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We investigate the problem of determination of conditions of existence of solutions of the weakly nonli-
near periodic boundary-value problem for systems of ordinary differential equations with switchings and
construction of these solutions. The critical case where the equation for the generating amplitudes of
the weakly nonlinear periodic boundary-value problem with switchings does not turn into the identity
is considered. We improve the classification of critical and noncritical cases and construct an iterative
algorithm for finding solutions of the weakly nonlinear periodic boundary-value problem with switchings
in the critical case on the basis of the generalized Newton –Kantorovich theorem. We investigate the case
of a nonlinear equation dimension of which does not coincide with the dimension of the unknown in the
case of completeness of the rank of the Jacobian of the nonlinear equation.

As an example of application of the constructed iterative scheme based on the generalized Newton –
Kantorovich theorem, we obtain approximations to solutions of the periodic boundary-value problem for
the mathematical model of a nonisothermal chemical reaction. To verify the accuracy of the obtained
approximations, we evaluate discrepancies in the original equation. We find the estimate for the length
of the range of values of a small parameter on which the convergence of the iterative procedure for the
construction of solutions of the weakly nonlinear periodic boundary-value problem with switchings for
the mathematical model of a nonisothermal chemical reaction occurs. To this end, we use the condition of
convergence, in particular, the requirement that the operator used for the construction of the required soluti-
on of the original problem is contracting and the assumption that the generalized Newton –Kantorovich
theorem can be used.

Дослiджено задачу про знаходження умов iснування розв’язкiв слабконелiнiйної перiодичної кра-
йової задачi для системи звичайних диференцiальних рiвнянь iз перемиканнями та побудову цих
розв’язкiв. Розглянуто критичний випадок у припущеннi, що рiвняння для породжуючих амплiтуд
слабконелiнiйної перiодичної крайової задачi з перемиканнями не перетворюється на тотожнiсть.
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Удосконалено класифiкацiю критичних i некритичних випадкiв i побудовано iтерацiйний алго-
ритм для знаходження розв’язкiв слабконелiнiйної перiодичної крайової задачi з перемиканнями у
критичному випадку на основi узагальненої теореми Ньютона –Канторовича. Дослiджено випадок
нелiнiйного рiвняння, розмiрнiсть якого не збiгається з розмiрнiстю невiдомої, за умови повноти
рангу якобiана нелiнiйного рiвняння.

Як приклад застосування побудованої iтерацiйної схеми на основi узагальненої теореми Ньюто-
на –Канторовича отримано наближення до розв’язкiв перiодичної крайової задачi для математич-
ної моделi неiзотермiчної хiмiчної реакцiї. Для перевiрки точностi отриманих наближень знайдено
нев’язки у вихiдному рiвняннi. Отримано оцiнку довжини промiжку значень малого параметра, на
якому зберiгається збiжнiсть iтерацiйної схеми, використовуваної для побудови розв’язкiв слабко-
нелiнiйної перiодичної крайової задачi з перемиканнями для математичної моделi неiзотермiчної
хiмiчної реакцiї. Для цього використано умову збiжностi, зокрема, вимогу стиснення для оператора,
використовуваного для побудови розв’язку вихiдної задачi, у припущеннi застосовностi узагальне-
ної теореми Ньютона –Канторовича.

1. Постановка задачi. Дослiджуємо задачу про знаходження умов iснування i побудову
розв’язку

z(t, \varepsilon ) : z(\cdot , \varepsilon ) \in \BbbC 1\{ [a, b]\setminus \{ \tau i\} I\} \cap \BbbC [a, b], z(t, \cdot ) \in \BbbC [0, \varepsilon 0],

неавтономної перiодичної крайової задачi з перемиканнями у випадку параметричного
резонансу [1, 2]

dz

dt
= Az + \varepsilon f(t, \varepsilon ) + \varepsilon Z(z, t, \varepsilon ), \ell z(\cdot , \varepsilon ) = 0, (1)

у малому околi розв’язку породжуючої задачi

dz0
dt

= Az0, \ell z0(\cdot ) = 0. (2)

Шуканий розв’язок z(t, \varepsilon ) крайової задачi (1) припускаємо неперервно диференцiйовним
за незалежною змiнною t \in [a, b] при виключеннi фiксованих точок перемикання [3, 4]

a < \tau 1 < \tau 2 < . . . < \tau p < b,

у яких розв’язок z(t, \varepsilon ), можливо, зазнає обмеженого розриву похiдної. Тут

\ell z(\cdot , \varepsilon ) :=

\left(       
z(a, \varepsilon ) - z(b, \varepsilon )

z(\tau 1 + 0, \varepsilon ) - z(\tau 1  - 0, \varepsilon )

. . . . . . . . . . . . . . . . . . . . . . . .

z(\tau p + 0, \varepsilon ) - z(\tau p  - 0, \varepsilon )

\right)       
— лiнiйний обмежений векторний функцiонал

\ell z(\cdot , \varepsilon ) : z(\cdot , \varepsilon ) \in \BbbC 1\{ [a, b]\setminus \{ \tau i\} I\} \rightarrow \BbbR n(p+1).

Крiм того, A — стала (n \times n)-вимiрна матриця, Z(z, t, \varepsilon ) — нелiнiйна вектор-функцiя,
тричi неперервно диференцiйовна за незалежною z у малому околi розв’язку породжуючої
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задачi (2), неперервна за незалежною змiнною t \in [a, b] i тричi неперервно диференцiйовна
за малим параметром \varepsilon на вiдрiзку [0, \varepsilon 0]. Функцiю

f(t, \varepsilon ) :=

\left\{     
\mu 0(\varepsilon ), t \in [a, \tau 1[,

. . . . . . . . . . . . . . .

\mu p(\varepsilon ), t \in [\tau p, b],

припускаємо неперервною за незалежною змiнною t \in [a, b] i неперервною за малим пара-
метром \varepsilon на вiдрiзку [0, \varepsilon 0]. Функцiї \mu 0(\varepsilon ), . . . , \mu p(\varepsilon ) \in \BbbC [0, \varepsilon 0] припускаємо неперервними;
цi функцiї є власними функцiями крайової задачi (1) у випадку параметричного резонан-
су [5 – 7].

Поставлена задача продовжує дослiдження перiодичних крайових задач у випадку па-
раметричного резонансу [6, 8]. Задачi такого типу у випадку параметричного резонансу
пов’язанi з численними застосуваннями в електронiцi [6], геодезiї [9], теорiї плазми [10],
нелiнiйнiй оптицi, механiцi [11] i верстатобудуваннi [12], у яких разом зi знаходженням
розв’язку перiодичних крайових задач обчислюються власнi функцiї вiдповiдної задачi.
Крiм того, поставлена задача продовжує дослiдження перiодичних крайових задач, якi ви-
никають у хiмiї i будуть вивченi далi. Прийом, використаний у статтi, а саме: перехiд до
бiльш широкого класу розв’язкiв у випадку наявностi лише тривiальних розв’язкiв задачi
в деякому класi, розроблено у загальнiй теорiї лiнiйних крайових задач [13 – 15].

2. Умови iснування розв’язку. Позначимо нормальну (X(a) = In) фундаментальну
матрицю X(t) породжуючої задачi (2). У некритичному випадку

detQ0 \not = 0, Q0 := \ell 0X(\cdot ) := X(a) - X(b)

однорiдна породжуюча задача (2) у класi [1, 2] z(t) \in \BbbC 1[a, b] має лише тривiальний
розв’язок z0(t) \equiv 0.

Позначимоматрицю Q := \ell X(\cdot ) \in \BbbR n(p+1)\times n, а також PQ i PQ\ast —матрицi-ортопроєктори
[1, 2]:

PQ : \BbbR n \rightarrow \BbbN (Q), PQ\ast : \BbbR n(p+1) \rightarrow \BbbN (Q\ast ).

Крiм того, позначимо через PQ\ast 
d

(d \times n(p + 1))-вимiрну матрицю, утворену з d лiнiйно
незалежних рядкiв матрицi-ортопроєктора PQ\ast . Матриця Q має вигляд

Q :=

\left(       
Q0

Q1

. . .

Qn

\right)       ,

тому

PQ\ast =

\Biggl( 
O O

O Inp

\Biggr) 
\not = 0, PQ\ast 

d
=
\bigl( 
O Inp

\bigr) 
, PQ = O, d := np.

Таким чином, згiдно з традицiйною класифiкацiєю перiодичних крайових задач [16, 17]
збурена крайова задача (1) являє собою критичний випадок. Його особливiстю є розв’яз-
нiсть породжуючої крайової задачi (2) не для всiх збурень. Позначимо оператор
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K[g(s)](t) =

\left\{         
X(t)

\int t

a
X - 1(s)g(s) ds, t \in [a, \tau 1[,

X(t)

\int t

\tau p

X - 1(s)g(s) ds, t \in [\tau p, b],

який визначає розв’язок задачi Кошi

dz

dt
= A(t)z + g(s), z(a) = 0, z(\tau 1) = 0, . . . , z(\tau p) = 0.

Оскiльки PQ = 0, крайова задача

dz

dt
= A(t)z + g(s), \ell z(\cdot ) = 0

у класi функцiй z(t) \in \BbbC 1\{ [a, b]\setminus \{ \tau i\} I\} \cap \BbbC [a, b] за умови [1, 2] PQ\ast 
d
\ell K[g(s)](\cdot ) = 0 однозначно

розв’язна у виглядi z0(t, \varepsilon ) = G[g(s)](t), де G[g(s)](t) := K[g(s)](t) - X(t)Q+\ell K[g(s)](\cdot ) —
узагальнений оператор Грiна перiодичної крайової задачi для рiвняння dz

dt
= A(t)z +

g(s). Крiм того, Q+ — псевдообернена матриця за Муром –Пенроузом [1, 18]. Позначимо
вектори

\lambda (\varepsilon ) :=

\left(  \mu 0(\varepsilon )
. . . . . .
\mu p(\varepsilon )

\right)  \in \BbbR n(p+1), \lambda 0 := \lambda (0) :=

\left(   \mu 
(0)
0

. . . . . .

\mu 
(0)
p

\right)   \in \BbbR n(p+1).

Однорiдна породжуюча задача (2) має лише тривiальний розв’язок, тому необхiдна й до-
статня умова розв’язностi нелiнiйної крайової задачi (1) у випаду параметричного резонан-
су має вигляд [5]

PQ\ast 
d
\ell K[f(t, \varepsilon ) + Z(z(t, \varepsilon ), t, \varepsilon )](\cdot ) = 0.

Нелiнiйна вектор-функцiя Z(z, t, \varepsilon ) i збурення f(t, \varepsilon ), f(t, 0) := f0(t) неперервнi за малим
параметром \varepsilon на вiдрiзку [0, \varepsilon 0], тому необхiдна умова розв’язностi крайової задачi (1) у
випаду параметричного резонансу має вигляд

F (\lambda 0) := PQ\ast 
d
\ell K[f0(t) + Z(0, t, 0)](\cdot ) = 0. (3)

Таким чином, довели таку лему.
Лема. Припустимо, що для породжуючої задачi (2) має мiсце некритичний випадок

(detQ0 \not = 0), при цьому однорiдна частина породжуючої задачi (2) у класi z(t) \in \BbbC 1[a, b]
має тiльки тривiальний розв’язок z0(t) \equiv 0. При цьому нелiнiйна перiодична крайова за-
дача (1) у випадку параметричного резонансу являє собою критичний випадок (PQ\ast \not = 0).
Припустимо також, що у малому околi тривiального розв’язку z0(t) \equiv 0 однорiдної частини
породжуючої задачi (2) крайова задача (1) у випадку параметричного резонансу має розв’язок

z(t, \varepsilon ) : z(\cdot , \varepsilon ) \in \BbbC 1\{ [a, b]\setminus \{ \tau i\} I\} \cap \BbbC [a, b], z(t, \cdot ) \in \BbbC [0, \varepsilon 0], \lambda (\varepsilon ) \in \BbbC [0, \varepsilon 0],

при цьому в достатньо малому околi вектора \lambda 0 iснує власна функцiя \lambda (\varepsilon ). Тодi справджу-
ється рiвнiсть (3).
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За аналогiєю iз слабконелiнiйними перiодичними крайовими задачами у критичному
випадку [1, 16] рiвняння (3) будемо називати рiвнянням для породжуючих констант зада-
чi (1) у випадку параметричного резонансу. Коренi рiвняння для породжуючих констант
традицiйної перiодичної крайової задачi в критичному випадку [1, 16] за вiдсутностi па-
раметричного резонансу визначають амплiтуду породжуючого розв’язку, в малому околi
якого може iснувати шуканий розв’язок вихiдної крайової задачi [1, 16]. Оскiльки поро-
джуюча задача (2) має лише тривiальний розв’язок z0(t) \equiv 0, особливiсть рiвняння для
породжуючих констант (3) полягає у тому, що корiнь рiвняння для породжуючих констант
визначає початкове значення збурення \lambda 0, у малому околi якого може iснувати власна
функцiя \lambda (\varepsilon ) \in \BbbC [0, \varepsilon 0], яка визначає шуканий розв’язок задачi (1) у випадку параметрич-
ного резонансу. Якщо рiвняння для породжуючих констант не має дiйсних коренiв, то
вихiдна крайова задача (1) не має шуканого розв’язку.

Традицiйно припускаємо, що рiвняння (3) має дiйснi коренi i не перетворюється на
тотожнiсть [19, 20], при цьому корiнь рiвняння (3) вiдомий i цiлком визначений. Особли-
вiсть крайової задачi (1) у випадку параметричного резонансу полягає у тому, що корiнь \lambda 0

рiвняння (3) не може бути однозначно визначеним. Дiйсно, необхiдна умова розв’язностi
крайової задачi (1) у випадку параметричного резонансу

F (\lambda 0) =

\left(    
K[f0(s) + Z(0, s, 0)](\tau 1 + 0) - K[f0(s) + Z(0, s, 0)](\tau 1  - 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

K[f0(s) + Z(0, s, 0)](\tau p + 0) - K[f0(s) + Z(0, s, 0)](\tau p  - 0)

\right)    

=  - 

\left(     
K
\Bigl[ 
\mu 
(0)
0 + Z(0, s, 0)

\Bigr] 
(\tau 1  - 0)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

K
\Bigl[ 
\mu 
(0)
p - 1 + Z(0, s, 0)

\Bigr] 
(\tau p  - 0)

\right)     = 0

не залежить вiд вектора \mu 
(0)
p . Вектор \mu 

(0)
p , який визначає корiнь \lambda 0 рiвняння для породжу-

ючих констант (3), у малому околi якого може iснувати власна функцiя \lambda (\varepsilon ), знайдемо
далi. Припустимо, що рiвняння (3) має дiйснi коренi i не перетворюється на тотожнiсть

[19, 20]. Зафiксуємо компоненти

\left(   \mu 
(0)
0

. . .

\mu 
(0)
p - 1

\right)   \in \BbbR np одного розв’язку \lambda 0 \in \BbbR n(p+1) рiвняння (3)

i знайдемо перше наближення до шуканого розв’язку вихiдної крайової задачi (1)

z1(t, \varepsilon ) = \varepsilon G[f0(s) + Z(z0(s), s, 0)](t),

у малому околi якого можуть iснуватишуканi розв’язки вихiдної крайової задачi (1). Умова
розв’язностi нелiнiйної крайової задачi першого наближення у випадку параметричного
резонансу

F1(\xi 1(\varepsilon )) := PQ\ast 
d
\ell K[f(t, \varepsilon ) + Z(z1(t, \varepsilon ), t, \varepsilon )](\cdot ) = 0 (4)

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 2



ПРО РОЗВ’ЯЗАННЯ НЕЛIНIЙНОЇ ПЕРIОДИЧНОЇ КРАЙОВОЇ ЗАДАЧI . . . 299

являє собою нелiнiйне рiвняння щодо вектора

\xi 1(\varepsilon ) :=

\left(      
\mu 
(1)
1 (\varepsilon )
. . . . . .

\mu 
(1)
p - 1(\varepsilon )

\mu 
(0)
p (\varepsilon )

\right)      \in \BbbR n(p+1).

Для знаходження розв’язку \xi 1(\varepsilon ) рiвняння (4) скористаємося методом Ньютона –Канторо-
вича [2, 21]. Рiвняння (4) визначає функцiя

F1(\xi 1(\varepsilon )) : \BbbR n(p+1) \rightarrow \BbbR d, d \not = n(p+ 1),

для якої якобiан \scrJ 1(\xi 1) := F \prime 
1(\xi 1) \in \BbbR d\times n(p+1) — прямокутна матриця, а отже, для зна-

ходження розв’язку \xi 1(\varepsilon ) рiвняння (4) не застосовний традицiйний метод Ньютона [22].
Згiдно з прийнятим припущенням функцiя F1(\xi 1(\varepsilon )) двiчi неперервно диференцiйовна за
невiдомою \xi 1(\varepsilon ) у малому околi точки

\xi 
(0)
1 :=

\left(       
\mu 
(0)
1

. . . . . .

\mu 
(0)
p - 1

\mu 
(0)
p

\right)       \in \BbbR n(p+1).

Припустимо, що для рiвняння (4) при 0 \leq \varepsilon \leq \varepsilon \ast \leq \varepsilon 0 виконуються нерiвностi\bigm\| \bigm\| \bigm\| \scrJ +
1

\Bigl( 
\xi 
(j)
1 (\varepsilon )

\Bigr) \bigm\| \bigm\| \bigm\| \leq \delta 1(j), j = 0, 1, 2, . . . ,\bigm\| \bigm\| \bigm\| d2F1

\Bigl( 
\zeta j(\varepsilon ); \xi 1(\varepsilon ) - \xi 

(j)
1 (\varepsilon )

\Bigr) \bigm\| \bigm\| \bigm\| \leq \sigma 1(j)
\bigm\| \bigm\| \bigm\| \xi 1(\varepsilon ) - \xi 

(0)
1

\bigm\| \bigm\| \bigm\| 
та iснує константа

\theta 1 := sup
j\in \BbbN 

\biggl\{ 
\delta 1(j)\sigma 1(j)

2

\biggr\} 
.

Тодi згiдно з [2, 21, 23] i за умов

P\scrJ \ast 
1

\Bigl( 
\xi 
(j)
1 (\varepsilon )

\Bigr) = 0, \theta 1

\bigm\| \bigm\| \bigm\| \xi 1(\varepsilon ) - \xi 
(j)
1 (\varepsilon )

\bigm\| \bigm\| \bigm\| < 1 (5)

для знаходження розв’язку \xi 1(\varepsilon ) рiвняння (4) застосовна iтерацiйна схема

\xi 
(j+1)
1 (\varepsilon ) = \xi 

(j)
1 (\varepsilon ) - \scrJ +

1

\Bigl( 
\xi 
(j)
1 (\varepsilon )

\Bigr) 
F1

\Bigl( 
\xi 
(j)
1 (\varepsilon )

\Bigr) 
, j = 0, 1, 2, . . . , (6)

при цьому швидкiсть збiжностi послiдовностi
\bigl\{ 
\xi 
(j)
1 (\varepsilon )

\bigr\} 
до розв’язку \xi 1(\varepsilon ) рiвняння (4)

квадратична. Тут
P\scrJ \ast 

1

\Bigl( 
\xi 
(j)
1 (\varepsilon )

\Bigr) : \BbbR d \rightarrow \BbbN 
\Bigl( 
\scrJ \ast 
1

\Bigl( 
\xi 
(j)
1 (\varepsilon )

\Bigr) \Bigr) 
— ортопроєктор матрицi \scrJ \ast 

1

\bigl( 
\xi 
(j)
1 (\varepsilon )

\bigr) 
. У випадку d = np < n(p+ 1) умова

P
\scrJ \ast 
1

\bigl( 
\xi 
(j)
1 (\varepsilon )

\bigr) = 0, j = 0, 1, 2 . . . ,

виконується у випадку повноти рангу матрицi \scrJ 1(\xi 
(j)
1 (\varepsilon )).

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 2



300 СЕРГIЙ ЧУЙКО, ОЛЕКСIЙ ЧУЙКО, ДАР’Я Д’ЯЧЕНКО

Таким чином, знайдено перше наближення z1(t, \varepsilon ) до шуканого розв’язку z(t, \varepsilon ) ви-
хiдної крайової задачi (1), а також перше наближення \xi 1(\varepsilon ) до шуканого вектора \lambda (\varepsilon ).
Позначимо вектори

\xi k(\varepsilon ) :=

\left(       
\mu 
(k)
1 (\varepsilon )

. . . . . . . . .

\mu 
(k)
p - 1(\varepsilon )

\mu 
(k - 1)
p (\varepsilon )

\right)       \in \BbbR n(p+1),

fk(t, \varepsilon ) :=

\left\{               

\mu 
(k)
0 (\varepsilon ), t \in [a, \tau 1[,

. . . . . . . . . . . . . . . . . . ,

\mu 
(k)
p - 1(\varepsilon ), t \in [\tau p - 1, \tau p[,

\mu 
(k - 1)
p (\varepsilon ), t \in [\tau p, b],

k = 1, 2, . . . .

Умова розв’язностi нелiнiйної крайової задачi k -го наближення у випадку параметричного
резонансу

Fk(\xi k(\varepsilon )) := PQ\ast 
d
\ell K[fk(t, \varepsilon ) + Z(zk(t, \varepsilon ), t, \varepsilon )](\cdot ) = 0 (7)

являє собою нелiнiйне рiвняння щодо вектора \xi k(\varepsilon ), для якого якобiан \scrJ k(\xi k) := F \prime 
k(\xi k) \in 

\BbbR d\times n(p+1) — прямокутна матриця. Припустимо, що для рiвняння (7) при 0 \leq \varepsilon \leq \varepsilon \ast \leq \varepsilon 0
виконуються нерiвностi \bigm\| \bigm\| \bigm\| \scrJ +

k

\Bigl( 
\xi 
(j)
k (\varepsilon )

\Bigr) \bigm\| \bigm\| \bigm\| \leq \delta k(j), j = 0, 1, 2, . . . ,\bigm\| \bigm\| \bigm\| d2Fk(\zeta j(\varepsilon ); \xi k(\varepsilon ) - \xi 
(j)
k (\varepsilon ))

\bigm\| \bigm\| \bigm\| \leq \sigma k(j)
\bigm\| \bigm\| \bigm\| \xi k(\varepsilon ) - \xi 

(0)
k

\bigm\| \bigm\| \bigm\| 
та iснує константа

\theta := sup
k\in \BbbN 

sup
j\in \BbbN 

\biggl\{ 
\delta k(j)\sigma k(j)

2

\biggr\} 
.

Тодi за умов [2, 21, 23]

P\scrJ \ast 
k

\Bigl( 
\xi 
(j)
k (\varepsilon )

\Bigr) = 0, \theta 
\bigm\| \bigm\| \bigm\| \xi k(\varepsilon ) - \xi 

(j)
k (\varepsilon )

\bigm\| \bigm\| \bigm\| < 1 (8)

для знаходження розв’язку \xi k(\varepsilon ) рiвняння (7) застосовна iтерацiйна схема

\xi 
(j+1)
k (\varepsilon ) = \xi 

(j)
k (\varepsilon ) - \scrJ +

k

\Bigl( 
\xi 
(j)
1 (\varepsilon )

\Bigr) 
Fk

\Bigl( 
\xi 
(j)
k (\varepsilon )

\Bigr) 
, j = 0, 1, 2, . . . ; (9)

при цьому швидкiсть збiжностi послiдовностi
\bigl\{ 
\xi 
(j)
k (\varepsilon )

\bigr\} 
до розв’язку \xi k(\varepsilon ) рiвняння (7)

квадратична. Тут
P\scrJ \ast 

k (\xi 
(j)
k (\varepsilon ))

: \BbbR d \rightarrow \BbbN 
\Bigl( 
\scrJ \ast 
k (\xi 

(j)
k (\varepsilon ))

\Bigr) 
— ортопроєктор матрицi \scrJ \ast 

k

\bigl( 
\xi 
(j)
k (\varepsilon )

\bigr) 
. Шуканий розв’язок вихiдної задачi (1) визначено

iтерацiйною схемою

zk+1(t, \varepsilon ) = \varepsilon G
\bigl[ 
fk(s, \varepsilon ) + Z(zk(s, \varepsilon ), s, \varepsilon )

\bigr] 
(t), Fk

\Bigl( 
\xi 
(j)
k (\varepsilon )

\Bigr) 
= 0, k, j = 0, 1, 2, . . . . (10)

Таким чином, довели таке твердження.
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Теорема. Припустимо, що для породжуючої задачi (2) має мiсце некритичний випадок
(detQ0 \not = 0), при цьому однорiдна частина породжуючої задачi (2) у класi z0(t) \in \BbbC 1[a, b] має
тiльки тривiальний розв’язок z0(t) \equiv 0. У цьому випадку нелiнiйна крайова задача з переми-
каннями (1) у випадку параметричного резонансу являє собою критичний випадок (PQ\ast \not = 0).
Припустимо, що рiвняння для породжуючих констант (3) не вироджується у тотожнiсть
i має дiйсний корiнь \lambda 0 \in \BbbR n(p+1). Також припустимо, що для рiвняння (7) виконуються
умови (8). Тодi для кореня \lambda 0 рiвняння для породжуючих констант (3) в околi тривiального
породжуючого розв’язку z0(t) \equiv 0 однорiдної породжуючої задачi та в достатньо мало-
му околi початкового значення \lambda 0 власної функцiї \lambda (\varepsilon ) для знаходження принаймнi одного
розв’язку

z(t, \varepsilon ) : z(\cdot , \varepsilon ) \in \BbbC 1\{ [a, b]\setminus \{ \tau i\} I\} \cap \BbbC [a, b], z(t, \cdot ) \in \BbbC [0, \varepsilon 0],
крайової задачi (1) у випадку параметричного резонансу застосовна iтерацiйна схема (10).

Якщо для рiвняння (7) виконано умови (8), то довжину вiдрiзка [0, \varepsilon \ast ], на якому за-
стосовано iтерацiйну схему (10), можна оцiнити аналогiчно [24] безпосередньо з умови
стиснення \bigm\| \bigm\| \bigm\| \bigm\| \varepsilon \partial G[Z(zk(s, \varepsilon ), s, \varepsilon )](t)

\partial z

\bigm\| \bigm\| \bigm\| \bigm\| \leq \lambda < 1, \varepsilon \in [0; \varepsilon \ast ] \subseteq [0; \varepsilon 0], (11)

оператора [21]
G[Z(zk(s, \varepsilon ), s, \varepsilon )](t), k = 0, 1, 2, . . . .

Крiм того, довжину вiдрiзка
\bigl[ 
0, \varepsilon \ast 

\bigr] 
, на якому збiжна iтерацiйна схема (10), можна оцiнити

за допомогою мажоруючих рiвнянь Ляпунова [1, 16, 25].
Розв’язок крайової задачi (1) у випадку параметричного резонансу за допомогою iте-

рацiйної схеми (10) суттєво ускладнюється у випадку, коли нелiнiйностi Z(zk(s, \varepsilon ), s, \varepsilon )
не iнтегровнi в елементарних функцiях. Приклад такої ситуацiї для рiвняння коливань
супутника на елiптичнiй орбiтi наведено в статтях [26 – 28]. У випадку, коли нелiнiйнiсть
Z(zk(s, \varepsilon ), s, \varepsilon ) не iнтегровна в елементарних функцiях i при цьому однорiдна породжуюча
задача (2) у класi функцiй z0(t) \in \BbbC 1[a, b] має лише тривiальний розв’язок z0(t) \equiv 0, можна
скористатися розкладом нелiнiйностi Z(zk(s, \varepsilon ), s, \varepsilon ) в околi тривiального породжуючого
розв’язку за малим параметром \varepsilon на вiдрiзку [0, \varepsilon 0]. Оскiльки нелiнiйна вектор-функцiя
Z(z, t, \varepsilon ) тричi неперервно диференцiйовна за невiдомою z у малому околi розв’язку по-
роджуючої задачi та тричi неперервно диференцiйовна за малим параметром \varepsilon на вiдрiзку
[0, \varepsilon 0], то в околi тривiального породжуючого розв’язку на вiдрiзку [0, \varepsilon 0] має мiсце розклад
[29, c. 48]

Z(zk(t, \varepsilon ), t, \varepsilon ) = Z(z0(t, c
\ast 
0), t, 0) + dZ(zk(t, \varepsilon ), t, \varepsilon )

+
1

2!
d2Z(zk(t, \varepsilon ), t, \varepsilon ) +

1

3!
d3Z(zk(t, \varepsilon ), t, \varepsilon ) + . . . , (12)

де
dZ(zk(t, \varepsilon ), t, \varepsilon ) := A1(t) zk(t, \varepsilon ) + \varepsilon A2(t)

— перший диференцiал нелiнiйної вектор-функцiї Z(z, t, \varepsilon ), який зображується за допо-
могою похiдних

A1(t) =
\partial Z(z, t, \varepsilon )

\partial z

\bigm| \bigm| \bigm| \bigm| z=z0(t),
\varepsilon =0

, A2(t) =
\partial Z(z, t, \varepsilon )

\partial \varepsilon 

\bigm| \bigm| \bigm| \bigm| z=z0(t),
\varepsilon =0

.

Другий диференцiал нелiнiйної вектор-функцiї Z(z, t, \varepsilon )
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d2Z(zk(t, \varepsilon ), t, \varepsilon ) := A3(zk(t, \varepsilon ), t) zk(t, \varepsilon ) + 2 \varepsilon A4(t) zk(t, \varepsilon ) + \varepsilon 2A5(t)

визначають похiднi

A3(zk(t, \varepsilon ), t) =
\partial 

\partial z

\biggl\{ 
\partial Z(z, t, \varepsilon )

\partial z
z

\biggr\} \bigm| \bigm| \bigm| \bigm| z=z0(t),
\varepsilon =0

,

A4(t) :=
\partial 

\partial \varepsilon 

\biggl\{ 
\partial Z(z, t, \varepsilon )

\partial z

\biggr\} \bigm| \bigm| \bigm| \bigm| z=z0(t),
\varepsilon =0

, A5(t) =
\partial 2Z(z, t, \varepsilon )

\partial \varepsilon 2

\bigm| \bigm| \bigm| \bigm| z=z0(t),
\varepsilon =0

.

Третiй диференцiал нелiнiйної вектор-функцiї Z(z, t, \varepsilon )

d3Z(zk(t, \varepsilon ), t, \varepsilon ) := A6

\bigl( 
z2k(t, \varepsilon ), t

\bigr) 
zk(t, \varepsilon )

+ 3 \varepsilon A7(zk(t, \varepsilon ), t) zk(t, \varepsilon ) + 3 \varepsilon 2A8(t) zk(t, \varepsilon ) + \varepsilon 3A9(t)

визначають похiднi

A6

\bigl( 
z2k(t, \varepsilon ), t

\bigr) 
=

\partial 

\partial z

\biggl\{ 
\partial 

\partial z

\biggl\{ 
\partial Z(z, t, \varepsilon )

\partial z
z

\biggr\} 
z

\biggr\} \bigm| \bigm| \bigm| \bigm| z=z0(t),
\varepsilon =0

,

A7(zk(t, \varepsilon ), t) =
\partial 

\partial \varepsilon 

\biggl\{ 
\partial 

\partial z

\biggl\{ 
\partial Z(z, t, \varepsilon )

\partial z
z

\biggr\} 
z

\biggr\} \bigm| \bigm| \bigm| \bigm| z=z0(t),
\varepsilon =0

,

A8(t) :=
\partial 2

\partial \varepsilon 2

\biggl\{ 
\partial Z(z, t, \varepsilon )

\partial z

\biggr\} \bigm| \bigm| \bigm| \bigm| z=z0(t),
\varepsilon =0

, A9(t) =
\partial 3Z(z, t, \varepsilon )

\partial \varepsilon 3

\bigm| \bigm| \bigm| \bigm| z=z0(t),
\varepsilon =0

.

Позначимо функцiю

\scrZ (zk(t, \varepsilon ), t, \varepsilon ) := Z(z0(t, c
\ast 
0), t, 0) + dZ(zk(t, \varepsilon ), t, \varepsilon )

+
1

2!
d2Z(zk(t, \varepsilon ), t, \varepsilon ) +

1

3!
d3Z(zk(t, \varepsilon ), t, \varepsilon ).

Шуканий розв’язок вихiдної задачi (1) визначає iтерацiйна схема

zk+1(t, \varepsilon ) = \varepsilon G[fk(s, \varepsilon ) + \scrZ (zk(s, \varepsilon ), s, \varepsilon )](t), Fk

\Bigl( 
\xi 
(j)
k (\varepsilon )

\Bigr) 
= 0, k, j = 0, 1, 2, . . . . (13)

Таким чином, довели таке твердження.
Наслiдок. Припустимо, що для породжуючої задачi (2) має мiсце некритичний випа-

док, при цьому однорiдна породжуюча задача (2) у класi функцiй z0(t) \in \BbbC 1[a, b] має лише
тривiальний розв’язок z0(t) \equiv 0. При цьому нелiнiйна породжуюча крайова задача з переми-
каннями (1) у випадку параметричного резонансу являє собою критичний випадок (PQ\ast \not = 0).
Припустимо, що рiвняння для породжуючих констант (3) не вироджується у тотожнiсть
i має дiйсний корiнь \lambda 0 \in \BbbR n(p+1). Також припустимо, що для рiвняння (7) виконуються
умови (8). Тодi для кореня \lambda 0 рiвняння для породжуючих констант (3) в околi тривiаль-
ного породжуючого розв’язку z0(t) \equiv 0 породжуючої задачi та в достатньо малому околi
початкового значення \lambda 0 власної функцiї \lambda (\varepsilon ) для знаходження принаймнi одного розв’язку

z(t, \varepsilon ) : z(\cdot , \varepsilon ) \in \BbbC 1\{ [a, b]\setminus \{ \tau i\} I\} \cap \BbbC [a, b], z(t, \cdot ) \in \BbbC [0, \varepsilon 0],

крайової задачi (1) у випадку параметричного резонансу застосовна iтерацiйна схема (13).
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3.Модель неiзотермiчної хiмiчної реакцiї з параметричним збуренням. Умови доведеного
наслiдку виконуються у випадку задачi про знаходження гладкого розв’язку

z(t, \varepsilon ) : z(\cdot , \varepsilon ) \in \BbbC 1[ - 1, 1], z(t, \cdot ) \in \BbbC [0, \varepsilon 0]

перiодичної крайової задачi [30]

z\prime (t, \varepsilon ) = Az(t, \varepsilon ) + \varepsilon f(t, \varepsilon ) + \varepsilon Z(z(t, \varepsilon ), \varepsilon ), \ell 0z(\cdot , \varepsilon ) := z( - 1, \varepsilon ) - z(1, \varepsilon ) = 0. (14)

Тут A — стала (2\times 2)-вимiрна матриця, власнi числа якої не перетинають уявної осi,

z(t, \varepsilon ) :=

\Biggl( 
x(t, \varepsilon )

y(t, \varepsilon )

\Biggr) 
, f(t, \varepsilon ) :=

\left\{   \lambda (\varepsilon ), t \in [ - 1, 0[,

\mu (\varepsilon ), t \in [0, 1];

крiм цього,

Z(z(t, \varepsilon ), \varepsilon ) := (1 + x(t, \varepsilon ))e
 - \varepsilon 

1+y(t,\varepsilon )

\Biggl( 
1

1

\Biggr) 
.

Власнi числа матрицi A не перетинають уявної осi, отже, має мiсце некритичний випадок
[16, 19]. При цьому однорiдна породжуюча задача для перiодичної задачi (14) має лише
тривiальний розв’язок z0(t) \equiv 0; зокрема, для

A :=

\Biggl( 
 - 1 0

0  - 2

\Biggr) 
, \lambda a =  - 1, \lambda b =  - 2.

При цьому матриця Q має вигляд

Q :=

\Biggl( 
Q0

O2

\Biggr) 
, Q0 =

\left(   e - 1

e
0

0 e2  - 1

e2

\right)   , detQ0 = e3  - e+
1

e3
 - 1

e
\not = 0,

до того ж

PQ\ast =

\Biggl( 
O O

O I2

\Biggr) 
\not = 0, PQ\ast 

d
=
\bigl( 
O I2

\bigr) 
, PQ = O.

Таким чином, у класi функцiй

z(t) \in \BbbC 1\{ [ - 1, 1]\setminus \{ \tau \} I\} \cap \BbbC [ - 1, 1], \tau := 0,

крайова задача

z\prime (t, \varepsilon ) = Az(t, \varepsilon ) + \varepsilon f(t, \varepsilon ) + \varepsilon Z(z(t, \varepsilon ), \varepsilon ), \ell z(\cdot , \varepsilon ) = 0 (15)

являє собою критичний випадок. Нелiнiйна вектор-функцiя Z(z, t, \varepsilon ) тричi неперервно
диференцiйовна за невiдомою в малому околi розв’язку породжуючої задачi i тричi непе-
рервно диференцiйовна замалимпараметром \varepsilon на вiдрiзку [0, \varepsilon 0], тому в околi тривiального
породжуючого розв’язку має мiсце розвинення (12), де

dZ(z, t, \varepsilon ) = (( - 1 + y)\varepsilon + x(1 + ( - 1 + y)\varepsilon ))

\Biggl( 
1

1

\Biggr) 
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— перший диференцiал нелiнiйної вектор-функцiї Z(z, t, \varepsilon ),

d2Z(z, t, \varepsilon ) = \varepsilon (1 + x)
\bigl( 
\varepsilon  - 2 y \varepsilon + y2( - 2 + 3 \varepsilon )

\bigr) \Biggl( 1
1

\Biggr) 

— другий диференцiал нелiнiйної вектор-функцiї Z(z, t, \varepsilon ),

d3Z(z, t, \varepsilon ) = \varepsilon (1 + x)
\bigl( 
 - \varepsilon 2 + 3y\varepsilon 2  - 6y2\varepsilon 2 + 2y3

\bigl( 
3 - 6 \varepsilon + 5 \varepsilon 2

\bigr) \bigr) 
—третiй диференцiал нелiнiйної вектор-функцiї. Рiвняння (3) не перетворюється на тотож-
нiсть i має дiйсний корiнь

\lambda 0 :=

\left(  \lambda 
(a)
0

\lambda 
(b)
0

\right)  =

\Biggl( 
 - 1

 - 1

\Biggr) 
.

Особливiсть крайової задачi (14) у випадку параметричного резонансу полягає в тому, що
корiнь рiвняння (3) визначений неоднозначно, а саме, залишається невiдомим вектор

\mu 0 :=

\left(  \mu 
(a)
0

\mu 
(b)
0

\right)  \in \BbbR 2.

Таким чином, знайдений корiнь рiвняння (3) визначає перше наближення до розв’язку
крайової задачi (14)

z1(t, \varepsilon ) :=

\Biggl( 
x1(t, \varepsilon )

y1(t, \varepsilon )

\Biggr) 
,

де

x1(t, \varepsilon ) =
\varepsilon e - t

\Bigl( 
1 + \mu 

(a)
0

\Bigr) 
1 + e

, y1(t, \varepsilon ) =
\varepsilon e - 2t

\Bigl( 
1 + \mu 

(b)
0

\Bigr) 
2(1 + e2)

, t \in [ - 1, 0[,

x1(t, \varepsilon ) =
\varepsilon e - t

\bigl( 
 - e+ et + e1+t

\bigr) \Bigl( 
1 + \mu 

(a)
0

\Bigr) 
1 + e

, t \in [0, 1],

y1(t, \varepsilon ) =
\varepsilon e - 2t

\Bigl( 
1 + \mu 

(b)
0

\Bigr) \bigl( 
e sinh(1) + et

\bigl( 
 - 1 + e4

\bigr) 
sinh(t)

\bigr) 
e4  - 1

, t \in [0, 1].

Отже, перше наближення до розв’язку крайової задачi (14) знайдено з точнiстю до
компонент вектора \mu 0. Умова розв’язностi (4) крайової задачi першого наближення у
випадку крайової задачi (14) являє собою нелiнiйне рiвняння стосовно вектора

\xi 1(\varepsilon ) :=

\left(        
\lambda 
(a)
1 (\varepsilon )

\lambda 
(b)
1 (\varepsilon )

\mu 
(a)
0 (\varepsilon )

\mu 
(b)
0 (\varepsilon )

\right)        \in \BbbR 4.
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Для знаходження розв’язку \xi 1(\varepsilon ) рiвняння (4) використаємо ефективний метод Ньютона –
Канторовича. Рiвняння (4) визначає функцiя F1(\xi 1(\varepsilon )) : \BbbR 4 \rightarrow \BbbR 2. Припустимо, що

\xi 
(0)
1 (\varepsilon ) :=

\left(         

 - 1

 - 1

 - 7

8

 - 7

8

\right)         
\in \BbbR 4.

При цьому якобiан

\scrJ 1(\xi 
(0)
1 (\varepsilon )) \approx 

\left(    
 - 1 + e

e
0

\varepsilon 

1 + e
 - \varepsilon 2

1 + e

( - 1 + e)\varepsilon 2

2 (1 + e2)

0
1

2
 - 1

2 e2
( - 1 + e)\varepsilon 

e(1 + e)
+

(1 - e) \varepsilon 2

e(1 + e)

\varepsilon 2

2 (1 + e2)

\right)    
—матрицяповного рангу, тому умову P\scrJ \ast 

1

\Bigl( 
\xi 
(0)
1 (\varepsilon )

\Bigr) = 0 виконано.Для знаходження розв’язку
\xi 1(\varepsilon ) рiвняння (7) використовуємо iтерацiйну схему (9); при цьому

\xi 
(1)
1 (\varepsilon ) :=

\left(        
\xi 
(1a)
1 (\varepsilon )

\xi 
(1b)
1 (\varepsilon )

\xi 
(1c)
1 (\varepsilon )

\xi 
(1d)
1 (\varepsilon )

\right)        ,

де

\xi 
(1a)
1 (\varepsilon ) \approx  - 1 +

54 457 715 \varepsilon 

57 516 584
 - 56 514 137 \varepsilon 2

120 997 324
 - 98 878 393 \varepsilon 3

578 757 928
+

94 801 235 \varepsilon 4

115 193 399

 - 131 640 517 \varepsilon 5

132 631 253
+

51 429 358 \varepsilon 6

96 764 151
+

43 119 434 \varepsilon 7

104 808 343
 - 85 007 648 \varepsilon 8

67 499 793
+ . . . ,

\xi 
(1b)
1 (\varepsilon ) \approx  - 1 +

47 196 388 \varepsilon 

49 636 153
 - 13 709 428 \varepsilon 2

29 288 671
 - 180 445 545 \varepsilon 3

1 230 110 398
+

184 608 059 \varepsilon 4

242 476 394

 - 63 836 387 \varepsilon 5

69 928 371
+

80 664 983 \varepsilon 6

168 058 104
+

103 349 209 \varepsilon 7

262 660 100
 - 98 122 048 \varepsilon 8

83 934 697
+ . . .

i, крiм того,

\xi 
(1c)
1 (\varepsilon ) \approx  - 985 162 418 487 295

1 125 899 906 842 623
+

74 179 465 \varepsilon 2

95 502 514

 - 123 714 231 \varepsilon 3

106 695 563
+

62 422 511 \varepsilon 4

94 876 831
+

43 088 483 \varepsilon 5

99 529 439

 - 88 989 286 \varepsilon 6

62 801 755
+

126 151 882 \varepsilon 7

81 135 613
 - 31 636 610 \varepsilon 8

51 240 771
+ . . . ,
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\xi 
(1d)
1 (\varepsilon ) \approx  - 985 162 418 487 295

1 125 899 906 842 623
+

18 287 459 \varepsilon 3

64 283 510
 - 52 091 216 \varepsilon 4

123 373 041

+
49611412 \varepsilon 5

208 506 889
+

85 597 813 \varepsilon 6

412 697 436
 - 69 280 352 \varepsilon 7

127 215 491
+

42 222 551 \varepsilon 8

75 319 416
+ . . . .

Перевiряємо виконання другої з умов (8). Для рiвняння (4) за умови 0 \leq \varepsilon \leq \varepsilon \ast := 1,15
виконується нерiвнiсть \bigm\| \bigm\| \bigm\| \xi (1)1 (\varepsilon ) - \xi 

(0)
1 (\varepsilon )

\bigm\| \bigm\| \bigm\| \leq 1,51 845,

де \bigm\| \bigm\| \bigm\| \scrJ +
1

\Bigl( 
\xi 
(1)
1 (\varepsilon )

\Bigr) \bigm\| \bigm\| \bigm\| \leq \delta 1,
\bigm\| \bigm\| \bigm\| d2F1

\Bigl( 
\zeta j(\varepsilon ); \xi 1(\varepsilon ) - \xi 

(1)
1 (\varepsilon )

\Bigr) \bigm\| \bigm\| \bigm\| \leq \sigma 1

\bigm\| \bigm\| \bigm\| \xi (1)1 (\varepsilon ) - \xi 
(0)
1 (\varepsilon )

\bigm\| \bigm\| \bigm\| .
Крiм цього,

\theta 1

\bigm\| \bigm\| \bigm\| \xi 1(\varepsilon ) - \xi 
(j)
1 (\varepsilon )

\bigm\| \bigm\| \bigm\| \approx 0,223 489 < 1, \theta 1 :=
\delta 1\sigma 1
2

.

Таким чином, для значень малого параметра 0 < \varepsilon \leq \varepsilon \ast := 1,15 знайдене наближення
до розв’язку \xi 1(\varepsilon ) рiвняння (7) забезпечує виконання умови (8). Для достатньо малих зна-
чень малого параметра \varepsilon знайдене наближення до розв’язку \xi 1(\varepsilon ) рiвняння (7) забезпечує
достатню точнiсть, наприклад,

F1(\xi 
(1)
1 (0,1)) \approx 

\Biggl( 
7,42 390\times 10 - 11

4,00 107\times 10 - 11

\Biggr) 
,

томуприродно обмежитися цимнаближенням.Перевiримо виконання умови збiжностi (11)
у випадку задачi про знаходження наближень до перiодичного розв’язку рiвняння (14):\bigm\| \bigm\| \bigm\| \bigm\| \varepsilon \partial G[Z(z0(s, \varepsilon ), s, \varepsilon )](t)

\partial z

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq 0,737 270 < 1, \varepsilon \in [0; 1, 2],

\bigm\| \bigm\| \bigm\| \bigm\| \varepsilon \partial G[Z(z1(s, \varepsilon ), s, \varepsilon )](t)

\partial z

\bigm\| \bigm\| \bigm\| \bigm\| 
\infty 

\leq 0,960 268 < 1, \varepsilon \in [0; 1, 2].

Таким чином, у випадку задачi про знаходження наближень до перiодичного розв’язку
рiвняння (14) для значень малого параметра 0 < \varepsilon \leq \varepsilon \ast := 1,2 для знайденого наближення
до розв’язку \xi 1(\varepsilon ) рiвняння (7) виконуються умови (8), а також умова (11).

Вiдзначимо перiодичнiсть i неперервнiсть отриманих наближень у малому околi три-
вiального розв’язку z0(t) \equiv 0 породжуючої перiодичної задачi для рiвняння (14). Точнiсть
знайдених наближень до перiодичного розв’язку рiвняння (14) визначають нев’язки

\Delta k(\varepsilon ) :=
\bigm\| \bigm\| \bigm\| \bigm\| z\prime k(t, \varepsilon ) - Azk(t, \varepsilon ) - \varepsilon f(t, \varepsilon ) - \varepsilon Z(zk(t, \varepsilon ), \varepsilon )

\bigm\| \bigm\| \bigm\| \bigm\| 
\BbbC [ - 1;1]

, k = 0, 1.

Зокрема,
\Delta 1(0,1) \approx 0,00472 468, \Delta 1(0,01) \approx 0,0012 291.

Для обчислення наближень до перiодичного розв’язку крайової задачi (1), знайдених
за допомогою iтерацiйної схеми (13), а також наближень до власної функцiї застосовний
також метод найменших квадратiв [31, 32]. Отриманi результати для умов розв’язностi
крайової задачi (1) та iтерацiйна схема (13) можуть бути перенесенi на нелiнiйнi матричнi
диференцiально-алгебраїчнi крайовi задачi [33], а також на гiбриднi крайовi задачi [34].
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