbR при
t \rightarrow +\infty розв’язку u(t, x) задачi (10), (23). Зауважимо, що кожна фiнiтна узагальнена
функцiя є згортувачем у просторах типу S. Ця властивiсть випливає iз загального резуль-
тату, який стосується теорiї досконалих просторiв (див. [2, с. 173]): якщо \Phi —досконалий
простiр iз диференцiйовною операцiєю зсуву, то кожний фiнiтний функцiонал є згортува-
чем у просторi \Phi . Фiнiтнi функцiонали утворюють досить широкий клас. Зокрема, кожна
обмежена замкнена множина F \subset \BbbR є носiєм деякої узагальненої функцiї [9].
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Теорема 3. Нехай u(t, x) — розв’язок задачi (10), (23) з початковою функцiєю f, яка
є елементом простору

\bigl( 
S
1/\omega 
2

\bigr) \prime 
, де \omega \in (0, 1), i supp f — обмежена множина в \BbbR . Тодi

u(t, x) \rightarrow 0 при t\rightarrow +\infty рiвномiрно на \BbbR .
Наведемо схему доведення сформульованого твердження. Нехай supp f \subset [a1, b1] \subset 

[a2, b2] \subset \BbbR . Розглянемо функцiю \varphi \in S
1/\omega 
2 таку, що \varphi (x) = 1, x \in [a1, b1], supp\varphi \subset [a2, b2].

Оскiльки 1/\omega > 1, то в просторi S1/\omega 
2 фiнiтнi функцiї iснують [2]. Подамо функцiю u(t, x)

у виглядi
u(t, x) =

\bigl\langle 
f\xi , \varphi (\xi )G(t, x - \xi )

\bigr\rangle 
+
\bigl\langle 
f\xi , \gamma (\xi )G(t, x - \xi )

\bigr\rangle 
,

де \gamma = 1 - \varphi . Оскiльки

supp
\bigl( 
\gamma (\xi )G(t, x - \xi )

\bigr) 
\cap supp f = \varnothing ,

то
u(t, x) = t - 1/\omega 

\Bigl\langle 
f\xi , t

1/\omega \varphi (\xi )G(t, x - \xi )
\Bigr\rangle 
.

Для доведення сформульованого твердження досить встановити, що сукупнiсть функцiй
\Phi t,x(\xi ) = t1/\omega \varphi (\xi )G(t, x - \xi ) обмежена у просторi S1/\omega 

2 при всiх значеннях t i x.
Наприклад, якщо в (23) f = \delta , то \delta — згортувач у просторах типу S, supp \delta = \{ 0\} i

u(t, x) = \delta \ast G(t, x) = G(t, x). Iз оцiнок (21) безпосередньо випливає, що G(t, x) \rightarrow 0 при
t\rightarrow +\infty рiвномiрно на \BbbR .

Вiд iменi всiх авторiв вiдповiдальна за листування заявляє про вiдсутнiсть конфлiкту
iнтересiв.
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