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ПРИ ВИЗНАЧЕННI КОЛИВАНЬ У ПРУЖНОМУШАРI
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We construct a method of construction of a solution of the dynamic spatial problem of determination of
vibrations in an elastic layer with instantaneous internal dilation \varepsilon \ast (instantaneous relative to a change
in an infinitesimal volume). The problem is reduced to the solution of a system of linear inhomogeneous
partial differential equations with load-free boundary conditions and zero initial conditions.

Побудовано метод знаходження розв’язку динамiчної просторової задачi визначення коливань у
пружному шарi при миттєвiй внутрiшнiй дилатацiї \varepsilon \ast (миттєва вiдносна змiна нескiнченно малого
об’єму), що зводиться до розв’язку системи лiнiйних неоднорiдних диференцiальних рiвнянь iз
частинними похiдними, за умов, що граничнi поверхнi шару вiльнi вiд навантаження, а початковi
умови нульовi.

1. Постановка задачi. Нехай через наявнiсть дефекту у структурi матерiалу шару утво-
рився зосереджений центр дилатацiї у точцi A(0, z0) (рис. 1). Оскiльки зовнiшнiй вплив на
шар осесиметричний, то розглянемо задачу про знаходження векторного поля \vec{}U = (Ur, Uz)
перемiщень частинок шару як осесиметричну. Таким чином, розв’язок задачi можна бу-
дувати в цилiндричнiй системi координат O(r, z) iз початком у серединнiй поверхнi шару
(див. рис. 1).

Рис. 1

Розглянемо метод побудови загального розв’язку рiвняння рiвноваги пружного нескiн-
ченного шару товщини 2h при миттєвiй внутрiшнiй дилатацiї \varepsilon \ast за умови, що граничнi
поверхнi шару z = \pm h вiльнi вiд навантажень, а початковi умови нульовi.

Згiдно з твердженням теореми Гельмгольця будь-яке однозначне i неперервне векторне
поле \vec{}U може бути представлене у виглядi суми градiєнта скалярного потенцiалу \varphi =
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\varphi (t, r, z) i ротора векторного потенцiалу rot\bfPsi , дивергенцiю якого можна обрати рiвною
нулю:

\vec{}U = grad\varphi + rot\bfPsi (div\bfPsi = 0). (1)

Початковi умови при t = 0 однорiднi для скалярного потенцiалу \varphi = \varphi (t, r, z) i ротора
векторного потенцiалу \bfPsi = (0, 0,\Psi ) :

\varphi (t, r, z) = 0,
\partial \varphi 

\partial t
= 0,

при t = 0,

\Psi (t, r, z) = 0,
\partial \Psi 

\partial t
= 0,

тобто перемiщення у шарi виникають у момент часу t = 0+.
Тепер зобразимокомпоненти вектора перемiщення \vec{}U = (Ur, Uz) за допомогоюрозкладу

Гельмгольця на потенцiальну \varphi i соленоїдальну частину \Psi . У результатi отримаємо [1]

Ur =
\partial \varphi 

\partial r
+

\partial 2\psi 

\partial r\partial z
, Uz =

\partial \varphi 

\partial z
 - 1

r

\partial \psi 

\partial r
 - \partial 2\psi 

\partial r2
,

де

\psi =  - \partial \Psi 
\partial r

.

Таким чином, у нашому випадку з рiвнянь рiвноваги Ламе [1] одержимо таку систему
неоднорiдних рiвнянь з частинними похiдними, яка характеризує рух частинок шару:

\nabla 2
1\varphi = \varepsilon \ast ,

\nabla 2
2\psi = 0

(2)

де
\nabla 2

1,2 =
\partial 2

\partial r2
+

1

r

\partial 

\partial r
+

\partial 2

\partial z2
 - 1

S2
1,2

\partial 2

\partial t2

— оператори Даламбера; S1 —швидкiсть розповсюдження поздовжньої хвилi вздовж осi
0r ; S2 —швидкiсть розповсюдження поперечної хвилi вздовж осi 0z ;

S1 =

\sqrt{} 
E(1 - \nu )

\rho (1 + \nu )(1 - 2\nu )
, S2 =

\sqrt{} 
E

2(1 + \nu )\rho 
, S1 > S2,

\rho — густина матерiалу, \nu — коефiцiєнт Пуассона, E — модуль пружностi.
Оскiльки ми розглядаємо задачу в цилiндричнiй системi координат, то величина почат-

кової дилатацiї \varepsilon \ast має вигляд

\varepsilon \ast =  - \varepsilon \ast 0
\delta (r)

2\pi r
\delta (z  - z0)\delta (t),

де \varepsilon \ast — величина деякого вiдносного обсягу матерiалу, що раптово утворився в точцi
A(0, z0) у момент часу t = 0+, \delta — функцiя Дiрака.

ISSN 1562-3076. Нелiнiйнi коливання, 2023, т. 26, № 2



ЗАГАЛЬНИЙ РОЗВ’ЯЗОК ДИНАМIЧНОЇ ПРОСТОРОВОЇ ЗАДАЧI ПРИ ВИЗНАЧЕННI КОЛИВАНЬ У ПРУЖНОМУ ШАРI 169

Систему рiвнянь (2) розв’язуємо за таких умов.
Початковi умови. У початковий момент часу тiло перебуває у ненавантаженому станi,

тому

Ur = Uz =
\partial Ur

\partial t
=
\partial Uz

\partial t
= 0 при t = 0. (3)

Граничнi умови. Поверхнi шару z = \pm h вiльнi вiд навантаження, тому граничнi умови
на поверхнях z = \pm h набувають вигляду

\sigma zz =  - 2G

\biggl[ 
\partial 2\varphi 

\partial r2
+

1

r

\partial \varphi 

\partial r
+

\partial 

\partial z

\biggl( 
\partial 2\psi 

\partial r2
+

1

r

\partial \psi 

\partial r

\biggr) 
 - 1

2S2
2

\partial 2\varphi 

\partial t2

\biggr] 
= 0 при z = \pm h,

\tau rz = G
\partial 

\partial r

\biggl( 
2
\partial \varphi 

\partial z
+
\partial 2\psi 

\partial z2
 - \partial 2\psi 

\partial r2
 - 1

r

\partial \psi 

\partial r

\biggr) 
= 0 при z = \pm h.

(4)

Застосовуючи до системи рiвнянь (2) з граничними умовами (4) перетворення Лапласа
з урахуванням однорiдних початкових умов (3), отримуємо лiнiйну систему рiвнянь iз
частинними похiдними для зображень за Лапласом\left\{     

\=\nabla 2
1 \=\varphi =  - \varepsilon \ast 0

(1 + \nu )\delta (r)

(1 - \nu )2\pi r
\delta (z  - z0),

\=\nabla 2
2
\=\psi = 0,

(5)

де

\=\nabla 2
1,2 =

\partial 2

\partial r2
+

1

r

\partial 

\partial r
+

\partial 2

\partial z2
 - p2

S2
1,2

, \=\varphi =

\infty \int 
0

\varphi e - pt dt, \=\psi =

\infty \int 
0

\psi e - pt dt,

\=\sigma zz =

\infty \int 
0

\sigma zze
 - pt dt, \=\tau rz =

\infty \int 
0

\tau rze
 - pt dt, \=Uz,r =

\infty \int 
0

Uz,re
 - pt dt, p = \sigma + i\varsigma .

Граничнi умови (4) тепер мають вигляд

\=\sigma zz = 0, \=\tau rz = 0 при z = \pm h. (6)

Розв’язки для зображень за Лапласом \=\psi , \=\varphi системи (5) будемо шукати у виглядi iнте-
грала Ханкеля, оскiльки пластина нескiнченних розмiрiв, де

\=\varphi =

\infty \int 
0

\alpha J0(\alpha r) fd\alpha ,

\=\psi =

\infty \int 
0

\alpha J0(\alpha r)\chi d\alpha ,

\delta (r)

r
=

1

2

\infty \int 
0

\alpha J0(\alpha r) d\alpha ,

f = f(z, \alpha , p), \chi = \chi (z, \alpha , p).

(6\ast )
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Оскiльки

\=Ur =
\partial \=\varphi 

\partial r
+

\partial 2 \=\psi 

\partial r\partial z
,

при виконаннi умов (6\ast ) маємо

\=Ur =  - 
\infty \int 
0

\alpha 2J1(\alpha r)

\biggl( 
f +

\partial \chi 

\partial z

\biggr) 
d\alpha ;

i тому що

\=Uz =
\partial \=\varphi 

\partial z
 - 1

r

\partial \=\psi 

\partial r
 - \partial 2 \=\psi 

\partial r2
,

при виконаннi умов (6\ast )

\=Uz =

\infty \int 
0

\alpha J0(\alpha r)

\biggl( 
df

dz
+ \alpha 2\chi 

\biggr) 
d\alpha .

У результатi згiдно з (4) i (6\ast ) отримаємо граничнi умови (6) при z = \pm h у виглядi

\=\sigma zz = 2G

\infty \int 
0

\alpha J0(\alpha r)\=\sigma 
\ast 
zz(z)d\alpha ,

\=\sigma \ast zz = \=\sigma \ast zz(z, \alpha , p) =

\biggl( 
\alpha 2 +

p2

2S2
2

\biggr) 
f + \alpha 2d\chi 

dz
,

\=\tau rz =  - G
\infty \int 
0

\alpha 2J1(\alpha r)\=\tau 
\ast 
rz d\alpha ,

\=\tau \ast rz = \=\tau \ast rz(z, \alpha , p) = 2
df

dz
+
d2\chi 

dz2
+ \alpha 2\chi ,

(7)

J0,1 — функцiї Бесселя нульового та першого порядку.
Система рiвнянь iз частинними похiдними (5) згiдно з (7) стає системою лiнiйних

неоднорiдних звичайних диференцiальних рiвнянь другого порядку\left\{         
d2f

dz2
 - 
\biggl( 
\alpha 2 +

p2

S2
1

\biggr) 
f =  - \varepsilon \ast 0

(1 + \nu )

4\pi (1 - \nu )
\delta (z  - z0),

d2\chi 

dz2
 - 
\biggl( 
\alpha 2 +

p2

S2
2

\biggr) 
\chi = 0,

(8)

а граничнi умови (6) з урахуванням (7) визначають такi спiввiдношення:\left\{       
\=\sigma \ast zz(z, \alpha , p) = \alpha 2 d\chi 

dz
+

\biggl( 
\alpha 2 +

p2

2S2
2

\biggr) 
f = 0,

\=\tau \ast rz(z, \alpha , p) =
d2\chi 

d z2
+ \alpha 2\chi + 2

df

dz
= 0.

при z = \pm h. (9)
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Вiдомо, що розв’язок неоднорiдної лiнiйної системи звичайних диференцiальних рiв-
нянь другого порядку (8) шукають у виглядi суми загального розв’язку однорiдної системи
та частинного розв’язку неоднорiдної:

f = fо + fч, \chi = \chi о,

де

fо = C1chb1z + C2shb1z,

\chi = C3chb2z + C4shb2z,

b21 = \alpha 2 +
p2

S2
1

, b1 =

\sqrt{} 
\alpha 2 +

p2

S2
1

,

b22 = \alpha 2 +
p2

S2
2

, b2 =

\sqrt{} 
\alpha 2 +

p2

S2
2

,

де C1, C2, C3, C4 — невiдомi константи, i розв’язок системи (8) набуває вигляду

f = C1chb1z + C2shb1z + fч,

\chi = C3chb2z + C4shb2z.
(10)

Розв’язок (10) системи (8) iз граничними умовами (9) розбиваємо на двi частини: си-
метричну та кососиметричну [2], тобто

f = f со + f сч + fко + fкч ,

\chi = \chi с + \chi к,\left\{   \=\sigma \ast zz(z) = \=\sigma сzz(z) + \=\sigma кzz(z),

\=\tau \ast rz(z) = \=\tau сrz(z) + \=\tau кrz(z),

де в (8) робимо замiну

\delta (z  - z0) =
1

2
[\delta (z  - z0) + \delta (z + z0)] +

1

2
[\delta (z  - z0) - \delta (z + z0)].

2. Симетрична задача (товщиннi коливання шару). Симетрична задача вiдповiдає тому
випадку, коли перемiщення Ur є парною функцiєю координати z, тобто функцiї \=\sigma \ast zz, f є
парними. Перемiщення Uz є непарною функцiєю координати z, тому функцiї \=\tau \ast rz, \chi теж
не парнi. Отже, C2 = C3 = 0.

Запишемо основнi рiвняння та граничнi умови для цього випадку:

d2f с

dz2
 - 
\biggl( 
\alpha 2 +

p2

S2
1

\biggr) 
f с =  - \varepsilon \ast (1 + \nu )

8\pi (1 - \nu )
[\delta (z  - z0) + \delta (z + z0)],

d2\chi с

dz2
 - 
\biggl( 
\alpha 2 +

p2

S2
2

\biggr) 
\chi с = 0,

(11)
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172 ОЛЬГА БОЙЧУК\left\{   f
с = C1chb1z + f сч ,

\chi с = C4shb2z,\left\{   \=\sigma сzz(z) \equiv \=\sigma сzz( - z) = 0, z = \pm h,

\=\tau сrz(z) \equiv  - \=\tau сrz( - z) = 0, z = \pm h.

Наразi в граничних умовах загальна кiлькiсть рiвнянь — два.
Застосовуємо до 1-го рiвняння (11) пряме та зворотне перетворення Фур’є i знаходимо

частинний розв’язок:

f сч =  - \varepsilon \ast (1 + \nu )

16\pi (1 - \nu )

\Biggl[ 
e - b1| z - z0| 

b1
+
e - b1| z+z0| 

b1

\Biggr] 
,

f сч( - h) = f сч(h) — симетрична функцiя,

тому

df сч( - h)
dz

=  - df
с
ч(h)

dz
— несиметрична функцiя.

Згiдно з (11) отримаємо граничнi умови для симетричної задачi у виглядi\left\{     
Nchb1hC1 + \alpha 2b2chb2hC4 = \zeta 1, де \zeta 1 =  - N f сч | z=\pm h,

b1shb1hC1 +N shb2hC4 = \zeta 2, де \zeta 2 =  - 2
df сч
dz

\bigm| \bigm| \bigm| \bigm| 
z=\pm h

,
(12)

а N = \alpha 2 +
p2

2S2
2

.

Знаходимо розв’язок отриманої лiнiйної неоднорiдної системи двох рiвнянь щодо невi-
домих C1 i C4 :

C1 =
\Delta 1

с
\Delta с

, C4 =
\Delta 4

с
\Delta с

,

де визначники системи (12) обчислюються за формулою

\Delta с = N2shb2hchb1h - b1b2\alpha 
2shb1hchb2h = \alpha 2b1b2shb1hchb2h

\biggl( 
N2thb2h

\alpha 2b1b2thb1h
 - 1

\biggr) 
,

\Delta 1
с = \zeta 1Nshb2h - \zeta 2\alpha 

2b2chb2h = \alpha 2b2chb2h

\biggl( 
\zeta 1N

thb2h

\alpha 2b2
 - \zeta 2

\biggr) 
,

\Delta 4
с = \zeta 2Nchb1h - \zeta 1b1shb1h = b1chb1h(N\zeta 2/b1  - \zeta 1thb1h).

Отримуємо формули для визначення C1 i C4 в явному виглядi

C1 =
\Delta 1

с
\Delta с

=
\zeta 1N

thb2h

\alpha 2b2
 - \zeta 2

b1shb1h

\biggl( 
N2thb2h

\alpha 2b1b2thb1h
 - 1

\biggr) ,
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C4 =
\Delta 4

с
\Delta с

=
N\zeta 2/b1  - \zeta 1thb1h

\alpha 2b2thb1hchb2h

\biggl( 
N2thb2h

\alpha 2b1b2thb1h
 - 1

\biggr) .
Тепер, коли вiдомi C1 i C4, розв’язок для симетричних (товщинних) коливань у шарi

щодо невiдомих функцiй f с i \chi с в (11) подається у виглядi

f с =
\Delta 1

с
\Delta с

chb1z  - 
\varepsilon \ast (1 + \nu )

16\pi (1 - \nu )

\Biggl[ 
e - b1| z - z0| 

b1
+
e - b1| z+z0| 

b1

\Biggr] 
,

\chi с =
\Delta 4

с
\Delta с

shb2z.

Розглянемо для цього випадку частотне рiвняння

\Delta с = \alpha 2b1b2shb1hchb2h

\biggl( 
N2thb2h

\alpha 2b1b2thb1h
 - 1

\biggr) 
= 0. (13)

Оскiльки в цьому випадку

\partial 

\partial p
shb2h = hb\prime 2chb2h =

hp

S2
2b2

chb2h,

\partial 

\partial p
shb1h = hb\prime 1chb1h =

hp

S2
1b1

chb1h,

\partial 

\partial p
chb2h = hb\prime 2shb2h =

hp

S2
2b2

shb2h,

\partial 

\partial p
chb1h = hb\prime 1shb1h =

hp

S2
1b1

shb1h,

\partial 

\partial p
N = N \prime =

\partial 

\partial p

\biggl( 
\alpha 2 +

p2

2S2
2

\biggr) 
=

p

S2
2

.

де

\partial b1
\partial p

= b\prime 1 =
\partial 

\partial p

\sqrt{} 
\alpha 2 +

p2

S2
1

=
p

S2
1

\sqrt{} 
\alpha 2 +

p2

S2
1

=
p

S2
1b1

,

\partial b2
\partial p

= b\prime 2 =
\partial 

\partial p

\sqrt{} 
\alpha 2 +

p2

S2
2

=
p

S2
2

\sqrt{} 
\alpha 2 +

p2

S2
2

=
p

S2
2b2

,

то в результатi отримуємо

\Delta с =
\partial 

\partial p
\Delta с =

\partial 

\partial p

\bigl( 
N2shb2hchb1h - b1b2\alpha 

2shb1hchb2h
\bigr) 
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=
2Np

S2
2

shb2hchb1h+
N2hp

S2
2b2

chb2hchb1h+
N2hp

S2
1b1

shb1shb2h - \alpha 2b2p

S2
1b1

shb1hchb2h

 - \alpha 2b1p

S2
2b2

shb1hchb2h - \alpha 2b2hp

S2
1

chb1hchb2h - b1\alpha 
2hp

S2
2

chb2hchb1h \not = 0.

Якщо ввести фазову швидкiсть за допомогою рiвностi S = p/\alpha , де p = \varsigma + i\sigma , то
частотне рiвняння (13) симетричних (товщинних) коливань для шару можна записати так:

th

\Biggl( 
\alpha h

\sqrt{} 
1 +

S2

S2
2

\Biggr) 

th

\Biggl( 
\alpha h

\sqrt{} 
1 +

S2

S2
1

\Biggr)  - 

\sqrt{} \biggl( 
1 +

S2

S2
1

\biggr) \biggl( 
1 +

S2

S2
2

\biggr) 
\biggl( 
1 +

S2

2S2
2

\biggr) 2 = 0,

b2 = 0 або
\sqrt{} 
1 +

S2

S2
2

= 0.

(14)

Рiвняння b2 = 0 легко можна звести до рiвняння вигляду

uс(\varsigma , \sigma ) + ivс(\varsigma , \sigma ) = 0, де p = \sigma + i\varsigma ,

або до системи двох рiвнянь iз двома невiдомими \sigma та \varsigma :

uс(\varsigma , \sigma ) = 0,

vс(\varsigma , \sigma ) = 0.
(15)

Знаходження коренiв pсm першого рiвняння (14), яке вiдоме як дисперсiйне рiвняння
Релея –Ламба, в явному виглядi не можливе. Воно вирiшується лише чисельно.

Коренi рiвнянь (15) знаходяться у явному виглядi:

pс\ast = \pm i\alpha S2.

Позначимо pсn = pс\ast , p
с
m. Коренi pсn є комплексно-спряженими та простими полюсами

для частотного рiвняння \Delta с = 0, оскiльки \Delta \prime 
с
\bigl( 
pсn
\bigr) 
\not = 0.

3. Kососиметрична задача (згинальнi коливання шару). Кососиметрична задача вiдпо-
вiдає тому випадку, коли перемiщення Ur є непарною функцiєю координати z, тобто
функцiї \=\sigma \ast zz, f є непарними, а перемiщення Uz є парною функцiєю координати z, тому
функцiї \=\tau \ast rz, \chi теж парнi. Отже, C1 = C4 = 0.

Отримуємо задачу аналогiчно симетричному випадку:

d2fк

dz2
 - 
\biggl( 
\alpha 2 +

p2

S2
1

\biggr) 
fк =  - \varepsilon \ast (1 + \nu )

8\pi (1 - \nu )
[\delta (z  - z0) - \delta (z + z0)],

d2\chi к

dz2
 - 
\biggl( 
\alpha 2 +

p2

S2
2

\biggr) 
\chi к = 0,

\left\{   f
к = C2shb1z + fкч ,

\chi к = C3chb2z,

\left\{   \=\sigma кzz(z) \equiv  - \=\sigma кzz( - z) = 0, z = \pm h,

\=\tau кrz(z) \equiv \=\tau кrz( - z) = 0, z = \pm h.

(16)
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Аналогiчно симетричному випадку отримуємо частинний розв’язок (16):\left\{     f
к
ч (z) =

\varepsilon \ast (1 + \nu )

16\pi (1 - \nu )

\Biggl[ 
e - b1| z - z0| 

b1
 - e - b1| z+z0| 

b1

\Biggr] 
,

fкч ( - z) =  - fкч (z) — несиметрична функцiя,
тому

dfкч ( - h)
dz

=
dfкч (h)

dz
— симетрична функцiя.

Граничнi умови в (16) мають вигляд\left\{       
C2Nshb1z + C3b2\alpha 

2shb2z =  - Nfкч (z)| z=\pm h = \kappa 1,

C2b1chb1z + C3Nchb2z =  - 2
dfкч (z)

dz

\bigm| \bigm| \bigm| \bigm| 
z=\pm h

= \kappa 2.

Iз цiєї лiнiйної системи двох рiвнянь знаходимо невiдомi C2 i C3 :

C2 =
\Delta 2

к
\Delta к

, C3 =
\Delta 3

к
\Delta к

,

де

\Delta к = N2shb1hchb2h - b1b2\alpha 
2chb1hshb2h,

\Delta к = \alpha 2b1b2chb1hshb2h

\biggl( 
N2thb1h

\alpha 2b1b2thb2h
 - 1

\biggr) 
,

\Delta 2
к = \kappa 1Nchb2h - \kappa 2\alpha 

2b2shb2h = \alpha 2b2chb2h

\biggl( 
\kappa 1N

\alpha 2b2
 - \kappa 2thb2h

\biggr) 
,

\Delta 3
к = \kappa 2Nshb1h - \kappa 1b1chb1h = b1chb1h

\biggl( 
\kappa 2Nthb1h

b1chb1h
 - \kappa 1

\biggr) 
,

Тепер розв’язок лiнiйної неоднорiдної системи звичайних диференцiальних рiвнянь у ви-
падку згинальних коливань шару щодо невiдомих функцiй fк i \chi к подаємо у такому
виглядi:

fк =
\Delta 2

к
\Delta кshb1z

 - \varepsilon \ast (1 + \nu )

16\pi (1 - \nu )

\Biggl[ 
e - b1| z - z0| 

b1
 - e - b1| z+z0| 

b1

\Biggr] 
,

\chi к =
\Delta 3

к
\Delta кchb2z

.

Розглянемо для цього випадку частотне рiвняння

\Delta к = \alpha 2b1b2chb1hshb2h

\biggl( 
N2thb1h

\alpha 2b1b2thb2h
 - 1

\biggr) 
= 0. (17)

Звiдси отримуємо

\Delta \prime 
к =

\partial 

\partial p
\Delta к =

\partial 

\partial p

\bigl( 
N2shb1hchb2h - b1b2\alpha 

2chb1hshb2h
\bigr) 
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= 2N
p

S2
2

shb1hchb2h+
N2hp

S2
2b2

shb2hshb1h+
N2hp

S2
1b1

chb1chb2h - b2p

S2
1b1

\alpha 2chb1hshb2h

 - b1p

S2
2b2

\alpha 2chb1hshb2h - \alpha 2 b2hp

S2
1

shb1hchb2h - b1\alpha 
2 hp

S2
2

chb2hchb1h \not = 0.

Частотне рiвняння згинальних коливань шару (17) можна записати ще таким чином:

th

\Biggl( 
\alpha h

\sqrt{} 
1 +

S2

S2
1

\Biggr) 

th

\Biggl( 
\alpha h

\sqrt{} 
1 +

S2

S2
2

\Biggr) =

\sqrt{} \biggl( 
1 +

S2

S2
1

\biggr) \biggl( 
1 +

S2

S2
2

\biggr) 
\biggl( 
1 +

S2

2S2
2

\biggr) 2 , (18)

де b1 = 0,

\sqrt{} 
1 +

S2

S2
1

= 0.

Знаходження коренiв pкm першого рiвняння (18) у явному виглядi не можливе. Воно
розв’язується лише чисельно.

Друге рiвняння b1 = 0, як i в симетричному випадку, легко можна звести до рiвняння
вигляду

uк(\varsigma , \sigma ) + ivк(\varsigma , \sigma ) = 0, де p = \sigma + i\varsigma ,

або до системи двох рiвнянь iз двома невiдомими, \sigma та \varsigma :

uк(\varsigma , \sigma ) = 0,

vк(\varsigma , \sigma ) = 0.

Отже, коренi другого рiвняння (18) знаходяться у явному виглядi

pк\ast = \pm i\alpha S2.

Введемо позначення pкn = pк\ast , p
к
m. Коренi pкn є комплексно-спряженими та простими

полюсами для частотного рiвняння \Delta к = 0, оскiльки \Delta \prime 
к
\bigl( 
pкn
\bigr) 
\not = 0.

Тепер загальний розв’язок нашої задачi у зображеннях за Лапласом має такий вигляд:

f(\alpha , p, z) = fo(\alpha , p, z) + fч(\alpha , p, z) =
\Delta 1

с
\Delta с

chb1z +
\Delta 2

к
\Delta к

shb1z  - 
\varepsilon \ast (1 + \nu )

8\pi (1 - \nu )

e - b1| z - z0| 

b1
,

\chi (\alpha , p, z) = \chi к + \chi с =
\Delta 3

к
\Delta к

chb2z +
\Delta 4

с
\Delta с

shb2z.

Знайдемо оригiнали вiд зображень за Лапласом цих функцiй:

f(\alpha , p, z) = fo(\alpha , p, z) + fч(\alpha , p, z), \chi (\alpha , p, z),

де
f0(\alpha , p, z) = f сo + fкo , fч(\alpha , p, z) = f сч + fкч ,
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та запишемо їхнi шуканi оригiнали, тобто f\ast (\alpha , z, t), \chi \ast (\alpha , z, t), у виглядi

f\ast (\alpha , z, t) = \Im  - 1[fo(\alpha , p, z) + fч(\alpha , p, z)] = \Im  - 1

\biggl( 
\Delta 1

с
\Delta с

chb1z +
\Delta 2

к
\Delta к

shb1z

\biggr) 
+ f\ast ч ,

\chi \ast (\alpha , z, t) = \Im  - 1[\chi (\alpha , p, z)] = \Im  - 1

\biggl( 
\Delta 3

к
\Delta к

chb2z +
\Delta 4

с
\Delta с

shb2z

\biggr) 
,

\Im  - 1[fo(\alpha , p, z)] = \Im  - 1

\biggl( 
\Delta 1

с
\Delta с

chb1z +
\Delta 2

к
\Delta к

shb1z

\biggr) 
,

f\ast ч = \Im  - 1[fч(\alpha , p, z)] =
\varepsilon \ast (1 + \nu )

8\pi S1(1 - \nu )
J0

\Bigl[ 
\alpha S1

\sqrt{} 
t2  - (z  - z0)2

\Bigr] 
, t > | z  - z0| ,

де \Im  - 1 — обернене перетворення Лапласа.
Остаточно отримуємо

\psi (r, z, t) =

\infty \int 
0

\alpha J0(\alpha r)

\biggl[ 
\Im  - 1

\biggl( 
\Delta 1

с
\Delta с

chb1z +
\Delta 2

к
\Delta к

shb1z

\biggr) 
d\alpha + f\ast ч (\alpha , z, t)

\biggr] 
d\alpha ,

\varphi (r, z, t) =

\infty \int 
0

\alpha J0(\alpha r)\Im  - 1

\biggl( 
\Delta 3

к
\Delta к

chb2z +
\Delta 4

с
\Delta с

shb2z

\biggr) 
d\alpha ,

де
f\ast ч (\alpha , z, t) =

\varepsilon \ast (1 + \nu )

8\pi S1(1 - \nu )
J0

\Bigl[ 
\alpha S1

\sqrt{} 
t2  - (z  - z0)2

\Bigr] 
= 0 при t > | z  - z0| .

Розглянемо, наприклад, оригiнал зображення поперечних перемiщень \=Uz :

Uz(r, z, t) =

\infty \int 
0

\alpha J0(\alpha r)

\biggl\{ 
\Im  - 1

\biggl[ 
\partial 

\partial z

\biggl( 
\Delta 1

с
\Delta с

chb1z +
\Delta 2

к
\Delta к

shb1z

\biggr) 

+\alpha 2

\biggl( 
\Delta 3

к
\Delta к

chb2z +
\Delta 4

с
\Delta с

shb2z

\biggr) \biggr] 
+

\partial 

\partial z
f\ast ч (\alpha , z, t)

\biggr\} 
d\alpha .

Позначимо

F (p) =
b1shb1z\Delta 

1
с + \alpha 2shb2z\Delta 

4
с

\Delta с
+
b1chb1z\Delta 

2
к + \alpha 2chb2z\Delta 

3
к

\Delta к
.

У результатi оригiнал зображення поперечних перемiщень \=Uz буде мати вигляд

Uz(r, z, t) =

\infty \int 
0

\alpha J0(\alpha r)

\biggl\{ 
\Im  - 1[F (p)] +

\partial 

\partial z
f\ast ч (\alpha , z, t)

\biggr\} 
d\alpha .

Знаходимо за формулою обернення оригiнал \beta (t) для зображення F (p) :

\beta (t) = \Im  - 1[F (p)] =
1

2\pi i

\varsigma +i\infty \int 
\varsigma  - i\infty 

eptF (p) dp, де p = \sigma + i\varsigma .
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Iнтегральне вiдрахування аналiтичної функцiї F (p) щодо iзольованої особливої точки
a однозначного характеру має вигляд [3]

\Re s[F (p), a] = lim
p\rightarrow a

(p - a)F (p).

Оскiльки pm, m = 1, 2, 3, . . . , n, — особливi точки (полюси) зображення F (p), то оригiнал
цiєї функцiї \beta (t) має вигляд [3]

\beta (t) =

n\sum 
m=1

\Re s
\bigl[ 
eptF (p), pm

\bigr] 
. (19)

Цей розклад справедливий i для випадку нескiнченної множини pm простих полюсiв. У
частотних рiвняннях (13) i (17) \Delta \prime 

с
\bigl( 
pсn
\bigr) 
\not = 0 i \Delta \prime 

к
\bigl( 
pкn
\bigr) 
\not = 0, тому особливi точки pn є простими

полюсами. Крiм того, коренi pсn, pкn частотних рiвнянь є комплексно-спряженими, тому
отримуємо надалi вiд суми вiдрахувань у (19) у комплексно-спряжених простих полюсах
подвоєну дiйсну частину, а уявна частина при цьому сумуваннi рiвна нулю. Отже, у випадку
комплексно-спряжених простих полюсiв оригiнал F (p) знаходиться за формулою (19) у
аналiтичному виглядi, а тому й оригiнал Uz вiд зображення \=Uz. Аналогiчно визначаємо
оригiнал Ur вiд зображення \=Ur.

Отриманий розв’язок системи рiвнянь з частинними похiдними (2) визначає векторне
поле перемiщень у шарi необмежених розмiрiв, що дозволяє бiльш детально розкрити
механiзм руху пружних хвиль у цьому середовищi.

При \varepsilon \ast = 1 розв’язок системи (2) можна розглядати як функцiї Грiна. Зрештою отри-
муємо фундаментальний розв’язок системи (2), а згiдно з лiнiйнiстю нашої задачi можна
також отримати розв’язок хвильової задачi для нескiнченного шару, викликаної нестацiо-
нарними навантаженнями, розподiленими по будь-якiй областi \Gamma обмеженою регулярною
поверхнею [1].
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