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ПРО ДЕЯКI ЧАСТКОВI РОЗВ’ЯЗКИ ФАКТОРИЗУЮЧИХ ЛАНЦЮЖКIВ
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The study of factorizing chains, which are encountered in the investigation of self-similar potentials and
coherent states of quantum mechanics, in some cases, can be reduced to the study of nonlinear functional-
differential equations of neutral type with a linear deviation of the argument. We obtain new particular
solutions of these equations and study their asymptotic properties. In addition, new particular solutions of
the mentioned factorizing chains are obtained and some properties of these chains are investigated.

Дослiдження факторизуючих ланцюжкiв, що зустрiчаються при вивченнi автомодельних потенцi-
алiв i когерентних станiв квантової механiки, можна у деяких випадках звести до дослiдження
нелiнiйних диференцiально-функцiональних рiвнянь нейтрального типу з лiнiйним вiдхиленням
аргументу. Отримано новi частковi розв’язки цих рiвнянь i вивчено їхнi деякi асимптотичнi власти-
востi. Також одержано новi частковi розв’язки згаданих факторизуючих ланцюжкiв i дослiджено
деякi властивостi цих ланцюжкiв.

1. Вступ. При вивченнi автомодельних потенцiалiв i когерентних станiв квантової механiки
з’являються факторизуючi або одягаючi ланцюжки, дослiдження яких в деяких випадках
можна звести до дослiдження нелiнiйних диференцiально-функцiональних рiвнянь ней-
трального типу з лiнiйним вiдхиленням аргументу [1 – 3].

Метою цiєї статтi є пошук нових часткових розв’язкiв таких рiвнянь i згаданих факто-
ризуючих ланцюжкiв, а також вивчення їхнiх асимптотичних властивостей. Також буде
виведено перетворення Беклунда мiж факторизуючими ланцюжками з рiзними параметра-
ми. Це перетворення легко перевiрити прямими обчисленнями; вперше воно опублiковано
в [4], при цьому в [5] зазначено, що для його одержання використовували принцип нелi-
нiйної суперпозицiї. Проте виведення цього перетворення нiде не було опублiковано, тому
наводимо його у цiй роботi.

2. Нелiнiйнi диференцiально-функцiональнi рiвняння. Розглянемо рiвняння

d

dz
(v(z) + qv(qz)) - (v(z) - qv(qz))2 = \mu , (1)

d

dz
(f(z) + qf(qz)) + f2(z) - q2f2(qz) = \mu 

\bigl( 
q2  - 1

\bigr) 
, (2)

де \{ z, q, \mu \} \subset \BbbC ; мiж якими iснує тiсний зв’язок [5]. А саме, якщо v(z) — розв’язок
рiвняння (1), то функцiя

f(z) = qv(qz) - v(z) (3)
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буде розв’язком рiвняння (2). Навпаки, якщо f(z) — розв’язок рiвняння (2) та | q| < 1, то
функцiя

v(z) =  - 
+\infty \sum 
n=0

qnf(qnz) (4)

буде розв’язком рiвняння (1) за умови, що цей ряд сходиться та допускає почленне дифе-
ренцiювання. Зокрема, якщо | q| < 1, цей зв’язок дозволяє встановити взаємно однозна-
чну вiдповiднiсть мiж аналiтичними розв’язками рiвнянь (1) i (2) за допомогою рiвностi
f(0) = (q - 1)v(0), при цьому радiуси збiжностi вiдповiдних розв’язкiв збiгаються. Рiвнян-
ня (1) описує автомодельну редукцiю

vj(z) = qjv
\bigl( 
qjz
\bigr) 
, \beta j = \mu q2j

нескiнченного ланцюжка

v\prime j+1 + v\prime j = (vj+1  - vj)
2 + \beta j , uj = 2v\prime j . (5)

Цей ланцюжок пов’язаний рiвностями

fj = vj+1  - vj (6)

з факторизуючим ланцюжком Iнфельда [6]

f \prime j+1 + f \prime j = f2j+1  - f2j + \beta j+1  - \beta j , (7)

останнiй, у свою чергу, еквiвалентний послiдовностi перетворень Дарбу

uj =  - f \prime j + f2j + \beta j , uj+1 = uj + 2f \prime j

для операторiв Шредiнгера Lj =  - D2 + uj , D
df
=

d

dz
[1]. У випадку

vj+N = vj + C1, fj+N = fj , \beta j+N = \beta j , (8)

де N — натуральне число, C1 — деяка стала величина (надалi символи Cn познача-
ють деякi константи); ланцюжок (5) i скiнченний ланцюжок (7) описують нерухомi точки
названих перетворень Дарбу та їхнiх суперпозицiй. Рiвняння (2) описує автомодельну ре-
дукцiю

fj(z) = qjf
\bigl( 
qjz
\bigr) 
, \mu j = \mu 

\bigl( 
q2  - 1

\bigr) 
q2j , \mu j = \beta j+1  - \beta j

факторизуючого ланцюжка (7).
У [7], у першiй теоремi, вивчено асимптотичнi властивостi розв’язкiв рiвняння (1) на

основi методiв, розроблених у [8] для рiвняння (2). Однак зв’язок (3), (4) мiж рiвняння-
ми (1) i (2) дозволяє пiсля невеликого переформулювання застосувати теорему 10 iз [8] до
рiвняння (1). У наступнiй теоремi другий пiдхiд суттєво покращує майже всi твердження
теореми 1 iз [7].

Будемо дослiджувати неперервно диференцiйовний розв’язок початкової задачi (1),
v(0) \in \BbbR , визначений на деякому максимальному напiвiнтервалi [0, Tmax). Iснування, єди-
нiсть i нескiнченна диференцiйовнiсть цього розв’язку випливають iз леми 6 у [8].
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Теорема. 1) Якщо \mu < 0, 0 < q < 1 i\bigm| \bigm| \bigm| \bigm| \bigm| v(0) - 
\Biggl( 
 - 
\sqrt{} 

| \mu | 
1 - q

\Biggr) \bigm| \bigm| \bigm| \bigm| \bigm| < 2

\sqrt{} 
| \mu | 

1 - q
max

\Biggl\{ \bigl( 
1 - 3q2

\bigr) \bigl( 
1 + q2

\bigr) 
1 + q4

,

\bigl( 
1 - q

1
2

\bigr) \bigl( 
1 - q

3
2

\bigr) 
(1 + q)2

\Biggr\} 
,

то Tmax = +\infty i limt\rightarrow +\infty v(t) =  - 
\sqrt{} 

| \mu | 
1 - q

;

2) якщо \mu \leq 0, 0 < q <
1\surd 
2
i v(0) >

\sqrt{} 
| \mu | 

1 - q
, то Tmax < +\infty , v\prime (t) > 0 для всiх t \in [0, Tmax)

i limt\rightarrow Tmax - 0 v(t) = +\infty ;

3) якщо \mu > 0, 0 < q <
1\surd 
2
i v(0) \geq  - q - 1l(q)

\surd 
\mu , де

l(q) =

\left\{           
max

\Biggl\{ \biggl( 
2q + q2 +

1

1 - q4

\biggr)  - 1
2 1

(1 + q2)
1
2

,

\biggl( 
1 + q

2(1 - q)

\biggr) 1
2

\Biggr\} 
, 0 < q <

\surd 
2 - 1,

\biggl( 
1 + q

2(1 - q)

\biggr) 1
2

,
\surd 
2 - 1 \leq q <

1\surd 
2
,

то Tmax < +\infty , v\prime (t) > 0 для всiх t \in [0, Tmax) i limt\rightarrow Tmax - 0 v(t) = +\infty .

Доведення. Достатньо застосувати до рiвняння (2) та початкового значення f(0) =
(q  - 1)v(0) теорему 10 iз [8], а також урахувати п. 4 теореми 1 iз [7].

Теорему доведено.
Зазначимо, що у розв’язкiв v(t) i f(t), t \in \BbbR +, описаних у теоремi, спiльна область

визначення. Також зауважимо, що теорема 10 iз [8] не перекриває повнiстю п. 4 теореми 1
iз [7]. Останнє зауваження дає можливiсть, застосовуючи до рiвняння (2) твердження 4
теореми 1 iз [7] пiсля вiдповiдного переформулювання, трохи доповнити теорему 10 iз [8]
такою лемою.

Лема 1. Припустимо, що 0 < q < 1 i f(t) \in C1[0, Tmax) є розв’язком початкової задачi

d

dt
(f(t) + qf(qt)) + f2(t) - q2f2(qt) = \mu , f(0) = f0 \in \BbbR . (9)

Якщо \mu < 0, 0 < q <
1\surd 
2
i f0 \leq 1

q

\biggl( 
| \mu | 
2

\biggr) 1
2

, то Tmax < +\infty , f \prime (t) < 0 для всiх t \in [0, Tmax) i

limt\rightarrow Tmax - 0 f(t) =  - \infty ; якщо при цьому 0 < q <
\surd 
2 - 1 i

1

q

\biggl( 
| \mu | 
2

\biggr) 1
2

< f0 \leq q - 1h(q)
\sqrt{} 

| \mu | , де

h(q) = max

\Biggl\{ 
(1 - q)

\biggl( 
2q + q2 +

1

1 - q4

\biggr)  - 1
2 1

(1 + q2)
1
2 (1 - q2)

1
2

,
1\surd 
2

\Biggr\} 
,

то Tmax < +\infty i limt\rightarrow Tmax - 0 f(t) =  - \infty .

Доведення. Достатньо застосувати до рiвняння (2) та початкового значення f(0) =
(q  - 1)v(0) п. 4 теореми 1 iз [7], а також використати п. 4 теореми 10 iз [8]. При цьому
треба врахувати, що параметри у правих частинах рiвнянь (2) i (9) вiдрiзняються.

Лему 1 доведено.
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Додаткову iнформацiю про асимптотичну поведiнку розв’язкiв рiвнянь (1) i (2) наведено
в [9, 10], при цьому в теоремi 4 з [10] розв’язки з дiйсним аргументом не обов’язково
повиннi бути визначенi в околi точки t = 0, iснування таких розв’язкiв показано в [5].
Крiм того, розв’язки у згаданiй теоремi неперервно диференцiйовнi скiнченне число разiв.
Деякi добре аргументованi припущення про асимптотику розв’язкiв рiвнянь (1) i (2) можна
знайти в [5, 8].

Зазначимо, що лiнеаризацiї рiвнянь (1) i (2) в околi постiйних розв’язкiв є окремими
випадками узагальненого рiвняння пантографа, асимптотична поведiнка розв’язкiв цього
рiвняння може суттєво залежати вiд їхньої гладкостi (див. [11], приклад 1), однак така
залежнiсть наявна не завжди [9].

Аналiтичний розв’язок початкової задачi (1), v(0) = 0 єдиний i є непарною функцiєю
при кожному значеннi параметра q [12]. Позначимо його v(z, q). Завдяки непарностi цей
розв’язок також задовольнятиме рiвняння (1) iз параметром  - q (з тiєю ж початковою
умовою). Отже,

v(z, q) \equiv v(z, - q). (10)

Припустимо, що розв’язок v(z, q) розкладається в ряд за степенями q. З (10) випливає, що
в цьому розкладi є лише парнi степенi q, тобто

v(z, q) =

+\infty \sum 
n=0

hn(z)q
2n = h0(z) + h1(z)q

2 + h2(z)q
4 + . . . .

Зокрема при \mu = 1 iз (1) знаходимо

h0(z) = tg(z), h1(z) = z  - 
z +

1

2
sin(2z)

cos2(z)
.

У [1] дослiджувався факторизуючий ланцюжок (7). Зважаючи на рiвностi (6), наведенi
у згаданiй роботi мiркування можна повторити i для ланцюжка (5).

Для випадку q = e2\pi i/3, вибираючи vj(z) = qjv
\bigl( 
qjz
\bigr) 
, \lambda j = \mu q2j , \mu = (1 + q) - 1 i

враховуючи зв’язок fj = vj+1  - vj , qfj(qz) = fj+1(z), отримуємо рiвнiсть, аналогiчну
тотожностi (23) з [1]:

u0(x) = 2v\prime 0(x) = 2\wp (x+ w2), u0(0) =  - 2\lambda 1 = 2,

де функцiю \wp визначено умовами g2 = 0, g3 = 4 ; числа g2,3 i w1,2,3 визначено в [13],
§ 18.13. Iз формули 18.6.1 [13] випливає рiвнiсть

v0(x) =  - \zeta (x+ w2) + C2.

Зауважимо, що при зроблених припущеннях iз формули 18.2.3 [13] отримуємо тотожнiсть

q\zeta (qz) = \zeta (z). (11)

Тодi

qv0(qx) =  - q\zeta 
\bigl( 
q
\bigl( 
x+ q2w2

\bigr) \bigr) 
+ qC2 =  - \zeta (x - w3) + qC2. (12)
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Виберемо C2 =
\zeta ( - w2  - w3)

q  - 1
i, враховуючи формули складання та диференцiювання для

елiптичних функцiй з [13], обчислимо вирази

qv0(qx) - v0(x) =  - 1

2

\wp \prime (x+ w2)

\wp (x+ w2) - q
,

(qv0(qx) - v0(x))
2 = \wp (x - w3) + \wp (x+ w2) + \wp ( - w2  - w3), (13)

d

dx
(qv0(qx) + v0(x)) = \wp (x - w3) + \wp (x+ w2).

За допомогою результатiв iз [13] неважко переконатися, що функцiя v0(x) є розв’язком
рiвняння (1).

Застосовуючи формули однорiдностi для елiптичних функцiй з [13], запишемо функцiю
v0(x) у виглядi

v0(x) =  - \zeta (x+ w2) +
\zeta (w2) + \zeta (w3)

1 - q
. (14)

Використовуючи формулу 18.2.14 iз [13] i позначаючи символами w1,i, i = 1, 2, 3, напiвпе-
рiоди функцiї \wp (z; 0, 1), отримуємо рiвнiсть

\zeta (wi; 0, 4) = \zeta 
\Bigl( 
4 - 

1
6w1,i; 0, 4

\Bigr) 
= 4

1
6 \zeta (w1,i; 0, 1).

Звiдси за допомогою результатiв iз § 18.13 [13] отримуємо значення

\zeta (w2; 0, 4) = 4
1
6

\surd 
3

8
\Gamma 3

\biggl( 
1

3

\biggr) 
, \zeta (w3; 0, 4) =  - q4

1
6

\surd 
3

8
\Gamma 3

\biggl( 
1

3

\biggr) 
.

Зауважимо, що для величини \Gamma (1/3) явних формул зараз немає. Тодi

v0(x) =  - \zeta (x+ w2) + 4
1
6

\surd 
3

8
\Gamma 3

\biggl( 
1

3

\biggr) 
.

При зроблених припущеннях у \zeta -функцiї визначаюча її решiтка симетрична вiдносно
дiйсної осi, тому розв’язок v0(x) дiйсний на дiйснiй осi x \in \BbbR . Використовуючи непарнiсть
функцiї \zeta , тотожнiсть (11) i формулу (14), отримуємо v0(0) = 0.

Зауважимо, що за допомогою рiвностi (12), формул складання для елiптичних функцiй
з [13] i трохи iнакше групуючи доданки, можна отриматище одну формулу для рiзницi (13):

qv0(qx) - v0(x) =
1

2

\wp \prime (x - w3)

\wp (x - w3) - q
.

З огляду на (3) права частина останньої рiвностi тотожно збiгається з розв’язком (24) з [1].
У цьому також можна переконатися за допомогою результатiв iз [13].

Трохи узагальнимо отриманий результат: розглянемо функцiю

v1(x) =  - \zeta (x+ a) + C3, (15)
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де a \in \BbbC — довiльна точка, i припустимо, що qn = 1, n = 2, 3, 4, 6, q \not = 1, а функцiя
Вейєрштрасса \zeta (z| w,w\prime ) така, що решiтки \Omega = \{ w,w\prime \} i \Omega \prime = \{ qw, qw\prime \} збiгаються; заува-
жимо, що згiдно з кристалографiчною теоремою обмеження не iснує iнших поворотiв, що
переводять решiтку в себе. При зроблених припущеннях внаслiдок формули 18.2.3 iз [13]
виконується рiвнiсть (11). Тому, використовуючи формули складання та диференцiювання

для елiптичних функцiй з [13] i вибираючи C3 =  - 
\zeta 
\bigl( 
a - q - 1a

\bigr) 
q  - 1

, отримуємо

qv1(qx) - v1(x) =
1

2

\wp \prime \bigl( x+ q - 1a
\bigr) 
 - \wp \prime \bigl( a - q - 1a

\bigr) 
\wp (x+ q - 1a) - \wp (a - q - 1a)

,

(qv1(qx) - v1(x))
2 = \wp (x+ a) + \wp 

\bigl( 
x+ q - 1a

\bigr) 
+ \wp 

\bigl( 
a - q - 1a

\bigr) 
, (16)

d

dx
(qv1(qx) + v1(x)) = \wp 

\bigl( 
x+ q - 1a

\bigr) 
+ \wp (x+ a).

Таким чином, функцiя v1 є розв’язком рiвняння (1) iз параметром \mu =  - \wp 
\bigl( \bigl( 
1 - q - 1

\bigr) 
a
\bigr) 
.

Внаслiдок парностi функцiї \wp замiна параметра a в (15) числом  - a не приведе до
змiни параметра \mu =  - \wp 

\bigl( \bigl( 
1 - q - 1

\bigr) 
a
\bigr) 
, тому, виконуючи вказану замiну, отримуємо ще

один розв’язок рiвняння (1):

v2(x) =  - \zeta (x - a) - 
\zeta 
\bigl( \bigl( 
1 - q - 1

\bigr) 
a
\bigr) 

1 - q
.

З (3) та (16) випливає, що функцiя

f1(x) =
1

2

\wp \prime \bigl( x+ q - 1a
\bigr) 
 - \wp \prime \bigl( a - q - 1a

\bigr) 
\wp (x+ q - 1a) - \wp (a - q - 1a)

є розв’язком рiвняння (2). Позначимо \xi = a - q - 1a, тодi

f1(x) =
1

2

\wp \prime 
\biggl( 
x+

\xi 

q  - 1

\biggr) 
 - \wp \prime (\xi )

\wp 

\biggl( 
x+

\xi 

q  - 1

\biggr) 
 - \wp (\xi )

, \mu =  - \wp (\xi ).

Якщо у розв’язок рiвняння (2) з прикладу 6 iз [12] замiсть параметра \xi поставити число
 - \xi , то, враховуючи формулу 18.4.3 з [13] i непарнiсть функцiї \zeta , отримаємо розв’язок f1.
А якщо при виведеннi рiвностi (16) трохи змiнити угруповання доданкiв, то одержуємо
тотожнiсть

qv1(qx) - v1(x) =  - 1

2

\wp \prime (x+ a) - \wp \prime \bigl( q - 1a - a
\bigr) 

\wp (x+ a) - \wp (q - 1a - a)

i, визначивши \xi = q - 1a  - a, приходимо до розв’язку з прикладу 6 iз [12]. Зауважимо, що
розв’язок f1 i розв’язок з прикладу 6 iз [12]—це два рiзнi розв’язки рiвняння (2) з параметром
\mu =  - \wp (\pm \xi ).

Однак зведення факторизуючого ланцюжка (7) до рiвняння (2) iстотно обмежує коло
розв’язкiв початкової задачi. Наприклад, у [2], у формулi (35) наведено приклад часткового
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розв’язку факторизуючого ланцюжка (7) iз довiльною елiптичною функцiєю Вейєрштрас-
са \wp . Аналогiчно за допомогою формул складання та диференцiювання для елiптичних
функцiй з [13] неважко перевiрити, що послiдовнiсть функцiй

vj(x) =  - \zeta (x+ yj) + cj , \beta j =  - \wp (zj), cj+1  - cj = \zeta (zj), yj+1  - yj = zj (17)

є розв’язком ланцюжка (5); при цьому легко отримуємо розв’язок (35) iз [2]:

fj = vj+1  - vj =  - 1

2

\wp \prime (x+ yj) - \wp \prime (zj)

\wp (x+ yj) - \wp (zj)
.

Iз додаткової умови

yj+N  - yj = zj+N - 1 + zj+N - 2 + . . .+ zj = 0 (18)

одержуємо рiвностi (8). При виконаннi ще однiєї додаткової умови

cj+N  - cj = \zeta (zj+N - 1) + \zeta (zj+N - 2) + . . .+ \zeta (zj) = 0 (19)

отримуємо тотожний збiг
vj+N = vj .

Зауважимо, що у випадку N = 3 за допомогою прикладу 20.4.1 iз [14], а також формул для
елiптичних функцiй з [13] можна легко довести,що умови (18) i (19) еквiвалентнi умовi (18)
i рiвностi \wp \prime (zj+m) = \wp \prime (zj+l) для деяких \{ m, l\} \subset \{ 0, 1, 2\} , m \not = l. Також зазначимо, що
для дiйсностi функцiї vj(x), x \in \BbbR , достатньо, щоб решiтка, що визначає функцiю \zeta в (17),
була симетричною щодо дiйсної осi та \{ yj , cj\} \subset \BbbR .

Аналiтичнi розв’язки рiвнянь (1) i (2) вивчали в [1, 12, 15]. У лемi з [1] оцiнювали
радiус збiжностi Rq аналiтичного розв’язку початкової задачi (9), f(0) = 0, при цьому

константу \alpha з цiєї леми можна зменшити до величини \alpha =
1 + | q| 4

1 - | q| 4
i тим самим покращити

оцiнку знизу величини Rq. Тодi, враховуючи, що радiуси збiжностi аналiтичних розв’язкiв
рiвнянь (1) i (2) з початковими значеннями f(0) = v(0) = 0 збiгаються, i застосовуючи
уточнену лему з [1] до рiвняння (2), можна покращити результат леми 1 iз [12].

3. Перетворення Беклунда. Для отримання перетворення Беклунда мiж факторизу-
ючими ланцюжками з рiзними параметрами розпишемо зазначенi на початку цiєї статтi
перетворення Дарбу, дотримуючись позначень i термiнологiї § 3.3.1 iз [16]. Для цього запи-
шемо диференцiальний оператор другого порядку одновимiрного стацiонарного рiвняння
Шредiнгера у виглядi добутку двох диференцiальних операторiв першого порядку

A
\pm 
= \pm D +W, H0 =  - D2 + V0 = A+A - + \varepsilon =  - D2 +W \prime +W 2 + \varepsilon ,

W \prime +W 2 + \varepsilon = V0,

де \varepsilon — певна константа. Для деякого ненульового розв’язку \psi 0(x, \varepsilon ) рiвняння\bigl( 
 - D2 + V0  - \varepsilon 

\bigr) 
\psi 0(x, \varepsilon ) = 0 (20)

вважаємо, що
W (x) =W (x, \varepsilon ) =

\psi \prime 
0(x, \varepsilon )

\psi 0(x, \varepsilon )
.
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Запишемо оператор H1 у виглядi

H1 = A - A+ + \varepsilon =  - D2 + V0  - 2W \prime =  - D2 + V1, V1 = V0  - 2W \prime .

Функцiя \psi 1(x,E) — деякий розв’язок рiвняння\bigl( 
 - D2 + V1

\bigr) 
\psi 1(x,E) = E\psi 1(x,E)

або \bigl( 
 - D2 + V0  - 2W \prime (x, \varepsilon ) - E

\bigr) 
\psi 1(x,E) = 0. (21)

Згiдно з рiвнiстю (3.85) iз [16] вважаємо, що

\psi 1(x,E) = A - \psi 0(x,E) = \{ W (x, \varepsilon ) - W (x,E)\} \psi 0(x,E). (22)

Розв’язки \psi 0(x, \varepsilon ) i \psi 0(x,E) довiльнi. Зокрема, при \varepsilon = E це можуть бути лiнiйно незалеж-
нi розв’язки одного рiвняння.

Аналогiчно отримуємо рiвнiсть

\psi 1(x, \varepsilon ) = \{ W (x,E) - W (x, \varepsilon )\} \psi 0(x, \varepsilon ). (23)

Продиференцiюємо рiвностi (22) i (23):

\psi \prime 
1(x,E) =

\bigl\{ 
W \prime (x, \varepsilon ) - W \prime (x,E)

\bigr\} 
\psi 0(x,E) + \{ W (x, \varepsilon ) - W (x,E)\} \psi \prime 

0(x,E), (24)

\psi \prime 
1(x, \varepsilon ) =

\bigl\{ 
W \prime (x,E) - W \prime (x, \varepsilon )

\bigr\} 
\psi 0(x, \varepsilon ) + \{ W (x,E) - W (x, \varepsilon )\} \psi \prime 

0(x, \varepsilon ). (25)

Роздiлимо тотожнiсть (24) на рiвнiсть (22) i (25) на (23):

\psi \prime 
1(x,E)

\psi 1(x,E)
=
W \prime (x, \varepsilon ) - W \prime (x,E)

W (x, \varepsilon ) - W (x,E)
+
\psi \prime 
0(x,E)

\psi 0(x,E)
,

\psi \prime 
1(x, \varepsilon )

\psi 1(x, \varepsilon )
=
W \prime (x,E) - W \prime (x, \varepsilon )

W (x,E) - W (x, \varepsilon )
+
\psi \prime 
0(x, \varepsilon )

\psi 0(x, \varepsilon )
.

З двох останнiх рiвностей отримуємо тотожнiсть

\psi \prime 
0(x, \varepsilon )

\psi 0(x, \varepsilon )
+
\psi \prime 
1(x,E)

\psi 1(x,E)
=
\psi \prime 
0(x,E)

\psi 0(x,E)
+
\psi \prime 
1(x, \varepsilon )

\psi 1(x, \varepsilon )
. (26)

Крiм цього, з (22) i (23) маємо рiвнiсть

\psi 1(x,E)

\psi 0(x,E)
=  - \psi 1(x, \varepsilon )

\psi 0(x, \varepsilon )
.

Запишемо тотожнiсть (24) у виглядi

\psi \prime 
1(x,E)

\psi 1(x,E)

\psi 1(x,E)

\psi 0(x,E)
=W \prime (x, \varepsilon ) - W \prime (x,E) + \{ W (x, \varepsilon ) - W (x,E)\} \psi 

\prime 
0(x,E)

\psi 0(x,E)
.
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Враховуючи рiвнiсть (22) i визначення функцiї W, з останньої тотожностi отримуємо
\psi \prime 
1(x,E)

\psi 1(x,E)
\{ W (x, \varepsilon ) - W (x,E)\} = E  - \varepsilon  - W 2(x, \varepsilon ) +W 2(x,E)

+ \{ W (x, \varepsilon ) - W (x,E)\} W (x,E),

\{ W (x, \varepsilon ) - W (x,E)\} 
\biggl[ 
\psi \prime 
1(x,E)

\psi 1(x,E)
+W (x, \varepsilon )

\biggr] 
= E  - \varepsilon . (27)

У ланцюжку (7) скорочено позначимо \mu j = \beta j+1 - \beta j . I нехай \phi 0 —деякий ненульовий
розв’язок рiвняння

\phi \prime \prime 0 =
\bigl\{ 
f \prime j + f2j  - \mu j

\bigr\} 
\phi 0.

Тодi оберемо
fj+1 =  - \phi 

\prime 
0

\phi 0
.

Визначимо потенцiал V0(z) = f \prime j(z) + f2j (z) i параметр \varepsilon = \mu j . Тодi з урахуванням рiвно-
стi (20) можна вважати, що \phi 0(z) = \psi 0(z, \mu j) i

fj+1 = fj+1(z | \mu j) =  - \psi 
\prime 
0(z, \mu j)

\psi 0(z, \mu j)
=  - W (z, \mu j).

Використовуючи новi позначення, рiвняння для функцiї fj+2 можна записати у виглядi

f \prime j+2  - f2j+2 = \mu j + \mu j+1  - V0(z) + 2W \prime (z, \mu j).

Нехай \phi 1 — деякий ненульовий розв’язок рiвняння

\phi \prime \prime 1 =
\bigl\{ 
V0(z) - 2W \prime (z, \mu j) - (\mu j + \mu j+1)

\bigr\} 
\phi 1;

тодi оберемо
fj+2 =  - \phi 

\prime 
1

\phi 1
.

Визначимо E = \mu j + \mu j+1, а далi, враховуючи рiвнiсть (21), можна вважати, що \phi 1 =
\psi 1(z, \mu j + \mu j+1) i

fj+2 = fj+2(z | \mu j , \mu j+1) =  - \psi 
\prime 
1(z, \mu j + \mu j+1)

\psi 1(z, \mu j + \mu j+1)
.

Проводячи аналогiчнi мiркування для функцiй \~fj+1 i \~fj+2 таких, що
\~f \prime j+1 + f \prime j =

\~f2j+1  - f2j + \mu j + \mu j+1,

\~f \prime j+2 +
\~f \prime j+1 =

\~f2j+2  - \~f2j+1  - \mu j+1,

отримуємо

\~fj+1 = fj+1(z | \mu j + \mu j+1) =  - \psi 
\prime 
0(z, \mu j + \mu j+1)

\psi 0(z, \mu j + \mu j+1)
=  - W (z, \mu j + \mu j+1),

\~fj+2 = fj+2(z | \mu j + \mu j+1, - \mu j+1) =  - \psi 
\prime 
1(x, [\mu j + \mu j+1] - \mu j+1)

\psi 1(x, [\mu j + \mu j+1] - \mu j+1)
=  - \psi 

\prime 
1(x, \mu j)

\psi 1(x, \mu j)
.

Тепер рiвностi (26) i (27) з урахуванням вибраних значень параметрiв \varepsilon i E можна записати
через функцiї fj+1, fj+2, \~fj+1 i \~fj+2 таким чином.
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Лема 2. Для факторизуючого ланцюжка (7) виконується перетворення Беклунда

fj+1(z | \mu j) + fj+2(z | \mu j , \mu j+1) = fj+1(z | \mu j + \mu j+1) + fj+2(z | \mu j + \mu j+1, - \mu j+1),

\{ fj+1(z | \mu j) - fj+1(z | \mu j + \mu j+1)\} [fj+2(z | \mu j , \mu j+1) + fj+1(z | \mu j)] = \mu j+1,

де функцiї fn є розв’язками рiвнянь

f \prime j+1(z | \mu j) + f \prime j = \mu j + f2j+1(z | \mu j) - f2j ,

f \prime j+2(z | \mu j , \mu j+1) + f \prime j+1(z | \mu j) = \mu j+1 + f2j+2(z | \mu j , \mu j+1) - f2j+1(z | \mu j)

i

f \prime j+1(z | \mu j + \mu j+1) + f \prime j = \mu j + \mu j+1 + f2j+1(z | \mu j + \mu j+1) - f2j ,

f \prime j+2(z | \mu j + \mu j+1, - \mu j+1) + f \prime j+1(z | \mu j + \mu j+1)

=  - \mu j+1 + f2j+2(z | \mu j + \mu j+1, - \mu j+1) - f2j+1(z | \mu j + \mu j+1).

Лема 2 встановлює взаємно однозначну вiдповiднiсть мiж парами розв’язкiв fj+1(z | 
\mu j), fj+2(z | \mu j , \mu j+1) i fj+1(z | \mu j + \mu j+1), fj+2(z | \mu j + \mu j+1, - \mu j+1), яку можна легко
перевiрити прямими обчисленнями.

У випадку \mu j+n = \mu ( - 1)n, n \geq 0, вибираючи в лемi 2 fj+1(z | 0) =  - fj(z), отримуємо
вiдому (див. [2, с. 88]) рiвнiсть

fj+2(z | \mu , - \mu ) + fj+1(z | \mu ) =  - \mu 

fj+1(z | \mu ) + fj(z)

або для всього ланцюжка (7):

fj+n + fj+n - 1 =
\mu ( - 1)n - 1

fj+n - 1 + fj+n - 2
, n \geq 2,

fj+n = fj+n - 4, n \geq 4.

Проте якщо функцiю fj визначено, то функцiю fj+1 треба шукати як розв’язок вiдпо-
вiдного рiвняння Рiккатi, що не завжди є простою задачею. Тому на функцiю fj можна
накладати додатковi умови: наприклад, припустимо, що функцiя fj є розв’язком рiвняння

\pm q2f \prime j(qz) + f \prime j(z) = \mu + q2f2j (qz) - f2j (z), (28)

тодi можна вибрати fj+1(z) = fj+1(z | \mu ) = \pm qfj(qz). А якщо в лемi 2 покласти, що
fj+1(z | 0) =  - fj , то рiвняння для функцiї fj+2(z | 0, \mu ) набуває вигляду

f \prime j+2(z | 0, \mu ) - f \prime j(z) = \mu + f2j+2(z | 0, \mu ) - f2j (z).

I якщо додатково припустити, що функцiя fj — розв’язок рiвняння

\pm q2f \prime j(qz) - f \prime j(z) = \mu + q2f2j (qz) - f2j (z), (29)

то можна вибрати fj+2(z | 0, \mu ) = \pm qfj(qz). Пiсля цього залишається лише виразити за до-
помогою леми 2 розв’язок fj+1(z | \mu ) через функцiї fj+1(z | 0) i fj+2(z | 0, \mu ). Властивостi
розв’язкiв рiвнянь (28) i (29) можуть суттєво вiдрiзнятися.
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