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A linear set-valued differential equation with a generalized derivative and a variable matrix is considered.
Conditions for the existence of solutions are given and the form of their cross sections at each instant of
time is obtained in the analytical form. The results are illustrated by model examples.

Розглянуто лiнiйне множиннозначне диференцiальне рiвняння iз узагальненою похiдною та змiн-
ною матрицею. Наведено умови iснування розв’язкiв i отримано в аналiтичному виглядi форму
їхнiх перерiзiв у кожний момент часу. Результати проiлюстровано модельними прикладами.

1. Вступ. У 1969 р. F. S. de Blasi та F. Iervolino вперше розглянули множиннозначнi ди-
ференцiальнi рiвняння з похiдною Хукухари [1]. Потiм багато математикiв вивчали умови
iснування розв’язкiв i дослiджували їхнi властивостi для множиннозначних диференцiаль-
них рiвнянь [2 – 13], множиннозначних iнтегро-диференцiальних та iнтегральних рiвнянь
[14 – 17], множиннозначних iмпульсних рiвнянь [18 – 20], множиннозначних дискретних
cистем [21 – 23], а також множиннозначних диференцiальних включень [2, 20, 24]. Такi
рiвняння мають широке застосування при дослiдженнi звичайних диференцiальних (iнте-
гральних, iмпульсних та iн.) включень [2, 6, 7, 18] i нечiтких диференцiальних (iнтеграль-
них, iмпульсних та iн.) рiвнянь i включень [3, 25 – 28], а також систем керування в умовах
невизначенностi та нечiтких систем керування [29 – 36]. Вiдомо, що такi рiвняння зовнi
є схожими з вiдповiдними звичайними рiвняннями, але при їх дослiдженнi й розв’язаннi
необхiдно враховувати, що вони є множиннозначними. Тому традицiйнi методи та пiдхо-
ди, якi використовуються при дослiдженнi та розв’язаннi однозначних систем, не завжди
можуть бути застосованi для множиннозначних систем, якi потребують нових або iнших
методiв i пiдходiв до вивчення. Також треба вiдзначити, що завдяки множинозначностi
виникають новi властивостi, якi необхiдно дослiдити.
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У статтi розглянуто лiнiйне множиннозначне диференцiальне рiвняння iз узагальненою
похiдною у випадку змiнної матрицi другого порядку. Наведено умови iснування розв’язкiв
й отримано форму перерезiв у кожний момент часу в аналiтичному виглядi для випадку,
коли система задовольняє умову Лаппо –Данiлевського. Результати проiлюстровано мо-
дельними прикладами.

2.Основнi означення i позначення. Нехай conv
\bigl( 
\BbbR n
\bigr) 
, n \geq 2,—простiр непустих опуклих

компактних пiдмножин простору \BbbR n з метрикою Гаусдорфа

h(X,Y ) = min\{ r \geq 0 : X \subset Y +Br(0), Y \subset X +Br(0)\} ,

де X,Y \in conv
\bigl( 
\BbbR n
\bigr) 
, Br(c) =

\bigl\{ 
x \in \BbbR n : \| x - c\| \leq r\} .

Крiм звичайних теоретико-множинних операцiй розглянемо у просторi conv
\bigl( 
\BbbR n
\bigr) 
такi

операцiї: суму множин i добуток скаляра на множину

X + Y = \{ x+ y : x \in X, y \in Y \} i \lambda X = \{ \lambda x : x \in X, \lambda \in \BbbR \} .

Справедливi наступнi основнi властивостi [2, 3, 6]:
1)
\bigl( 
conv

\bigl( 
\BbbR n
\bigr) 
, h
\bigr) 
— повний метричний простiр;

2) h(X + Z, Y + Z) = h(X,Y );

3) h(\lambda X, \lambda Y ) = | \lambda | h(X,Y ) для всiх X,Y, Z \in conv
\bigl( 
\BbbR n
\bigr) 
i \lambda \in \BbbR .

Вiдомо,щопростiр conv
\bigl( 
\BbbR n
\bigr) 
не є лiнiйнимпросторомщодо наведених операцiй, оскiль-

ки в загальному випадку не iснує протилежного елемента для X \in conv
\bigl( 
\BbbR n
\bigr) 
, тобто такої

множини  - X, що X + ( - X) = \{ 0\} , лише у випадку X \in \BbbR n протилежний елемент iснує.
Вiдсутнiсть протилежного елемента у просторi conv

\bigl( 
\BbbR n
\bigr) 
призводить до неоднозначного

введення поняття рiзницi множин i умов її iснування.
У цiй статтi ми будемо використовувати рiзницю Хукухари [37].
Означення 1 [37]. Нехай X,Y \in conv

\bigl( 
\BbbR n
\bigr) 
. Множина Z \in conv

\bigl( 
\BbbR n
\bigr) 
така, що X =

Y + Z, називається рiзницею Хукухари множин X i Y та позначається X HY.

Наведемо основнi властивостi рiзницi Хукухари [2, 3, 6, 18]:
1) якщо рiзниця Хукухари двох множин XHY iснує, то вона єдина;
2) XHX = \{ 0\} для всiх X \in conv

\bigl( 
\BbbR n
\bigr) 
;

3) (X + Y ) H Y = X для всiх X,Y \in conv
\bigl( 
\BbbR n
\bigr) 
.

Лема 1 [14]. Якщо X + Y = B1(0), то X = B\mu (z1) i Y = B\lambda (z2), де \mu + \lambda = 1 i
z1 + z2 = 0.

Зауваження 1. Якщо з кулi BR(a) в сенсi Хукухари вiднiмається множина X i рiзниця
BR(a)

H X iснує, то множина X також є кулею Br(b), радiус r якої не перевищує R.
Також додамо ще одну операцiю: добуток матрицi на множину

AX = \{ Ax : x \in X\} ,

де A \in \BbbR n\times n — дiйсна (n\times n)-вимiрна матриця, X \in conv
\bigl( 
\BbbR n
\bigr) 
.

Теорема 1 [38, 39]. Для будь-якої матрицi A \in \BbbR n\times n iснують двi ортогональнi (n\times n)-
вимiрнi матрицi U та V такi, що UTAV = \Sigma , де \Sigma є дiагональноюматрицею. Такожможна
обрати матрицi U та V таким чином, щоб дiагональнi елементи матрицi \Sigma задовольняли
умову \sigma 1 \geq \sigma 2 \geq . . . \geq \sigma r > \sigma r+1 = . . . = \sigma n = 0, де r є рангом матрицi A. Тобто, якщо A є
невиродженою матрицею, то \sigma 1 \geq \sigma 2 \geq . . . \geq \sigma n > 0.
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Вiдповiдно матриця A можна записати у виглядi A = U\Sigma V T . Ця декомпозицiя на-
зивається сингулярною декомпозицiєю. Стовпцi u1, . . . , un матрицi U називають лiвими
сингулярними векторами, стовпцi v1, . . . , vn матрицi V — правими сингулярними векто-
рами, а числа \sigma 1, . . . , \sigma n — сингулярними числами матрицi A.

Згiдно з [38] множина Y =
\bigl\{ 
Ax : x \in B1(0), A \in \BbbR n\times n

\bigr\} 
є r -вимiрним елiпсоїдом i його

пiвосi дорiвнюють вiдповiдним сингулярним числам матрицi A, де r = rank (A).

Зауваження 2. Очевидно, що якщо матриця A \in \BbbR n\times n є ортогональною матрицею, то
AB1(0) \equiv B1(0).

Означення 2 [11]. Нехай X : [0, T ] \rightarrow conv
\bigl( 
\BbbR n
\bigr) 
. Будемо казати,що X(\cdot ) має узагальнену

похiдну DX(t) \in conv
\bigl( 
\BbbR n
\bigr) 
у точцi t \in (0, T ), якщо для всiх достатньо малих \Delta > 0

вiдповiднi рiзницi Хукухари iснують i виконується принаймнi одна з наступних рiвностей:
1) lim\Delta \rightarrow 0\Delta 

 - 1
\bigl( 
X(t+\Delta ) H X(t)

\bigr) 
= lim\Delta \rightarrow 0\Delta 

 - 1
\bigl( 
X(t) H X(t - \Delta )

\bigr) 
= DX(t);

2) lim\Delta \rightarrow 0\Delta 
 - 1
\bigl( 
X(t) H X(t+\Delta )

\bigr) 
= lim\Delta \rightarrow 0\Delta 

 - 1
\bigl( 
X(t - \Delta )HX(t)

\bigr) 
= DX(t);

3) lim\Delta \rightarrow 0\Delta 
 - 1
\bigl( 
X(t+\Delta )HX(t)

\bigr) 
= lim\Delta \rightarrow 0\Delta 

 - 1
\bigl( 
X(t - \Delta )HX(t)

\bigr) 
= DX(t);

4) lim\Delta \rightarrow 0\Delta 
 - 1
\bigl( 
X(t)HX(t+\Delta )

\bigr) 
= lim\Delta \rightarrow 0\Delta 

 - 1
\bigl( 
X(t)HX(t - \Delta )

\bigr) 
= DX(t).

Теорема 2 [9, 11, 12]. Нехай множиннозначне вiдображення X : [0, T ] \rightarrow conv
\bigl( 
\BbbR n
\bigr) 
є

узагальнено диференцiйовним на [0, T ]. Тодi для всiх t \in [0, T ]:

1) якщо функцiя diam(X(t)) є неспадною на [0, T ], то X(t) = X(0) +

\int t

0
DX(s) ds;

2) якщо функцiя diam(X(t)) є спадною на [0, T ], то X(t) = X(0)H
\int t

0
DX(s) ds,

де

diam(X) = max
\psi \in S1(0)

| c(X,\psi ) + c(X, - \psi )| ,

c(X,\psi ) = max
x\in X

\{ x1\psi 1 + . . .+ xn\psi n\} ,

S1(0) =
\bigl\{ 
\psi \in \BbbR n : \| \psi \| = 1

\bigr\} 
,

а iнтеграл розумiємо у сенсi iнтеграла Хукухари [37].
Iншi властивостi цiєї похiдної отримано в [9 – 12].
Зауваження 3. Також зазначимо, що в [40] розглянуто iнше означення узагальненої

похiдної, а в работах [9, 10] вивчено властивостi та проведено порiвняльний аналiз цiєї
узагальненої похiдної й узагальненої похiдної з означення 2.

3. Основний результат. Розглянемо лiнiйне множиннозначне диференцiальне рiвняння
iз узагальненою похiдною

DX(t) = A(t)X(t), X(0) = B1(0), (1)

де X : \BbbR + \rightarrow conv
\bigl( 
\BbbR n
\bigr) 
— невiдоме множиннозначне вiдображення, A(t) \in \BbbR 2\times 2 — неви-

роджена матриця для всiх t \geq 0.

Означення 3. Множиннозначне вiдображення X : conv
\bigl( 
\BbbR n
\bigr) 
називається розв’язком ди-

ференцiального рiвняння (1), якщо воно неперервне та задовольняє диференцiальне рiвняння (1)
для всiх t \geq 0.

У роботах [9, 10, 14] розглянуто випадок, коли A(t) \equiv A, та отримано такi результати:
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1) диференцiальне рiвняння (1) має безлiч розв’язкiв, деякi (один чи два) з яких назива-
ють базовими (їхнi дiаметри є монотонними функцiями), а iншi є змiшаними (їхнi дiаметри
не є монотонними функцiями). Також вiдзначимо, що першим базовим розв’язком X1(\cdot )
називають розв’язок рiвняння (1), який задовольняє умову про те, що diam(X1(t)) є неспад-
ною функцiєю. Другим базовим розв’язком X2(\cdot ) називають розв’язок рiвняння (1), який
задовольняє умову про те, що diam(X2(t)) є спадною функцiєю;

2) якщо сингулярнi числа матрицi A такi, що \sigma 1 = \sigma 2 = \sigma , то диференцiальне рiвнян-
ня (1) має два базовi розв’язки X1(t) i X2(t), перерiзи яких у кожен момент часу t є колами
Be\sigma t(0) i Be - \sigma t(0), а якщо сингулярнi числа матрицi A такi, що \sigma 1 \not = \sigma 2, то диференцiальне
рiвняння (1) має тiльки перший базовий розв’язок X1(t), перерiз якого у кожен момент
часу t є елiпсом, пiвосi якого дорiвнюють e\sigma 1t i e\sigma 2t.

Також зауважимо, що в [11, 12] розглянуто iнший тип диференцiальних рiвнянь iз
узагальненою похiдною, в яких може iснувати не бiльше одного розв’язку, i цей розв’язок
буде спiвпадати з одним iз розв’язкiв системи (1) або не iснувати (коли другого базового
розв’язку рiвняння (1) не iснує).

Нехай

A(t) =

\Biggl( 
a(t) b(t)

c(t) d(t)

\Biggr) 
,

де a(t), b(t), c(t), d(t) — неперервнi функцiї такi, що a(t)d(t) - b(t)c(t) \not = 0 для всiх t \geq 0.
Неважко отримати, що в будь-який момент часу t \geq 0 сингулярнi числа матрицi A(t)

мають вигляд

\sigma 1(t) =

\sqrt{} 
a2(t) + b2(t) + c2(t) + d2(t) +

\sqrt{} 
\delta (t)

2
,

\sigma 2(t) =

\sqrt{} 
a2(t) + b2(t) + c2(t) + d2(t) - 

\sqrt{} 
\delta (t)

2
,

де \delta (t) =
\bigl( 
a2(t) + b 2(t) + c2(t) + d2(t)

\bigr) 2  - 4(a(t)d(t) - b(t)c(t))2. Очевидно, що

\delta (t) =
\bigl( 
a2(t) + b2(t) + c2(t) + d2(t)

\bigr) 2  - 4(a(t)d(t) - b(t)c(t))2

=
\bigl( 
a2(t) - d2(t)

\bigr) 2
+
\bigl( 
b2(t) - c2(t)

\bigr) 2
+ 2(a(t)b(t) + c(t)d(t))2 + 2(a(t)c(t) + b(t)d(t))2,

тобто \delta (t) \geq 0 для всiх t \geq 0.
Вiдповiдно, якщо a(t) = d(t) i c(t) =  - b(t) або d(t) =  - a(t) i b(t) = c(t), то \delta (t) = 0, а

в iнших випадках \delta (t) \not = 0, тобто, якщо

A(t) =

\Biggl( 
a(t) b(t)

 - b(t) a(t)

\Biggr) 
або A(t) =

\Biggl( 
a(t) b(t)

b(t)  - a(t)

\Biggr) 
,

то \delta (t) \equiv 0 i \sigma 1(t) = \sigma 2(t) = \sigma (t) =
\sqrt{} 
a2(t) + b2(t).

Теорема 3. Якщо матриця A(t) така, що

A(t) =

\Biggl( 
a(t) b(t)

 - b(t) a(t)

\Biggr) 
або A(t) =

\Biggl( 
a(t) b(t)

b(t)  - a(t)

\Biggr) 
,
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то диференцiальне рiвняння (1) має два базовi розв’язки X1(\cdot ) i X2(\cdot ) такi, що

X1(t) = e
\int t
0 \sigma (s) dsB1(0) i X2(t) = e - 

\int t
0 \sigma (s) dsB1(0),

де t \geq 0, \sigma (t) =
\sqrt{} 
a2(t) + b 2(t).

Доведення. Доведення того, що X2(\cdot ) є розв’язком диференцiального рiвняння (1),
проведемо безпосередньою пiдстановкою множиннозначного вiдображення

X2(t) = e - 
\int t
0 \sigma (s) dsB1(0)

у диференцiальне рiвняння (1) i перевiркою виконання тотожностi

D
\Bigl( 
e - 

\int t
0 \sigma (s) dsB1(0)

\Bigr) 
\equiv A(t)e - 

\int t
0 \sigma (s) dsB1(0).

Оскiльки \sigma (t) > 0 для всiх t \geq 0, то e - 
\int t
0 \sigma (s) ds є спадною функцiєю, i тому що

e - 
\int t
0 \sigma (s) dsB1(0) = B

e - 
\int t
0 \sigma (s) ds(0),

то вiдповiдно diam(X2(\cdot )) є спадною функцiєю. Тодi згiдно з означенням 2, п. 2, i тим, що
B1(0) є центрально-симетричним тiлом i вiдповiдно ( - 1)B1(0) = B1(0), маємо

lim
\Delta \rightarrow 0+

\Delta  - 1

\biggl( 
X2(t)

H
X2(t+\Delta )

\biggr) 

= lim
\Delta \rightarrow 0+

\Delta  - 1

\biggl( 
e - 

\int t
0 \sigma (s) dsB1(0)

H
e - 

\int t+\Delta 
0 \sigma (s) dsB1(0)

\biggr) 
= lim

\Delta \rightarrow 0+
\Delta  - 1

\Bigl( 
e - 

\int t
0 \sigma (s) ds  - e - 

\int t+\Delta 
0 \sigma (s) ds

\Bigr) 
B1(0)

=  - \sigma (t)e - 
\int t
0 \sigma (s) dsB1(0) = \sigma (t)e - 

\int t
0 \sigma (s) dsB1(0)

i

lim
\Delta \rightarrow 0+

\Delta  - 1

\biggl( 
X2(t - \Delta )

H
X2(t)

\biggr) 

= lim
\Delta \rightarrow 0+

\Delta  - 1

\biggl( 
e - 

\int t - \Delta 
0 \sigma (s) dsB1(0)

H
e - 

\int t
0 \sigma (s) dsB1(0)

\biggr) 
= lim

\Delta \rightarrow 0+
\Delta  - 1

\Bigl( 
e - 

\int t - \Delta 
0 \sigma (s) ds  - e - 

\int t
0 \sigma (s) ds

\Bigr) 
B1(0)

 - \sigma (t)e - 
\int t
0 \sigma (s) dsB1(0) = \sigma (t)e - 

\int t
0 \sigma (s) dsB1(0).

Тобто
DX2(t) = D

\Bigl( 
e - 

\int t
0 \sigma (s) dsB1(0)

\Bigr) 
= \sigma (t)e - 

\int t
0 \sigma (s) dsB1(0).

Оскiльки матриця A(t) така, що сингулярнi числа \sigma 1(t) = \sigma 2(t) = \sigma (t), то сингулярна
декомпозицiя матрицi A(t) у кожен момент часу t \geq 0 має вигляд A(t) = U(t)\Sigma (t)V T (t),
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де U(t), V (t) є ортогональними матрицями i \Sigma (t) = \sigma (t)E, E —одинична матриця. Також
вiдомо, що V T (t)Br(0) = Br(0) i U(t)Br(0) = Br(0) для всiх t \geq 0 i r > 0. Тодi

A(t)e - 
\int t
0 \sigma (s) dsB1(0) = U(t)\Sigma (t)V T (t)e - 

\int t
0 \sigma (s) dsB1(0)

= U(t)\sigma (t)EV T (t)e - 
\int t
0 \sigma (s) dsB1(0) = \sigma (t)U(t)EV T (t)e - 

\int t
0 \sigma (s) dsB1(0)

= \sigma (t)e - 
\int t
0 \sigma (s) dsU(t)EV T (t)B1(0) = \sigma (t)e - 

\int t
0 \sigma (s) dsB1(0).

Звiдси маємо
\sigma (t)e - 

\int t
0 \sigma (s) dsB1(0) \equiv \sigma (t)e - 

\int t
0 \sigma (s) dsB1(0),

тобто X2(\cdot ) є другим базовим розв’язком диференцiального рiвняння (1).
Тепер доведемо, що X1(\cdot ) є розв’язком диференцiального рiвняння (1). Доведення та-

кож проведемо безпосередньою пiдстановкою множиннозначного вiдображення X1(\cdot ) у
диференцiальне рiвняння (1) i перевiркою виконання тотожностi

D
\Bigl( 
e
\int t
0 \sigma (s) dsB1(0)

\Bigr) 
\equiv A(t)e

\int t
0 \sigma (s) dsB1(0).

Оскiльки \sigma (t) > 0 для всiх t \geq 0, то e
\int t
0 \sigma (s) ds є зростаючою функцiєю i вiдповiдно

diam(X1(\cdot )) — зростаючою функцiєю. Тодi згiдно з означенням 2, п. 1, маємо

lim
\Delta \rightarrow 0+

\Delta  - 1

\biggl( 
X1(t+\Delta )

H
X1(t)

\biggr) 
= lim

\Delta \rightarrow 0+
\Delta  - 1

\biggl( 
e
\int t+\Delta 
0 \sigma (s) dsB1(0)

H
e
\int t
0 \sigma (s) dsB1(0)

\biggr) 
= lim

\Delta \rightarrow 0+
\Delta  - 1

\Bigl( 
e
\int t+\Delta 
0 \sigma (s) ds  - e

\int t
0 \sigma (s) ds

\Bigr) 
B1(0)

= \sigma (t)e
\int t
0 \sigma (s) dsB1(0)

i

lim
\Delta \rightarrow 0+

\Delta  - 1

\biggl( 
X1(t)

H
X1(t - \Delta )

\biggr) 
= lim

\Delta \rightarrow 0+
\Delta  - 1

\biggl( 
e
\int t
0 \sigma (s) dsB1(0)

H
e
\int t - \Delta 
0 \sigma (s) dsB1(0)

\biggr) 
= lim

\Delta \rightarrow 0+
\Delta  - 1

\Bigl( 
e
\int t
0 \sigma (s) ds  - e

\int t - \Delta 
0 \sigma (s) ds

\Bigr) 
B1(0)

= \sigma (t)e
\int t
0 \sigma (s) dsB1(0).

Тобто
DX1(t) = D

\Bigl( 
e
\int t
0 \sigma (s) dsB1(0)

\Bigr) 
= \sigma (t)e

\int t
0 \sigma (s) dsB1(0).

Далi доведення проводиться так само, як i для другого базового розв’язку X2(t).

Теорему 3 доведено.
Приклад 1. Нехай

A(t) =

\Biggl( 
e - t cos(t) e - t sin(t)

e - t sin(t)  - e - t cos(t)

\Biggr) 
.
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Рис. 1. Розв’язок X1(t), t \in [0, 2].
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Рис. 2. Розв’язок X2(t), t \in [0, 2].

Тодi сингулярнi числа \sigma 1(t) i \sigma 2(t) матрицi A(t) тотожнi та

\sigma 1(t) \equiv \sigma 2(t) = \sigma (t) =

\sqrt{} 
(e - t cos(t))2 + (e - t sin(t))2 = e - t.

Вiдповiдно диференцiальне рiвняння (1) має два базовi розв’язки X1(t) = e1 - e
 - t
B1(0)

(рис. 1) i X2(t) = ee
 - t - 1B1(0) (рис. 2).

Далi розглянемо випадок, коли матриця A(t) така, що \delta (t) \not \equiv 0.
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Теорема 4. Якщо матриця A(t) така, що

A(t) =

\Biggl( 
a(t) b(t)

c(t) d(t)

\Biggr) 
та iснує t\prime > 0 таке, що \delta (t\prime ) \not = 0, то диференцiальне рiвняння (1) має тiльки перший базовий
розв’язок X1(t).

Доведення. Спочатку розглянемо питання iснування першого базового розв’язку X1(\cdot )
диференцiального рiвняння (1). Оскiльки перший базовий розв’язок диференцiального
рiвняння (1) завжди спiвпадає з розв’язком вiдповiдного диференцiального рiвняння з
похiдноюХукухари [9, 10, 14], то згiдно з [18] перший базовий розв’язок диференцiального
рiвняння (1) iснує для всiх t \geq 0.

Неможливiсть iснування другого базового розв’язку X2(\cdot ) диференцiального рiвнян-
ня (1) будемо доводити вiд супротивного. Нехай диференцiальне рiвняння (1) має другий
базовий розв’язок X2(\cdot ).

Оскiльки iснує t\prime > 0 таке, що \delta (t\prime ) \not = 0 i функцiя \delta (t) є неперервною на \BbbR +, то iснує
промiжок (t1, t2) такий, що

1) t1 > 0 i \delta (t1) = 0 або t1 = 0;
2) t\prime \in (t1, t2);
3) \delta (t) > 0 для всiх t \in (t1, t2).
Якщо t1 > 0, то будемо вважати, що \delta (t) = 0 для всiх t \in [0, t1]. (Зауважимо, що коли

це не так, тодi iснує t\prime \prime \in (0, t1) таке, що \delta (t\prime \prime ) > 0. Тому змiнимо t\prime на t\prime \prime i повторимо
нашi мiркування.) I тому що \delta (t) = 0 для всiх t \in [0, t1], то \sigma 1(t) = \sigma 2(t) = \sigma (t) i згiдно з
теоремою 3 X2(t1) = e - 

\int t1
0 \sigma (t) dtB1(0), тобто X2(t1) є колом радiуса \omega = e - 

\int t1
0 \sigma (t) dt < 1.

Якщо t1 = 0, то X2(t1) = B1(0), тобто також є колом радiуса 1.
Далi будемо вважати, що t1 > 0 (якщо t1 = 0, то \omega = 1).
Тодi завдяки означенню 1 i теоремi 2 для всiх t \in [t1, t2]

X2(t) +

t\int 
t1

A(s)X2(s) ds = X2(t1). (2)

Оберемо та зафiксуємо деяке довiльне T \in (t1, t2]. Тодi X2(T ) +

\int T

t1

A(s)X2(s) ds =

X2(t1). Звiдси

X2(t1)
H
X2(T ) =

T\int 
t1

A(s)X2(s) ds.

Згiдно з лемою1 i зауваженням1, оскiльки X2(t1)—колойрiзницяХукухари X2(t1)
H
X2(T )

iснує, то X2(T ) також є колом, тобто X2(T ) = Br(T )(0), де 0 \leq r(T ) \leq \omega . Того що T є
довiльним, то X2(t) = Br(t)(0) для всiх t \in [t1, t2].

Оскiльки матриця A(t) така, що \delta (t) \not = 0 для всiх t \in (t1, t2], то вiдповiдно матриця
A(t) у кожен момент часу t \in (t1, t2] має два рiзних сингулярних числа

\widetilde \sigma 1(t) =
\sqrt{} 
a2(t) + b2(t) + c2(t) + d2(t) +

\sqrt{} 
\delta (t)

2
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i

\widetilde \sigma 2(t) =
\sqrt{} 
a2(t) + b2(t) + c2(t) + d2(t) - 

\sqrt{} 
\delta (t)

2
.

Отже, A(t)Br(t)(0) є елiпсом у кожен момент часу t \in (t1, t2]. Вiдповiдно

T\int 
t1

A(s)X2(s) ds =

T\int 
t1

A(s)Br(s)(0) ds

не може бути колом. Тобто, Br(T )(0)+
\int T

t1

A(s)X2(s)ds не є колом i рiвнiсть (2) не викону-
ється; ми отримали суперечнiсть.

Тодi
1) якщо \delta (t) > 0 для всiх t \in (0, t2), то другого базового розв’язку диференцiального

рiвняння (1) не iснує для всiх t \geq 0;

2) якщо \delta (t) = 0 для всiх t \in [0, t1] i \delta (t) > 0 для всiх t \in (t1, t2), то другий базовий
розв’язок диференцiального рiвняння (1) iснує для всiх t \in [0, t1] i не iснує для всiх t > t1.

Тобто згiдно з означенням 3 другого базового розв’язку диференцiального рiвняння (1)
не iснує.

Теорему 4 доведено.
Далi отримаємо аналiтичний вигляд першого базового розв’язку диференцiального

рiвняння (1), коли матриця A(t) є симетричною, має рiзнi сингулярнi числа та задовольняє
умову Лаппо –Данiлевського.

Теорема 5 [41, c. 24]. Матриця A(t) задовольняє умову Лаппо –Данiлевського

A(t)

t\int 
0

A(s) ds =

t\int 
0

A(s) dsA(t)

для всiх t \geq 0 тодi й тiльки тодi, коли вона має такий вигляд (виключаючи випадок
c(t) \equiv b(t) \equiv 0):

A(t) =

\Biggl( 
p(t) + \gamma q(t) q(t)

\mu q(t) p(t)

\Biggr) 
,

де p(t), q(t) : \BbbR + \rightarrow \BbbR є неперервними функцiями i \mu , \gamma \in \BbbR — сталi.
Теорема 6. Якщо матриця A(t) така, що

A(t) =

\Biggl( 
p(t) + \gamma q(t) q(t)

q(t) p(t)

\Biggr) 
,

де p(t), q(t) i \gamma \in \BbbR такi, що q(t) \not = 0 i p(t) + \gamma q(t) \not =  - p(t) для всiх t \geq 0, то дифе-
ренцiальне рiвняння (1) має лише перший базовий розв’язок X1(t), перерiз якого у кожен
момент часу t є елiпсом, пiвосi якого дорiвнюють e\sigma 1(t) i e\sigma 2(t), де \sigma 1,2(t) — сингулярнi числа

матрицi
\int t

0
A(s) ds.
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Доведення. Оскiльки p(t), q(t) i \gamma такi, що q(t) \not = 0 i p(t) + \gamma q(t) \not =  - p(t) для всiх
t \geq 0, то \delta (t) \not = 0 i згiдно з теоремою 4 диференцiальне рiвняння (1) має лише перший
базовий розв’язок X1(\cdot ).

Згiдно з теоремою 5 матриця A(t) задовольняє умову Лаппо –Данiлевського для всiх
t \geq 0.

Матрицант диференцiального рiвняння \.\Phi = A(t)\Phi , \Phi (0) = E можна записати у виглядi

\Phi (t) = e
\int t
0 A(s) ds = eC(t),

де

C(t) =

\left(    
\int t

0
(p(s) + \gamma q(s)) ds

\int t

0
q(s) ds\int t

0
q(s) ds

\int t

0
p(s) ds

\right)    .
Тобто, перший базовий розв’язок можна записати у виглядi X1(t) = eC(t)B1(0).
Оскiльки матриця C(t) є симетричною для всiх t \geq 0, то в кожен момент часу t \geq 0

її можна записати у виглядi спектрального розкладу C(t) = U(t)\Lambda (t)UT (t), де U(t) є

ортогональною матрицею у кожен момент часу t \geq 0, \Lambda (t) =

\biggl( 
\lambda 1(t) 0
0 \lambda 2(t)

\biggr) 
, \lambda i(\cdot ) :

\BbbR \rightarrow \BbbR , i = 1, 2, | \lambda 1(t)| > | \lambda 2(t)| ,

\lambda 1,2(t) =
1

2

\left(  t\int 
0

(2p(s) + \gamma q(s)) ds\pm 
\sqrt{} 
(4 + \gamma 2)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t\int 

0

q(s) ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\right)  .

Тому що q(t) \not = 0 для всiх t \geq 0, то q(t) > 0 для всiх t \geq 0 або q(t) < 0 для всiх t \geq 0.
Отже, матриця

U(t)

=

\left(                

\gamma +
\sqrt{} 
\gamma 2 + 4 sgn

\biggl( \int t

0
q(s)ds

\biggr) 
\sqrt{} \biggl( 

\gamma +
\sqrt{} 
\gamma 2 + 4 sgn

\biggl( \int t

0
q(s)ds

\biggr) \biggr) 2

+ 4

2\sqrt{} \biggl( 
\gamma +

\sqrt{} 
\gamma 2 + 4sgn

\biggl( \int t

0
q(s)ds

\biggr) \biggr) 2

+ 4

2\sqrt{} \biggl( 
\gamma +

\sqrt{} 
\gamma 2 + 4 sgn

\biggl( \int t

0
q(s)ds

\biggr) \biggr) 2

+ 4

 - 
\gamma +

\sqrt{} 
\gamma 2 + 4 sgn

\biggl( \int t

0
q(s)ds

\biggr) 
\sqrt{} \biggl( 

\gamma +
\sqrt{} 
\gamma 2 + 4 sgn

\biggl( \int t

0
q(s)ds

\biggr) \biggr) 2

+ 4

\right)                
(3)

не залежить вiд t, де sgn(\phi ) =

\Biggl\{ 
1, \phi \geq 0,

 - 1, \phi < 0.
Вiдповiдно U(t) \equiv U для всiх t \geq 0.

Запишемо розв’язок X1(\cdot ) диференцiального рiвняння (1) у виглядi

X1(t) = B1(0) + C(t)B1(0) +
(C(t))2

2!
B1(0) + . . .+

(C(t))k

k!
B1(0) + . . . .
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Оскiльки

(C(t))k

k!
B1(0) =

1

k!
U\Lambda k(t)UTB1(0)

=
1

k!
U\Lambda k(t)B1(0) =

1

k!
U | \Lambda (t)| kP k(t)B1(0)

=
1

k!
U | \Lambda (t)| kB1(0 =

1

k!
U\Sigma k(t)B1(0),

то
X1(t) = U

\infty \sum 
i=0

\biggl( 
1

i!
\Sigma i(t)

\biggr) 
B1(0) = Ue\Sigma (t)B1(0),

де

\Sigma (t) = | \Lambda (t)| = \Lambda (t)P (t), P (t) =

\Biggl( 
sgn(\lambda 1(t)) 0

0 sgn(\lambda 2(t))

\Biggr) 
.

Тодi у кожен момент часу t > 0 множина e\Sigma (t)B1(0) є елiпсом, пiвосi якого дорiвнюють
e\sigma i(t), i = 1, 2, а матриця U визначає поворот елiпса щодо осей координат [38].

Теорему 6 доведено.
Приклад 2. Нехай

A(t) =

\Biggl( 
e - 2t + 0,5e - t(1,5 - sin(t)) e - t(1,5 - sin(t))

e - t(1,5 - sin(t)) e - 2t

\Biggr) 
.

Неважко перевiрити, що матриця A(t) є симетричною, \delta (t) \not = 0 i вона задовольняє
умову Лаппо –Данiлевського p(t) = e - 2t, q(t) = e - t(1,5 - sin(t)), \gamma = 0,5.

Оскiльки матриця
\int t

0
A(s) ds має власнi числа

\lambda 1,2(t) =
1

2

\left(  t\int 
0

\bigl( 
2e - 2s + 0,5e - s(1,5 - sin(s))

\bigr) 
ds\pm 

\sqrt{} 
4 + 0,52

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t\int 

0

e - s(1,5 - sin(s)) ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\right)  

=
1

8

\Bigl( 
4
\bigl( 
1 - e - 2t

\bigr) 
+
\Bigl( 
1\pm 

\surd 
17
\Bigr) \Bigl( 

2 - 3e - t +
\surd 
2 e - t sin

\Bigl( 
t+

\pi 

4

\Bigr) \Bigr) \Bigr) 
,

то вiдповiдно сингулярнi числа

\sigma 1,2(t) =
1

8

\bigm| \bigm| \bigm| 4\bigl( 1 - e - 2t
\bigr) 
+
\Bigl( 
1\pm 

\surd 
17
\Bigr) \Bigl( 

2 - 3e - t +
\surd 
2 e - t sin

\Bigl( 
t+

\pi 

4

\Bigr) \Bigr) \bigm| \bigm| \bigm| .
А тому диференцiальне рiвняння (1) має розв’язок X1(t) = Ue\Sigma (t)B1(0) (рис. 3 i 4),

перерiз якого у кожен момент часу t — елiпс з пiвосями e\sigma 1(t) i e\sigma 2(t), повернутий на кут
\theta \approx 38\circ , який визначається матрицею U згiдно з формулою (3), тобто

U =

\Biggl( 
0,7882 0,6154

0,6154  - 0,7882

\Biggr) 
.
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Рис. 3. Розв’язок X1(t), t \in [0, 6].
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Рис. 4. Розв’язок X1(t), t \in [0, 6].

Далi розглянемо змiшанi розв’язки рiвняння (1) i деякi їхнi властивостi.
Теорема 7. Якщо сингулярнi числа \sigma 1(t) i \sigma 2(t) матрицi A(t) такi, що \sigma 1(t) = \sigma 2(t) =

\sigma (t) для всiх t \geq 0, то на будь-якому промiжку [t\prime , t\prime \prime ] монотонностi функцiї diam(X(t))
множиннозначне вiдображення X(t), що має вигляд

X(t) = e - 
\int t
t\prime \sigma (s) dsX(t\prime ) або X(t) = e

\int t
t\prime \sigma (s) dsX(t\prime ) (4)

для всiх t \in [t\prime , t\prime \prime ], є змiшаним розв’язком рiвняння (1).

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 2



240 ТЕТЯНА КОМЛЄВА, АНДРIЙ ПЛОТНIКОВ, НАТАЛIЯ СКРИПНИК

Доведення. Розглянемо довiльне множинозначне вiдображення X(\cdot ), яке задовольняє
умову (4). Тодi:

1) якщо функцiя diam(X(t)) є монотонною для всiх t \geq 0, то згiдно з теоремою 3
множиннозначне вiдображення X(\cdot ) має вигляд

X(t) = e - 
\int t
0 \sigma (s) dsB1(0) або X(t) = e

\int t
0 \sigma (s) dsB1(0)

для всiх t \geq 0 i є базовим розв’язком рiвняння (1);
2) нехай функцiя diam(X(t)) є монотонно зростаючою (спадаючою) на промiжку

[0, T1], а на промiжку [T1, T2] є монотонно спадаючою (зростаючою) i т. д.
Тодi на промiжку [0, T1] множиннозначне вiдображення спiвпадає з першим (другим)

базовим розв’язком рiвняння (1) i має вигляд

X(t) = e
\int t
0 \sigma (s) dsB1(0)

\Bigl( 
X(t) = e - 

\int t
0 \sigma (s) dsB1(0)

\Bigr) 
для всiх t \in [0, T1] i вiдповiдно X(T1) = BR1(0) (X(T1) = Br1(0)), де R1 = e\zeta (T1), r1 =

e - \zeta (T1), \zeta (T1) =

\int T1

0
\sigma (s) ds.

Далi на промiжку [T1, T2] множиннозначне вiдображення X(\cdot ) вiдповiдно набуває ви-
гляду

X(t) = e
 - 
\int t
T1
\sigma (s) ds

X(T1)
\Bigl( 
X(t) = e

\int t
T1
\sigma (s) ds

X(T1)
\Bigr) 

для всiх t \in [T1, T2].

Неважко перевiрити, що X(\cdot ) є неперервним на промiжку [0, T2] i має узагальнену
похiдну

DX(t) =

\left\{   \sigma (t)e
\int t
0 \sigma (s) dsB1(0), t \in [0, T1],

\sigma (t)e - 
\int t
0 \sigma (s) dsX(T1), t \in [T1, T2]\left(  DX(t) =

\left\{   \sigma (t)e
 - 
\int t
0 \sigma (s) dsB1(0), t \in [0, T1],

\sigma (t)e
\int t
0 \sigma (s) dsX(T1), t \in [T1, T2]

\right)  ,
яка є неперевною на промiжку [0, T2].

Далi можна перейти до наступного промiжку монотонностi i записати, аналогiчно,
аналiтичний вигляд вiдображення X(\cdot ) i його загальної похiдної DX(\cdot ).

I на останок, як це було доведено в теоремi 3, можна довести, що вiдображення X(\cdot )
задовольняє рiвняння (1) для всiх t \geq 0.

Теорему 7 доведено.
Зауваження 4. Очевидно, що диференцiальне рiвняння (1) має нескiнченну кiлькiсть

змiшаних розв’язкiв.
Приклад 3. Розглянемо рiвняння з прикладу 1. Як ранiше було зазначено, диферен-

цiальне рiвняння (1) має два базовi розв’язки X1(t) = e1 - e
 - t
B1(0) (рис. 1) та X2(t) =
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Рис. 5. Розв’язок Y1(t), t \in [0, 2].

ee
 - t - 1B1(0) (рис. 2). Завдяки цим розв’язкам можна легко побудувати змiшанi розв’язки.

Наприклад,

Y1(t) =

\left\{           
e
\int t
0 \sigma (s) dsB1(0), t \in 

\bigl[ 
0, T 1

1

\bigr] 
,

e
 - 
\int t
T1
1
\sigma (s) ds

X
\bigl( 
T 1
1

\bigr) 
, t \in 

\bigl[ 
T 1
1 , T

1
2

\bigr] 
,

e

\int t
T1
2
\sigma (s) ds

X
\bigl( 
T 1
2

\bigr) 
, t \in 

\bigl[ 
T 1
2 , 2
\bigr] 
,

Y2(t) =

\left\{                   

e - 
\int t
0 \sigma (s) dsB1(0), t \in 

\bigl[ 
0, T 2

1

\bigr] 
,

e

\int t
T2
1
\sigma (s) ds

X
\bigl( 
T 2
1

\bigr) 
, t \in 

\bigl[ 
T 2
1 , T

2
2

\bigr] 
,

e
 - 
\int t
T2
2
\sigma (s) ds

X
\bigl( 
T 2
2

\bigr) 
, t \in 

\bigl[ 
T 2
2 , T

2
3

\bigr] 
,

e

\int t
T2
3
\sigma (s) ds

X(T 2
3 ), t \in 

\bigl[ 
T 2
3 , 2
\bigr] 
,

де \sigma (t) = e - t, T 1
1 = 0,6, T 1

2 = 1,4, T 2
1 = 0,4, T 2

2 = 1, T 2
3 = 1,6, X(T 1

1 ) = B1,57(0),
X(T 1

2 ) = B1,16(0), X(T 2
1 ) = B0,72(0), X(T 2

2 ) = B0,97(0), X(T 2
3 ) = B0,82(0) (рис. 5, 6).

Теорема 8. Нехай рiвняння (1) задовольняє умови теореми 6. Тодi рiвняння (1) має безлiч
змiшаних розв’язкiв.

Доведення. Згiдно з теоремою 6 диференцiальне рiвняння (1) має лише перший базо-
вий розв’язок X(t), перерiз якого у кожен момент часу t є елiпсом з пiвосями e\sigma 1(t) i e\sigma 2(t),

де \sigma 1,2(t) — сингулярнi числа матрицi
\int t

0
A(s) ds, i функцiя diam(X(t)) є зростаючою для

всiх t \geq 0.

Оберемо точки на числовiй осi 0 < T1 < T2 < T3 < . . . (поки що довiльнi, далi отри-
маємо умову, яку вони мають задовольняти) i побудуємо розв’язок X(\cdot ) диференцiального
рiвняння (1) такий, що функцiя diam(X(t)) є монотонно зростаючою на промiжку [0, T1],
а на промiжку [T1, T2] — монотонно спадаючою i т. д.

Очевидно, що на промiжку [0, T1] множиннозначне вiдображення X(\cdot ) буде спiвпадати
з першим базовим розв’язком рiвняння (1) i мати вигляд

X(t) = eC(t)B1(0) = Ue\Sigma (t)B1(0)
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Рис. 6. Розв’язок Y2(t), t \in [0, 2].

для всiх t \in [0, T1] i вiдповiдно X(T1) буде елiпсом, пiвосi якого дорiвнюють e\sigma i(T1),
i = 1, 2, де

\sigma 1,2(T1) =
1

2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
T1\int 
0

(2p(s) + \gamma q(s)) ds\pm 
\sqrt{} 
(4 + \gamma 2)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
T1\int 
0

q(s) ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| .

Далi на промiжку [T1, T2] розглянемо множиннозначне вiдображення X(\cdot ), яке має
вигляд

X(t) = e - C(t)X(T1) = e - C(t)eC(T1)B1(0)

= Ue - \Sigma (t,T1)P (t)UTUe\Sigma (T1)P (T1)U
TB1(0)

= Ue - \Sigma (t,T1)e\Sigma (T1)B1(0) = Ue
\widetilde \Sigma (t,T1)B1(0)

для всiх t \in [T1, T2], де

\widetilde \Sigma (t, T1) = \Biggl( \sigma 1(T1) - \sigma 1(t, T1) 0

0 \sigma 2(T1) - \sigma 2(t, T1)

\Biggr) 
;

\sigma 1,2(t, T1) =
1

2

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t\int 

T1

(2p(s) + \gamma q(s)) ds\pm 
\sqrt{} 
(4 + \gamma 2)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
t\int 

T1

q(s) ds

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 

— сингулярнi числа матрицi C(t, T1) =
\int t

T1

A(s) ds, а T2 таке, що \sigma i(T1)  - \sigma i(T2, T1) > 0.

Тобто,

X(t) =

\left\{   e
C(t)B1(0), t \in [0, T1],

e - C(t,T1)eC(T1)B1(0), t \in [T1, T2].
(5)
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Очевидно, що вiдображення X(\cdot ) є неперервним на промiжку [0, T2] i в кожнiй точ-
цi t \in [0, T2] має неперервну узагальнену похiдну (враховуючи, що елiпс є центрально-
симетричним тiлом):

DX(t) =

\left\{   A(t)e
C(t)B1(0), t \in [0, T1],

A(t)e - C(t,T1)eC(T1)B1(0), t \in [T1, T2].
(6)

Враховуючи (5) i (6), легко бачити, що X(\cdot ) є розв’язком рiвняння (1) на промiж-
ку [0, T2].

Далi переходимо до наступного промiжку монотонностi i записуємо, аналогiчно, ана-
лiтичний вигляд вiдображення X(\cdot ) i його узагальненої похiдної.

Враховуючи спосiб обрання моментiв часу T1, T2, . . . , очевидно, що таких розв’язкiв
можна побудувати нескiнченно багато.

Теорему 8 доведено.
Зауваження 5. Зазначимо, що всi змiшанi розв’язки мають однакову властивiсть:
1) на першому промiжку монотонностi функцiя diam(X(t)) завжди зростає;
2) моменти часу T1, T2, . . . обираються таким чином, щоб для будь-якого k \geq 1 вико-

нувалася умова

\sigma i(T1) +
k\sum 
j=1

( - 1)j\sigma i(Tj+1, Tj) \geq 0, i = 1, 2.

Приклад 4. Розглянемо рiвняння з прикладу 2. Як ранiше було вказано, диференцiаль-
не рiвняння (1) має лише перший базовий розв’язок X1(t) (рис. 3), перерiз якого у кожен
момент часу t є елiпсом, пiвосi якого дорiвнюють e\sigma 1(t) i e\sigma 2(t), де \sigma 1,2(t) — сингулярнi

числа матрицi
\int t

0
A(s) ds. Завдяки цьому розв’язку можна побудувати змiшанi розв’язки

диференцiального рiвняння (1). Наприклад,

Y1(t) =

\left\{           
e
\int t
0 A(s) dsB1(0), t \in [0, T1],

e
 - 
\int t
T1
A(s) ds

X(T1), t \in [T1, T2],

e
\int t
T2
A(s) ds

X(T2), t \in [T2, 2],

Y2(t) =

\left\{                         

e
\int t
0 A(s) dsB1(0), t \in [0, T1],

e
 - 
\int t
T1
A(s) ds

X(T1), t \in [T1, T2],

e
\int t
T2
A(s) ds

X(T2), t \in [T2, T3],

e
 - 
\int t
T3
A(s) ds

X(T3), t \in [T3, T4],

e
\int t
T4
A(s) ds

X(T4), t \in [T4, 2],

де T1 = 0,8, T2 = 1, T3 = 1,2, T4 = 1,6, X(T1) = U Ep(3,39, 1,11), X(T2) = U Ep(3,04, 1,09),
X(T3) = U Ep(3,29, 1,10), X(T4) = U Ep(2,99, 1,08), Ep(a, b) є елiпсом, пiвосi якого дорiв-

нюють a i b, матриця U =

\biggl( 
0,7882 0,6154
0,6154  - 0,7882

\biggr) 
визначає кут \theta \approx 38\circ повороту елiпса

(рис. 7, 8).
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Рис. 7. Розв’язок Y1(t), t \in [0, 2].
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Рис. 8. Розв’язок Y2(t), t \in [0, 2].
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