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ОБМЕЖЕНI РОЗВ’ЯЗКИ РIЗНИЦЕВОГО РIВНЯННЯ
З КУСКОВО-СТАЛИМИ ОПЕРАТОРНИМИ КОЕФIЦIЄНТАМИ
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Necessary and sufficient conditions for the existence of a unique bounded solution of a linear difference
equation with piecewise constant operator coefficients are obtained.

Отримано необхiднi й достатнi умови iснування єдиного обмеженого розв’язку лiнiйного рiзнице-
вого рiвняння з кусково-сталими операторними коефiцiєнтами.

1. Вступ. Нехай X —комплексний банахiв простiр з нормою \| \cdot \| i нульовим елементом \=0;
L(X) —простiр лiнiйних неперервних операторiв, що дiють iз X у X; I, O — вiдповiдно
одиничний i нульовий оператори в X. Через \sigma (T ), \rho (T ), r(T ) позначимо вiдповiдно спектр,
резольвентну множину i спектральний радiус оператора T \in L(X). Покладемо

l\infty (\BbbZ , X) =

\biggl\{ 
\=x = \{ xn, n \in \BbbZ \} \subset X

\bigm| \bigm| \bigm| \| \=x\| \infty = sup
n\in \BbbZ 

\| xn\| < \infty 
\biggr\} 
.

Вiдзначимо, що l\infty (\BbbZ , X) — банахiв простiр iз покоординатним додаванням i множенням
на комплексне число i нормою \| \cdot \| \infty .

Зафiксуємо натуральне число p та оператори A, B, A1, A2, . . . , Ap з L(X) i розглянемо
рiзницеве рiвняння \left\{         

xn+1 = Axn + yn, n \geq p+ 1,

xn+1 = Anxn + yn, 1 \leq n \leq p,

xn+1 = Bxn + yn, n \leq 0,

(1)

у якому \{ yn, n \in \BbbZ \} — задана, а \{ xn, n \in \BbbZ \} — шукана послiдовностi елементiв просто-
ру X. Будемо дослiджувати умови для операторiв A,B,A1, A2, . . . , Ap, що забезпечують
виконання такої умови.

Умова обмеженостi. Для довiльного елемента \=y = \{ yn, n \in \BbbZ \} \in l\infty (\BbbZ , X) рiвняння (1)
має єдиний розв’язок \=x = \{ xn, n \in \BbbZ \} у просторi l\infty (\BbbZ , X).

Вiдомо (див., наприклад, [1, c. 32 – 34]), що коли спектр \sigma (A) оператора A не перети-
нається з одиничним колом S = \{ z \in \BbbC | | z| = 1\} , \sigma  - (A) — частина спектра оператора A,
що лежить всерединi, а \sigma +(A) — зовнi кола S (одна з них може бути порожньою), P - (A) i
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P+(A) — проєктори Рiсса, що вiдповiдають \sigma  - (A) i \sigma +(A), то простiр X розкладається в
пряму суму X = X - (A)\dotplus X+(A) iнварiантних вiдносно A пiдпросторiв X\pm (A) = P\pm (A)(X)
таким чином, що звуження A - , A+ оператора A на X - (A), X+(A) мають вiдповiдно спе-
ктри \sigma  - (A), \sigma +(A). Цей факт використано для доведення такої теореми.

Теорема 1 [2]. Рiзницеве рiвняння\left\{   xn+1 = Axn + yn, n \geq 1,

xn+1 = Bxn + yn, n \leq 0,
(2)

задовольняє умову обмеженостi тодi й тiльки тодi, коли виконуються такi умови:
a1) \sigma (A) \cap S = \varnothing , \sigma (B) \cap S = \varnothing ;

a2) X = X - (A)\dotplus X+(B).

Зазначимо, що умови обмеженостi для рiзницевих рiвнянь (1) i (2) формулюються
аналогiчно.

Використовуючи еквiвалентнiсть умови обмеженостi i умови експоненцiальної дихото-
мiї для лiнiйного рiзницевого рiвняння зi змiнним операторним коефiцiєнтом, В. Ю. Слю-
сарчук у [3] отримав такий критерiй виконання умови обмеженостi для рiзницевого рiв-
няння (1).

Теорема 2. Рiзницеве рiвняння (1) задовольняє умову обмеженостi тодi й тiльки тодi,
коли банахiв простiр X зображується у виглядi прямих сум пiдпросторiв

X = X+
0 \dotplus X - 

0 = X+
1 \dotplus X - 

1 = . . . = X+
p+1 \dotplus X - 

p+1, (3)

для яких виконуються такi умови:
b1) A

\bigl( 
X+

p+1

\bigr) 
\subset X+

p+1, A
\bigl( 
X - 

p+1

\bigr) 
= X - 

p+1, оператор \BbbP  - 
p+1A\BbbP  - 

p+1 : X - 
p+1 \rightarrow X - 

p+1 має не-
перервний обернений оператор

\bigl( 
\BbbP  - 
p+1A\BbbP  - 

p+1

\bigr)  - 1 i r
\bigl( 
\BbbP +
p+1A\BbbP 

+
p+1

\bigr) 
< 1, r

\bigl( \bigl( 
\BbbP  - 
p+1A\BbbP 

 - 
p+1

\bigr)  - 1\bigr) 
< 1

(при фiксованому 0 \leq k \leq p + 1 \BbbP +
k , \BbbP  - 

k — проєктори, що вiдповiдають зображенню
X = X+

k \dotplus X - 
k );

b2) B
\bigl( 
X+

0

\bigr) 
\subset X+

0 \cap X+
1 , B

\bigl( 
X - 

0

\bigr) 
= X - 

0 = X - 
1 , оператор \BbbP  - 

0 B \BbbP  - 
0 : X - 

0 \rightarrow X - 
0 має

неперервний обернений оператор
\bigl( 
\BbbP  - 
0 B \BbbP  - 

0

\bigr)  - 1 i r
\bigl( 
\BbbP +
0 B \BbbP +

0

\bigr) 
< 1, r

\bigl( \bigl( 
\BbbP  - 
0 B \BbbP  - 

0

\bigr)  - 1\bigr) 
< 1;

b3) Ak бiєктивно вiдображає X - 
k на X - 

k+1 i A
\bigl( 
X+

k

\bigr) 
\subset X+

k+1 для кожного 1 \leq k \leq p.

Зазначимо, що перевiрка умов теореми 2, як i умови експоненцiальної дихотомiї,
нетривiальна, оскiльки доведення теореми 2 не мiстить ефективного способу побудови
зображень (3) простору X.

Для скорочення запису покладемо Ajk = AkAk - 1 . . . Aj , 1 \leq j \leq k \leq p. Основним
результатом цiєї статтi є таке узагальнення теореми 1 на випадок рiзницевого рiвняння (1).

Теорема 3. Длятого щоб рiзницеве рiвняння (1) задовольняло умову обмеженостi, необхiд-
но й достатньо, щоб виконувалися такi умови:

i1) \sigma (A) \cap S = \varnothing , \sigma (B) \cap S = \varnothing ;

i2) A1k(X+(B)) —пiдпростiр у X, атакожоператор A1k бiєктивно вiдображає X+(B)
на A1k(X+(B)) для кожного 1 \leq k \leq p;

i3) X = X - (A)\dotplus A1p(X+(B)).

Зауваження 1. У [4] доведено, що коли оператор A1p є iн’єкцiєю i виконується умо-
ва i1), то для того щоб рiзницеве рiвняння (1) задовольняло умову обмеженостi, необхiдно
й достатньо, щоб виконувалася умова i3).
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Для лiнiйного рiзницевого рiвняння еквiвалентнiсть умови обмеженостi та умови експо-
ненцiальної дихотомiї доведено в [5, 6] для обмеженого та в [7] для необмеженого змiнного
операторного коефiцiєнта. Про iснування, зображення i властивостi обмежених розв’язкiв
лiнiйних рiзницевих рiвнянь див., наприклад, [5, 8 – 10] та наведену там бiблiографiю.

2. Допомiжнi твердження. Покладемо

Q - (A) =

\biggl\{ 
u \in X

\bigm| \bigm| \bigm| sup
n\geq 1

\| Anu\| < \infty 
\biggr\} 
,

Q+(B) =

\biggl\{ 
u \in X

\bigm| \bigm| \bigm| iснує така послiдовнiсть \{ a(k, u), k \leq 0\} , що

a(0, u) = u; Ba(k, u) = a(k + 1, u) для кожного k \leq  - 1; sup
k\leq 0

\| a(k, u)\| < \infty 
\biggr\} 
.

Зазначимо, що Q - (A), Q+(B) — лiнiйнi многовиди, iнварiантнi вiдносно операторiв A i
B вiдповiдно.

Для доведення теореми 3 використано такi леми.
Лема 1. Якщо рiзницеве рiвняння (1) задовольняє умову обмеженостi, то для кожного u \in 

Q+(B) iснує єдина послiдовнiсть \{ a(k, u), k \leq 0\} з означення Q+(B), Q+(B) є пiдпростором
у X, а також оператор A1k бiєктивно вiдображає Q+(B) на A1k(Q+(B)) i A1k(Q+(B)) є
пiдпростором у X для кожного 1 \leq k \leq p.

Доведення. Безпосередньоюперевiркоюпереконуємося,щоприфiксованих 1 \leq k \leq p,
y \in Q+(B) послiдовнiсть\Bigl\{ 

. . . , a( - 2, y), a( - 1, y)\underbrace{}  \underbrace{}  
0

, y, A11y, A12y, . . . , A1(k - 1)y, \=0, \=0, . . .
\Bigr\} 

(4)

є вiдповiдним до послiдовностi yk =  - A1ky, yn = \=0, n \not = k, обмеженим розв’язком рiвнян-
ня (1). Унаслiдок умови обмеженостi вiн єдиний. Тому послiдовнiсть \{ a(k, y), k \leq 0\} визна-
чається єдиним чином, а також оператор A1k бiєктивно вiдображає Q+(B) на A1k(Q+(B)).

Оскiльки Q+(B) — лiнiйний многовид, то A1k(Q+(B)) теж є лiнiйним многовидом.
Перевiримо, що вiн замкнений, а отже, є пiдпростором у X. Зафiксуємо таку послiдовнiсть
\{ vm, m \geq 1\} \subset A1p(Q+(B)), що vm \rightarrow v, m \rightarrow \infty в X, i доведемо, що v \in A1k(Q+(B)).

Скориставшись тим, що оператор A1k бiєктивно вiдображає Q+(B) на A1k(Q+(B)),
робимо висновок, що для кожного m \geq 1 знайдеться єдиний елемент um \in Q+(B) такий,
що A1kum = vm. Покладемо

\=vm =
\Bigl\{ 
. . . , \=0, \=0,  - vm\underbrace{}  \underbrace{}  

k

, \=0, \=0, . . .
\Bigr\} 
.

Тодi у просторi l\infty (\BbbZ , X)

\=vm \rightarrow \=v =
\Bigl\{ 
. . . , \=0, \=0,  - v\underbrace{}  \underbrace{}  

k

, \=0, \=0, . . .
\Bigr\} 
, m \rightarrow \infty .

Розглянемо оператор \scrT \in l\infty (\BbbZ , X), який визначається за правилом
\scrT \=x = \{ xn+1  - Tnxn, n \in \BbbZ \} , \=x = \{ xn, n \in \BbbZ \} \in l\infty (\BbbZ , X),

де Tn = A, n \geq p+ 1, Tn = An, 1 \leq n \leq p, Tn = B, n \leq 0. З умови обмеженостi i теореми
Банаха про обернений оператор випливає, що оператор \scrT неперервно оборотний. Тому

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 2



202 МИХАЙЛО ГОРОДНIЙ

\scrT  - 1\=vm \rightarrow \scrT  - 1\=v, m \rightarrow \infty , (5)

у просторi l\infty (\BbbZ , X).
Аналогiчно до (4) для кожного m \geq 1

\scrT  - 1\=vm =
\Bigl\{ 
. . . , a( - 2, um), a( - 1, um)\underbrace{}  \underbrace{}  

0

, um, A11um, A12um, . . . , A1(k - 1)um, . . . \=0, \=0, . . .
\Bigr\} 
.

Отже, якщо \scrT  - 1\=v = \{ wn, n \in \BbbZ \} , то внаслiдок (5) i включення um \in Q+(B) для
кожного n \leq 0

a(n, um) = Ba(n - 1, um), a(n, um) \rightarrow wn+1, m \rightarrow \infty .

Тому wn+1 = Bwn, n \leq 0, а також um = a(0, um) \rightarrow w1, m \rightarrow \infty , i vm = A1kum \rightarrow v =
A1kw1, m \rightarrow \infty .

Таким чином, w1 \in Q+(B), a(n,w1) = wn+1, n \leq 0, а отже, v = A1kw1 \in A1k(Q+(B)).
Оскiльки при фiксованому y \in Q+(B) єдиним обмеженим розв’язком рiвняння (1),

вiдповiдним до обмеженої послiдовностi y0 =  - y, yn = \=0, n \not = 0, є послiдовнiсть\Bigl\{ 
. . . , a( - 2, y), a( - 1, y)\underbrace{}  \underbrace{}  

0

, \=0, \=0, . . .
\Bigr\} 
,

то аналогiчно перевiряється, що Q+(B) — пiдпростiр у X.
Лему 1 доведено.
Лема 2. Якщо рiзницеве рiвняння (1) задовольняє умову обмеженостi, то Q - (A) є пiд-

простором у X.
Доведення леми 2 проводиться тим же способом, що й леми 1, з урахуванням, що при

фiксованому y \in Q - (A) єдиним обмеженим розв’язком (1), вiдповiдним до обмеженої
послiдовностi yp+1 = y, yn = \=0, n \not = p+ 1, є послiдовнiсть\Bigl\{ 

. . . , \=0, \=0, y\underbrace{}  \underbrace{}  
p+2

, Ay, A2y, . . .
\Bigr\} 
.

Лема 3. Якщо рiзницеве рiвняння (1) задовольняє умову обмеженостi, то

X = Q - (A)\dotplus A1p(Q+(B)).

Доведення. Зафiксуємо y \in X. Нехай \{ xn, n \in \BbbZ \} — єдиний обмежений розв’язок
рiвняння (1), вiдповiдний до послiдовностi yp = y, yn = \=0, n \not = p. Тодi xp+1 = A1px1 + y.
Оскiльки xp+1+n = Anxp+1, n \geq 1, xk+1 = Bxk, k \leq 0, i supn\in \BbbZ \| xn\| < \infty , то xp+1 \in 
Q - (A), x1 \in Q+(B). Тому y = xp+1 + ( - A1px1), де xp+1 \in Q - (A),  - A1px1 \in A1p(Q+(B)).

Нехай, вiд супротивного, iснує ненульовий елемент u \in Q - (A) \cap A1p(Q+(B)). Тодi
знайдеться такий елемент v \in Q+(B), що A1pv = u, i безпосередньо перевiряється, що
вiдповiдне до (1) однорiдне рiзницеве рiвняння має ненульовий обмежений розв’язок\Bigl\{ 

. . . , a( - 2, v), a( - 1, v), v\underbrace{}  \underbrace{}  
1

, A11v, A12v, . . . , A1pv, Au, A
2u, . . .

\Bigr\} 
.

Це суперечить умовi обмеженостi.
Лему 3 доведено.

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 2



ОБМЕЖЕНI РОЗВ’ЯЗКИ РIЗНИЦЕВОГО РIВНЯННЯ З КУСКОВО-СТАЛИМИ ОПЕРАТОРНИМИ КОЕФIЦIЄНТАМИ 203

Лема 4. Нехай T \in L(X), X1, X2 — такi пiдпростори в X, що T (X2) — пiдпростiр,
оператор T бiєктивно вiдображає X2 на T (X2), а також

X = X1 \dotplus T (X2). (6)

Тодi X = T - 1(X1)\dotplus X2.
Доведення. Зафiксуємо x \in X. Iз (1) випливає, що Tx єдиним чином зображується у

виглядi Tx = u + Tv, де u \in X1, v \in X2. Оскiльки u = T (x  - v), то x = (x  - v) + v, де
(x - v) \in T - 1(X1), v \in X2.

Доведемо єдинiсть останнього зображення. Нехай x = u1 + v1 = u2 + v2, де u1, u2 \in 
T - 1(X1), v1, v2 \in X2. Тодi u1 - u2 = v2 - v1 \in T - 1(X1)\cap X2, а отже, T (v1 - v2) \in X1\cap T (X2).
Тому внаслiдок (6) T (v1  - v2) = \=0. Звiдси, врахувавши, що T — бiєкцiя мiж X2 i T (X2),
робимо висновок, що v1 = v2, а отже, i u1 = u2.

Лему 4 доведено.
Лема 5. Нехай T1, T2 \in L(X), U — лiнiйний многовид у X, оператор T2T1 бiєктивно

вiдображає U на T2T1(U). Тодi оператори T1 i T2 бiєктивно вiдображають U на T1(U) i
T1(U) на T2T1(U) вiдповiдно.

Доведення леми 5 тривiальне i тут не наведено.
У подальшому в цьому пунктi вважаємо, що пiдпростори Q - (A), Q+(B) нетривiальнi.

Позначимо через AQ, BQ звуження операторiв A, B вiдповiдно на Q - (A), Q+(B).
Лема 6. Якщо рiзницеве рiвняння (1) задовольняє умову обмеженостi, то

\sigma (AQ) \subset \{ z \in \BbbC | | z| < 1\} , \sigma (BQ) \subset \{ z \in \BbbC | | z| > 1\} .

Доведення. Зафiксуємо v \in Q - (A). Оскiльки обмеженiй послiдовностi

\=v =
\Bigl\{ 
. . . , \=0, \=0, v\underbrace{}  \underbrace{}  

p

, \=0, \=0, . . .
\Bigr\} 

вiдповiдає єдиний обмежений розв’язок

\scrT  - 1\=v =
\Bigl\{ 
. . . , \=0, \=0, v\underbrace{}  \underbrace{}  

p+1

, AQv, A
2
Qv, . . .

\Bigr\} 
рiзницевого рiвняння (1), то для кожного n \geq 0\bigm\| \bigm\| An

Qv
\bigm\| \bigm\| \leq 

\bigm\| \bigm\| \scrT  - 1\=v
\bigm\| \bigm\| 
\infty \leq 

\bigm\| \bigm\| \scrT  - 1
\bigm\| \bigm\| \| v\| .

Тому за означенням норми оператора послiдовнiсть
\bigl\{ \bigm\| \bigm\| An

Q

\bigm\| \bigm\| , n \geq 0
\bigr\} 

обмежена сталою\bigm\| \bigm\| \scrT  - 1
\bigm\| \bigm\| .

При фiксованих m \in \BbbN , w \in Q - (A) обмеженiй послiдовностi

\=wm =
\Bigl\{ 
. . . , \=0, \=0, w\underbrace{}  \underbrace{}  

p

, AQw, A
2
Qw, . . . , A

m
Qw, \=0, \=0, . . .

\Bigr\} 
вiдповiдає єдиний обмежений розв’язок

\scrT  - 1 \=w =
\Bigl\{ 
. . . , \=0, \=0, w\underbrace{}  \underbrace{}  

p+1

, 2AQw, 3A
2
Qw, . . . ,

(m+ 1)Am
Qw, (m+ 1)Am+1

Q w, (m+ 1)Am+2
Q w, . . .

\Bigr\} 
рiзницевого рiвняння (1). Тому
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204 МИХАЙЛО ГОРОДНIЙ\bigm\| \bigm\| (m+ 1)Am
Qw
\bigm\| \bigm\| \leq 

\bigm\| \bigm\| \scrT  - 1 \=wm

\bigm\| \bigm\| 
\infty \leq 

\bigm\| \bigm\| \scrT  - 1
\bigm\| \bigm\| 
n\geq 0

sup
\bigm\| \bigm\| An

Q

\bigm\| \bigm\| \| w\| ,
а отже, послiдовнiсть

\bigl\{ \bigm\| \bigm\| (m+ 1)Am
Q

\bigm\| \bigm\| , m \geq 0
\bigr\} 
теж обмежена, тобто знайдеться така стала

C > 0, що для кожного m \geq 0

(r(AQ))
m = r

\bigl( 
Am

Q

\bigr) 
\leq 
\bigm\| \bigm\| Am

Q

\bigm\| \bigm\| \leq C

m+ 1
.

Звiдси робимо висновок, що r(AQ) < 1, а отже, \sigma (AQ) \subset \{ z \in \BbbC | | z| < 1\} .
Перевiримо, що оператор BQ неперервно оборотний. Зафiксуємо v \in Q+(B). З озна-

чення пiдпростору Q+(B) випливає, що рiвняння BQu = v має розв’язок u = a( - 1, v) в
Q+(B). Якщо, вiд супротивного, цей розв’язок не єдиний, то знайдеться такий ненульовий
елемент w \in Q+(B), що BQw = \=0. Але тодi вiдповiдне до (1) однорiдне рiзницеве рiвняння
має окрiм нульового обмежений розв’язок\Bigl\{ 

. . . , a( - 2, w), a( - 1, w), w\underbrace{}  \underbrace{}  
0

, \=0, \=0, . . .
\Bigr\} 

Суперечнiсть.
Отже, оператор B - 1

Q iснує за теоремою Банаха про обернений оператор.
Зазначимо тепер, що при фiксованому y \in Q+(B) обмеженiй послiдовностi y0 =  - y,

yn = \=0, n \not = 0, вiдповiдає єдиний обмежений розв’язок\biggl\{ 
. . . , B - 2

Q y, B - 1
Q y\underbrace{}  \underbrace{}  
0

, \=0, \=0, . . .

\biggr\} 
.

рiзницевого рiвняння (1). Тому за допомогою таких же мiркувань, як i для оператора AQ,
отримаємо оцiнку r

\bigl( 
B - 1

Q

\bigr) 
< 1, з якої випливає, що \sigma (BQ) \subset \{ z \in \BbbC | | z| > 1\} .

Лему 6 доведено.
Лема 7. Нехай V \in L(X); простiр X є прямою сумою своїх нетривiальних пiдпросторiв

X1, X2; P1, P2 —проєктори в X, що вiдповiдають зображенню X = X1\dotplus X2; пiдпростiр X1

iнварiантний вiдносно оператора V. Тодi оператор P2V P2 : X2 \rightarrow X2 має такi властивостi:
j1) (P2V P2)

n = P2V
nP2 для кожного n \geq 1;

j2) якщо V1 — звуження оператора V на пiдпростiр X1, то \sigma (P2V P2) \supset (\sigma (V )\setminus \sigma (V1)).
Зазначимо, що твердження j1) спiвпадає з твердженням 1 леми 3 iз [11], а тверджен-

ня j2) можна довести за допомогою тих же мiркувань, що й твердження 4) тiєї ж леми.
Тому доведення леми 7 тут не наводимо.

Наступна лема є безпосереднiм наслiдком лем 1, 3 – 5.
Лема 8. Якщо рiзницеве рiвняння (1) задовольняє умову обмеженостi, то

X = A - 1
pp (Q - (A))\dotplus A1(p - 1)(Q+(B))

= A - 1
(p - 1)p(Q - (A))\dotplus A1(p - 2)(Q+(B))

= . . . = A - 1
2p (Q - (A))\dotplus A11(Q+(B)) = A - 1

1p (Q - (A))\dotplus Q+(B).

Лема 9. Якщо рiзницеве рiвняння (1) задовольняє умову обмеженостi i P - 
0 , P+

0 — про-
єктори,що вiдповiдають зображенню X = A - 1

1p (Q - (A)) \.+Q+(B), тодля оператора P - 
0 BP - 

0 :
A - 1

1p (Q - (A)) \rightarrow A - 1
1p (Q - (A)) виконується включення \sigma 

\bigl( 
P - 
0 BP - 

0

\bigr) 
\subset \{ z \in \BbbC | | z| < 1\} .
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Доведення. Зафiксуємо k \in \BbbN , y \in A - 1
1p (Q - (A)). Нехай \=x = \{ xn, n \in \BbbZ \} — єдиний

обмежений розв’язок рiвняння (1), що вiдповiдає послiдовностi y - k = y; yn = \=0, n \not =  - k.
Тодi

x1 = Bk+1x - k +Bky = Bk+1x - k + P+
0 Bky + P - 

0 Bky,

а також x - k, а отже, i Bk+1x - k належать Q+(B). Тому координати \=x мають вигляд

xn =  - Bn - 1
Q P+

0 Bky, n \leq  - k,

xn =  - Bn - 1
Q P+

0 Bky +Bn+k - 1y,  - k + 1 \leq n \leq 0,

x1 = P - 
0 Bky, (7)

xn = A1(n - 1)P
 - 
0 Bky, 2 \leq n \leq p+ 1,

xn = An - p - 1A1pP
 - 
0 Bky, n \geq p+ 2.

Зокрема, внаслiдок твердження j1) i рiвностей y = P - 
0 y i (7)

x1 = P - 
0 BkP - 

0 y = (P - 
0 BP - 

0 )ky. (8)

Тому, з урахуванням неперервної оборотностi оператора \scrT ,\bigm\| \bigm\| \bigm\| \bigl( P - 
0 BP - 

0

\bigr) k
y
\bigm\| \bigm\| \bigm\| \leq 

\bigm\| \bigm\| \scrT  - 1\=ym
\bigm\| \bigm\| 
\infty \leq 

\bigm\| \bigm\| \scrT  - 1
\bigm\| \bigm\| \| y\| .

Таким чином, послiдовнiсть
\bigl\{ \bigm\| \bigm\| \bigl( P - 

0 BP - 
0

\bigr) k\bigm\| \bigm\| , k \geq 1
\bigr\} 
обмежена.

Iз (8) i лiнiйностi рiзницевого рiвняння (1) випливає, що при фiксованих m \in \BbbN , w \in 
A - 1

1p (Q - (A)) обмеженiй послiдовностi

\=wm =
\Bigl\{ 
. . . , \=0, \=0, w\underbrace{}  \underbrace{}  

 - m

, P - 
0 BP - 

0 w,
\bigl( 
P - 
0 BP - 

0

\bigr) 2
w, . . . ,

\bigl( 
P - 
0 BP - 

0

\bigr) m - 1
w, \=0, \=0, . . .

\Bigr\} 
вiдповiдає єдиний обмежений розв’язок \scrT  - 1 \=wm рiвняння (1), координата

\bigl( 
\scrT  - 1 \=wm

\bigr) 
1
якого

зображується у виглядi\bigl( 
\scrT  - 1 \=wm

\bigr) 
1
= P - 

0 BmP - 
0 w + P - 

0 Bm - 1P - 
0

\bigl( 
P - 
0 BP - 

0 w
\bigr) 

+ . . .+ P - 
0 BP - 

0

\Bigl( \bigl( 
P - 
0 BP - 

0

\bigr) m - 1
w
\Bigr) 

= m
\bigl( 
P - 
0 BP - 

0

\bigr) m
w.

Звiдси, як i для оператора AQ при доведеннi леми 6, отримаємо, що \sigma 
\bigl( 
P - 
0 BP - 

0

\bigr) 
\subset \{ z \in \BbbC | 

| z| < 1\} .
Лему 9 доведено.
Лема 10. Якщо рiзницеве рiвняння (1) задовольняє умову обмеженостi i P - 

p , P+
p — про-

єктори, що вiдповiдають зображенню X = Q - (A) \dotplus A1p(Q+(B)), то оператор P+
p AP+

p :
A1p(Q+(B)) \rightarrow A1p(Q+(B)) неперервно оборотний, а також \sigma 

\bigl( 
P+
p AP+

p

\bigr) 
\subset \{ z \in \BbbC | | z| > 1\} .

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 2



206 МИХАЙЛО ГОРОДНIЙ

Доведення. Зафiксуємо y \in A1p(Q+(B)). Нехай \=x = \{ xn, n \in \BbbZ \} —єдиний обмежений
розв’язок рiвняння (1), що вiдповiдає послiдовностi yp+1 =  - y; yn = \=0, n \not = p + 1. Тодi
xp+1 = A1px1; xn+1 = Bxn, n \leq 0. Тому xp+1 \in A1p(Q+(B)). Також xp+k+2 = Akxp+2,
k \geq 1, а отже, xp+2 \in Q - (A). Оскiльки

xp+2 = Axp+1  - y = P - 
p Axp+1 + P+

p AP+
p xp+1  - y

i X = Q - (A) \dotplus A1p(Q+(B)), то рiвняння P+
p AP+

p x = y має розв’язок x = xp+1 у просто-
рi A1p(Q+(B)).

Якщо, вiд супротивного, цей розв’язок не єдиний, то iснує таке u \in A1p(Q+(B)), u \not = \=0,
що P+

p AP+
p u = \=0. Але тодi безпосередньо перевiряємо, що вiдповiдне до (1) однорiдне

рiзницеве рiвняння має окрiм нульового обмежений розв’язок\Bigl\{ 
. . . , B - 2

Q A - 1
1p u, B

 - 1
Q A - 1

1p u, A
 - 1
1p u\underbrace{}  \underbrace{}  
1

, A11A
 - 1
1p u, A12A

 - 1
1p u, . . . ,

A1(p - 1)A
 - 1
1p u, u, P

 - 
p Au, AP - 

p Au, A2P - 
p Au, . . .

\Bigr\} 
.

Це суперечить умовi обмеженостi.
Таким чином, оператор P+

p AP+
p є неперервно оборотним за теоремою Банаха про обер-

нений оператор.
Зафiксуємо тепер m \in \BbbN , y \in A1p(Q+(B)) i розглянемо єдиний обмежений розв’язок

\=x = \{ xn, n \in \BbbZ \} рiвняння (1), що вiдповiдає обмеженiй послiдовностi yp+m =  - y; yn = \=0,
n \not = p+m. Як i ранiше, перевiряємо, що xp+1 \in A1p(Q+(B)). Також xp+m = Am - 1xp+1,

xp+m+1 = Axp+m  - y = P - 
p Amxp+1 + P+

p AmP+
p xp+1  - y, (9)

причому xp+m+1 \in Q - (A), а отже, з (9) випливає, що P+
p AmP+

p xp+1 = y. Тому, вико-
ристовуючи твердження j1) i неперервну оборотнiсть оператора P+

p AP+
p , отримуємо, що

xp+1 =
\bigl( 
P+
p AP+

p

\bigr)  - m
y. Звiдси, як i для оператора AQ при доведеннi леми 6, одержуємо, що

r
\bigl( \bigl( 
P+
p AP+

p

\bigr)  - 1\bigr) 
< 1, тобто \sigma 

\bigl( 
P+
p AP+

p

\bigr) 
\subset \{ z \in \BbbC | | z| > 1\} .

Лему 10 доведено.
Лема 11. Нехай \sigma (A) \cap S = \varnothing , \sigma (B) \cap S = \varnothing . Тодi Q - (A) = X - (A), Q+(B) = X+(B).
Доведення. Якщо X - (A) = \{ \=0\} , то X - (A) \subset Q - (A). Нехай X - (A) \not =

\bigl\{ 
\=0
\bigr\} 
. Тодi

r(A - ) < 1. Тому для кожного x \in X - (A)

\infty \sum 
n=0

\| Anx\| =

\infty \sum 
n=0

\bigm\| \bigm\| An
 - x
\bigm\| \bigm\| < \infty ,

а отже, x \in Q - (A).
Таким чином, справджується включення X - (A) \subset Q - (A).
Якщо, вiд супротивного, iснує елемент u \in X+(A) \cap Q - (A), u \not = \=0, то однорiдне

рiзницеве рiвняння xn+1 = Axn, n \in \BbbZ , має окрiм нульового обмежений розв’язок\Bigl\{ 
. . . , A - 2

+ u, A - 1
+ u, u\underbrace{}  \underbrace{}  

0

, Au, A2u, . . .
\Bigr\} 
.

Це суперечить твердженню теореми 1 iз [8, c. 9].
Отже, Q - (A) = X - (A). Аналогiчно перевiряємо, що Q+(B) = X+(B).
Лему 11 доведено.

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 2



ОБМЕЖЕНI РОЗВ’ЯЗКИ РIЗНИЦЕВОГО РIВНЯННЯ З КУСКОВО-СТАЛИМИ ОПЕРАТОРНИМИ КОЕФIЦIЄНТАМИ 207

3. Доведення теореми 3. Необхiднiсть. Унаслiдок умови обмеженостi, лем 6, 10 i твер-
дження j2) справджуються включення

\sigma (AQ) \subset \{ z \in \BbbC | | z| < 1\} ,

(\sigma (A)\setminus \sigma (AQ)) \subset \sigma 
\bigl( 
P+
p AP+

p

\bigr) 
\subset \{ z \in \BbbC | | z| > 1\} ,

а тому, \sigma (A) \cap S = \varnothing .

Аналогiчно, використовуючи лему 9 замiсть леми 10, отримуємо, що \sigma (B) \cap S = \varnothing .
Таким чином, виконується умова i1).

Також внаслiдок леми 11 Q - (A) = X - (A), Q+(B) = X+(B). Тому з лем 1, 3 випливає,
що умови i2), i3) теж виконуються.

Достатнiсть. Зафiксуємо обмежену послiдовнiсть \{ yn, n \in \BbbZ \} i визначимо послiдов-
нiсть \{ xn, n \in \BbbZ \} таким чином.

Iз умов i2), i3) i лем 4, 5 випливає, що для кожного 0 \leq k \leq p

X = A - 1
(k+1)p(X - (A))\dotplus A1k(X+(B)), (10)

де A(p+1)p = A10 = I. Позначимо через P - 
k , P+

k проєктори, що вiдповiдають зобра-
женню (10), 0 \leq k \leq p. Внаслiдок умови i2) для кожного 0 \leq k \leq p звуження A1k :
X+(B) \rightarrow A1k(X+(B)) оператора A1k на X+(B), яке далi позначатимемо \~A1k, є неперерв-
но оборотним оператором. Тому коректно визначено елемент

u0 =

p\sum 
k=0

\~A - 1
1k P

+
k yk +

\infty \sum 
k=1

\~A - 1
1p P

+
p A - k

+ P+(A)yp+k +
 - 1\sum 

k= - \infty 
P+
0 B - k

 - P - (B)yk. (11)

Абсолютна збiжнiсть за нормою рядiв з (11) випливає з нерiвностей r
\bigl( 
A - 1

+

\bigr) 
< 1, r(B - ) < 1.

Покладемо

x0 =  - B - 1
+ u0 +

 - 1\sum 
k= - \infty 

B - k - 1
 - P - (B)yk, (12)

а також при m \leq  - 1

xm =  - Bm - 1
+ u0  - 

 - 1\sum 
k=m

B - k+m - 1
+ P+(B)yk +

m - 1\sum 
k= - \infty 

B - k+m - 1
 - P - (B)yk.

Далi, з урахуванням рiвностей A10 = P - 
0 + P+

0 = I i (12), покладемо

x1 = P - 
0 y0  - 

p\sum 
k=1

\~A - 1
1k P

+
k yk + u1,

де

u1 =  - 
\infty \sum 
k=1

\~A - 1
1p P

+
p A - k

+ P+(A)yp+k +

 - 1\sum 
k= - \infty 

P - 
0 B - k

 - P - (B)yk.
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Потiм при 2 \leq m \leq p

xm =

m - 2\sum 
k=0

A(k+1)(m - 1)P
 - 
k yk + P - 

m - 1ym - 1 +A1(m - 1)

\Biggl( 
 - 

p\sum 
k=m

\~A - 1
1k P

+
k yk + u1

\Biggr) 
. (13)

Також, скориставшись рiвностями A(p+1)p = P - 
p + P+

p = I i (13) при m = p, покладемо

xp+1 = up  - 
\infty \sum 
k=1

A - k
+ P+(A)yp+k,

де

up =

p\sum 
k=0

A(k+1)pP
 - 
k yk +

\infty \sum 
k=1

P - 
p A - k

+ P+(A)yp+k +

 - 1\sum 
k= - \infty 

A1pP
 - 
0 B - k

 - P - (B)yk.

Зазначимо, що згiдно з (10) P - 
k є проєктором на пiдпростiр A - 1

(k+1)p(X - (A)), 0 \leq k \leq p, а
тому up \in X - (A). Таким чином, при m \geq 2 коректно визначено елементи

xp+m = Am - 1
 - up +

m - 1\sum 
k=1

Am - 1 - k
 - P - (A)yp+k  - 

\infty \sum 
k=m

Am - 1 - k
+ P+(A)yp+k. (14)

Безпосередньо перевiряємо, що визначенi за допомогою формул (11) – (14) елементи
послiдовностi \{ xn, n \in \BbbZ \} задовольняють рiвнiсть (11). Її обмеженiсть випливає з того, що
спектральнi радiуси операторiв A - , B - , A

 - 1
+ , B - 1

+ меншi за одиницю, а отже, iснують такi
числа M > 0, \delta \in (0; 1), що для кожного k \geq 1 :

max
\Bigl\{ \bigm\| \bigm\| Ak

 - 
\bigm\| \bigm\| , \bigm\| \bigm\| Bk

 - 
\bigm\| \bigm\| , \bigm\| \bigm\| A - k

+

\bigm\| \bigm\| , \bigm\| \bigm\| B - k
+

\bigm\| \bigm\| \Bigr\} \leq M\delta k.

Таким чином, визначена формулами (11) – (14) послiдовнiсть \{ xn, n \in \BbbZ \} є обмеже-
ним розв’язком рiзницевого рiвняння (1), вiдповiдним до послiдовностi \{ yn, n \in \BbbZ \} . Для
доведення його єдиностi перевiримо, що вiдповiдне до (1) однорiдне рiзницеве рiвнян-
ня має тiльки нульовий обмежений розв’язок. Справдi, нехай \{ un, n \in \BbbZ \} — обмежений
розв’язок вiдповiдного до (1) однорiдного рiзницевого рiвняння. Оскiльки для кожного
k \geq 1 up+k = Ak - 1up+1, u1 = Bku1 - k, то внаслiдок леми 11 up+1 \in X - (A), u1 \in X+(B).
Також up+1 = \~A1pu1, а отже, up+1 \in X - (A) \cap A1p(X+(B)). Тому за умовою i3) up+1 = \=0.
Звiдси випливає, що up+k = \=0, k \geq 2, а також, оскiльки оператори \~A1k, 1 \leq k \leq p, B+

неперервно оборотнi, uk = \=0, k \leq 0.
Теорему 3 доведено.

Роботу виконано за фiнансової пiдтримки Мiнiстерства освiти i науки України: грант
Мiнiстерства освiти i науки України для перспективних розробок з наукового напря-
му “Математичнi науки та природничi науки” в Київському нацiональному унiверситетi
iм. Т. Шевченка.
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